
This is a repository copy of Alevin efficiently estimates accurate gene abundances from
dscRNA-seq data..

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/144269/

Version: Published Version

Article:

Srivastava, A., Malik, L., Smith, T. et al. (2 more authors) (2019) Alevin efficiently estimates
accurate gene abundances from dscRNA-seq data. Genome Biology , 20. 65. ISSN
1474-760X

https://doi.org/10.1186/s13059-019-1670-y

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Srivastava et al. Genome Biology (2019) 20:65

https://doi.org/10.1186/s13059-019-1670-y

METHOD Open Access

Alevin efficiently estimates accurate
gene abundances from dscRNA-seq data
Avi Srivastava1, Laraib Malik1, Tom Smith2, Ian Sudbery3 and Rob Patro1*

Abstract

We introduce alevin, a fast end-to-end pipeline to process droplet-based single-cell RNA sequencing data,
performing cell barcode detection, read mapping, unique molecular identifier (UMI) deduplication, gene count
estimation, and cell barcode whitelisting. Alevin’s approach to UMI deduplication considers transcript-level
constraints on the molecules from which UMIs may have arisen and accounts for both gene-unique reads and reads
that multimap between genes. This addresses the inherent bias in existing tools which discard gene-ambiguous reads
and improves the accuracy of gene abundance estimates. Alevin is considerably faster, typically eight times, than
existing gene quantification approaches, while also using less memory.

Keywords: Single-cell RNA-seq, UMI deduplication, Quantification, Cellular barcode

Background
There has been a steady increase in the throughput

of single-cell RNA-seq (scRNA-seq) experiments, with

droplet-based protocols (dscRNA-seq) [1–3] facilitating

experiments assaying tens of thousands of cells in paral-

lel. The three most widely used dscRNA-seq protocols:

Drop-seq [1], inDrop [2], and 10X Chromium [3], use two

separate barcodes that require appropriate processing for

accurate quantification estimation. First, cellular barcodes

(CBs) are used to tag each cell with a unique barcode,

which enables pooling of cells for sequencing and their

subsequent separation in silico. Thus, data processing

requires the identification of the true CBs corresponding

to distinct cells, and grouping the reads accordingly. Sec-

ond, identification of PCR duplicates is aided by unique

molecular identifiers (UMIs), which tag each unique

molecule prior to amplification. Since the mRNA capture

rate is only around 5–10% [4], many rounds of PCR are

typically performed prior to sequencing [1]. Appropriately

accounting for the barcode information is therefore cru-

cial for accurate estimation of gene expression. Only a

minor fraction of the possible CBs present will ultimately

tag a cell, and likewise, only a minor fraction of UMIs will

tag unique molecules from the same gene. Thus, in each

*Correspondence: rob.patro@cs.stonybrook.edu
1Department of Computer Science, Stony Brook University, Stony Brook, USA
Full list of author information is available at the end of the article

case, the aim is to identify the barcodes used. Unfortu-

nately, both CBs and UMIs are subject to errors that occur

during sequencing and amplification [1, 5], which makes

the accurate deconvolution of this information in silico a

non-trivial task. This task is made more difficult by the

amplification of background RNA from empty droplets

(ambient CBs) or damaged cells.

Various methods have been proposed to correctly pro-

cess dscRNA-seq barcodes in an error-aware manner

(“whitelisting”) [3, 5–8], to correct sequencing errors

in CBs and UMIs [5, 8], to deduplicate UMI tags

inferred to be duplicates [5], and to obtain cell-level gene

quantification estimates [9]. Here, we describe an end-

to-end quantification pipeline that takes as input sample-

demultiplexed FASTQ files and outputs gene-level UMI

counts for each cell in the library. We call this unified

pipeline alevin, and it overcomes two main shortcomings

of traditional pipelines. First, existing techniques for UMI

deduplication discard reads that map to more than one

gene. In bulk RNA-seq datasets (with paired-end reads

and full-length transcript coverage), the proportion of

gene-ambiguous reads is generally small (Table 1). Yet, in

tagged-end scRNA-seq, this set of gene-ambiguous reads

is generally larger and commonly accounts for ∼ 14–

23% of the input data (Table 2). This is a result of both

the fact that dscRNA-seq protocols, by construction, dis-

play a very strong 3′ bias and that these protocols yield

effectively single-end reads (only one of the sequenced

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-019-1670-y&domain=pdf
http://orcid.org/0000-0001-8463-1675
mailto: rob.patro@cs.stonybrook.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Srivastava et al. Genome Biology (2019) 20:65 Page 2 of 16

Table 1 The percentage of reads multimapping in bulk datasets
from human and mouse

Species Accession number Read length Percentage

Human SRR1303990 [32] 101 7.4

Human SRR1373442 [33] 49 9.2

Human SRR1644186 [34] 100 9.2

Human SRR5074291 [35] 150 7.7

Mouse ERR435943 [36] 75 23

Mouse SRR3532922 [37] 125 10.6

Mouse SRR6753775 [38] 150 5.6

Mouse SRR327047 [22] 120 5.2

We use these datasets for various analyses throughout themanuscript. Note that this
percentage varies depending on the read length as well as the overall quality of the
dataset

reads contains sequence from the underlying transcript),

resulting in a reduced ability to resolve multimapping

using a pair of reads from a longer fragment. We show

that discarding the multimapping reads can negatively

bias the gene-level counts predicted by various methods.

Second, existing quantification pipelines combine inde-

pendent processing algorithms and tools for each step,

usually communicating results between pipeline stages via

intermediate files on disk, which significantly increases

the processing time and memory requirements for the

complete analysis. We show that alevin makes use of more

reads than other pipelines, that this leads tomore accurate

quantification of genes, and that alevin does this ∼8 times

faster and with a lower memory requirement, when com-

pared to existing best practice pipelines for dscRNA-seq

analysis.

Results

Alevin overview

There are several steps in the alevin pipeline that are

streamlined to work without the overhead of writing to

disk, as highlighted in Fig. 1 (details in the “Materi-

als and methods” section). The first step is to identify

the CBs that represent properly captured and tagged

cells (“whitelisting”). Alevin uses a two-step whitelist-

ing procedure, where the second step takes place at the

end of the pipeline. An initial whitelist is produced by

Table 2 Percentage of reads multimapping across various
scRNA-seq samples, using the alevin mappings

Sample Percentage

Human PBMC 4k 14.2

Human PBMC 8k 14.1

Mouse neurons 900 21.8

Mouse neurons 2k 22.7

Mouse neurons 9k 17.2

finding the “knee” in the cumulative distribution of CB

frequencies [1, 3]. For each non-whitelisted CB, alevin

tries to correct it to a whitelisted CB either by a substitu-

tion or by a single insertion or deletion. If no such barcode

exists in the set of whitelisted barcodes, the barcode and

its associated reads are discarded. The next step is map-

ping reads from the whitelisted CBs, and the corrected

CBs, to a target transcriptome [10, 11], followed by UMI

deduplication.

The process of deduplication requires identifying dupli-

cate reads based on their UMIs and alignment positions

along the transcriptome. Alevin uses a novel algorithm for

deduplication that begins by constructing parsimonious

UMI graphs, that we refer to as a PUGs, using infor-

mation from the UMI sequences, the UMI counts, and

the transcript equivalence classes [12]. This PUG is con-

structed such that each UMI-transcript equivalence class

pair is represented by a node and there exists an edge

from a node to any node that could have arisen from

an amplified molecule due to sampling the underlying

transcript (a single pre-PCR molecule) at a different posi-

tion, or via a PCR or a sequencing error being introduced

into the UMI. When the direction of “duplication” during

PCR is clear, a directed edge is added; otherwise, a bi-

directed edge is placed. An optimal covering of this graph,

using the transcripts associated with each node, will give

the minimum number of UMIs, along with their counts,

required to explain the set of mapped reads. Hence, we

have mapped the deduplication problem to that of find-

ing a minimum cardinality covering of a given graph by

monochromatic arborescences. Since the decision version

of this problem is NP-complete, we propose a greedy algo-

rithm to obtain a minimum cardinality covering of this

graph (proof and algorithm detailed under the “Materials

and methods” section). Each covering, and the associated

UMI, is assigned a set of transcript labels of size ≥ 1.

After this UMI resolution phase, the remaining ambigu-

ous reads with more than 1 transcript label are assigned

based on an expectation-maximization method [13].

Finally, having obtained per-cell gene expression esti-

mates, CB whitelisting is finalized using a naïve Bayes

classifier to differentiate between high- and low-quality

cells utilizing a set of features derived from the expression

estimates and other diagnostic features [8]. In addition to

the gene-by-cell count matrix, alevin also provides infor-

mation about the reliability of the abundance estimate

computed for each gene in each cell in the form of a tier

matrix (and, optionally, the summarized variance of boot-

strap estimates), which succinctly encodes the quality of

the evidence used to derive the corresponding count.

Impact of discarding multimapping reads

Before proceeding with a more detailed analysis of the

alevin pipeline, it is important to highlight scenarios

Srivastava et al. Genome Biology (2019) 20:65 Page 3 of 16

Fig. 1 Overview of the alevin pipeline. The input to the pipeline are sample-demultiplexed FASTQ files, and there are several steps, outlined here,
that are required to process this data and obtain per-cell gene-level quantification estimates. The first step is cell barcode (CB) whitelisting using
their frequencies. Barcodes neighboring whitelisted barcodes are then associated with (collapsed into) their whitelisted counterparts. Reads from
whitelisted CBs are mapped to the transcriptome, and the UMI-transcript equivalence classes are generated. Each equivalence class contains a set of
transcripts, the UMIs that are associated with the reads that map to each class and the read count for each UMI. This information is used to construct
a parsimonious UMI graph (PUG) where each node represents a UMI-transcript equivalence class and nodes are connected based on the associated
read counts. The UMI deduplication algorithm then attempts to find a minimal set of transcripts that cover the graph (where each consistently
labeled connected component—each monochromatic arborescence—is associated with a distinct pre-PCR molecule). In this way, each node is
assigned a transcript label and, in turn, an associated gene label. Reads associated with arborescences that could be consistently labeled by multiple
genes are divided amongst these possible loci probabilistically based on an expectation-maximization algorithm. Finally, optionally, and if not
provided with high-quality CB whitelist externally, an intelligent whitelisting procedure finalizes a list of high-quality CBs using a naïve Bayes
classifier to differentiate between high- and low-quality cells

where existing pipelines would fail using simple exam-

ples. These also lead to a better understanding of the

alevin UMI deduplication algorithm that intelligently

utilizes transcript-level information to obtain accu-

rate gene-level estimates. Since current deduplication

methods do not have a mechanism to detect UMIs

that map between multiple transcripts of the same

gene, they can, in certain cases, incorrectly detect PCR

duplicates and, hence, under-estimate the total UMI

counts. Some obvious cases can be resolved by

considering the read-to-transcript mapping, instead of

the read-to-gene mapping, as done in alevin and shown

in the left panel in Fig. 2. The first row (top to bottom)

demonstrates a case when we observe the same UMI (U1)

being used to tag transcripts from two separate genes

(G1 and G2). Here, all methods are able to correctly

assess that these instances of U1 are not PCR duplicates.

In the center row, we observe the same UMI deriving

from two (sequence-distinct) transcripts of the same

gene. Here, purely gene-level methods fail to resolve

this collision, while alevin’s strategy can. Finally, in the

bottom row, we observe a UMI collision within a single

transcript. That is, two different copies (molecules) of

the same transcript have been tagged with the same

UMI. This cannot be resolved by any of the methods.

Though possible, the situation presented in the third row

is highly unlikely, especially given the current sequencing

depths.

Srivastava et al. Genome Biology (2019) 20:65 Page 4 of 16

(a) (b)

Fig. 2 a This figure illustrates examples of various classes of UMI collisions and which method(s) would be able to correctly resolve the origin of the
multimapping reads in each scenario. These cases are shown top to bottom in order of their likelihood. b A simulated example demonstrates how
treating equivalence classes individually during UMI deduplication can lead to under-collapsing of UMIs compared to gene-level methods
(especially in protocols where the majority of cDNA amplification occurs prior to fragmentation). In the first row, both methods report correctly two
UMIs. In the second row, there are two fragmented molecules aligned against two transcripts from the same gene. The alevin deduplication
algorithm will attempt to choose the minimum number of transcripts required to explain the read mappings and hence correctly detect the UMI
counts. The equivalence class method will over-estimate the gene count

A second scenario is highlighted in the right panel

of Fig. 2 where using the transcript-level equivalence

classes lead to over-counting UMIs (discussed further in

the “Materials and methods” section). In these simulated

examples, different types of transcripts and correspond-

ing expression patterns are shown. Reads are randomly

sampled from the 3′-end of the annotated transcript(s)

according to a realistic fragment length distribution,

where exon overlap induces the corresponding equiva-

lence classes of each fragment. The top simulation shows

1 (pre-PCR) molecule expressed for each transcript, iden-

tifiable by a unique id (UMI), shown in blue. Due to the

disjoint equivalence classes, both methods will correctly

assign the gene count. In the bottom simulation, both

molecules originate from the second transcript. However,

since the equivalence classes are different, the two frag-

ments sharing a UMI will not be collapsed. Specifically,

as the rate of splicing (and hence the number of equiva-

lence classes) increases, so too does the number of distinct

UMIs reported. In this case, the alevin UMI deduplication

algorithm will correctly detect the number of transcripts

in order to greedily assign the minimum number of tran-

scripts required to explain the given UMI and mapping

information.

To show that the UMI deduplication algorithm from

alevin does, indeed, perform better, we calculate the ratio

of the number of reads mapping to each gene and the

final count of UMIs as predicted by alevin and Cell Ranger

for that gene. When a read maps ambiguously, the count

is divided uniformly between the genes. Hence, if a read

maps to two genes, the count for each is incremented by

0.5 to get the initial number of reads mapping to these

genes. Note that the mappings are also different under

each pipeline and that some reads may be inherently

ambiguous under one or both mappings. These reads can-

not be accurately assigned but, while Cell Ranger discards

them, alevin assigns them to a gene via the PUG reso-

lution algorithm, or, in the case that parsimony fails to

distinguish a single best gene, proportionally to multiple

genes according to the other uniquely mapping reads of

the experiment.We divide the genes into 20 bins, based on

the number of k-mers shared across genes. We expect the

above calculated ratio to remain fairly consistent across

these 20 bins, irrespective of the sequence properties of

the genes in them. However, we observe in Fig. 3 that the

predictions from Cell Ranger are biased for the genes with

low sequence uniqueness. This is because a large num-

ber of reads from these genes will multimap across genes

and will, therefore, be discarded. Hence, simply discard-

ing multimapping reads seems to bias the count estimates

for all genes but strongly impacts counts for genes that are

expected to have a larger number of multimapping reads

due to their high sequence similarity.

Accuracy analysis on real datasets

To assess the performance of alevin, both in terms of accu-

racy in quantification and resource consumption, we ran it

on 10X Chromium datasets from human and mouse. We

compare our results against the Cell Ranger pipeline [3],

the dropEst pipeline [8]1, and a custom pipeline, with an

external list of whitelisted CBs, using STAR [14], feature-

Counts [15], and UMI-tools [5], which we refer to as the

Srivastava et al. Genome Biology (2019) 20:65 Page 5 of 16

Fig. 3 The ratio of the final number of deduplicated UMIs against the number of initial reads for both alevin and Cell Ranger (on the human PBMC
4k dataset) stratified by gene-level sequence uniqueness. The genes are divided into 20 equal sized bins, and the x-axis represents the maximum
gene uniqueness in each bin. The plotted ratio for genes that have high sequence similarity with other genes is strongly biased when using
Cell Ranger. This is because Cell Ranger will discard a majority (or all) of the reads originating from these genes since they will most likely map to
multiple positions across various genes. Alevin, on the other hand, will attempt to accurately assign these reads to their gene of origin. This plot also
demonstrates that alevin does not over-count UMIs, which would be the case if deduplication was done at the level of equivalence classes

naïve pipeline. The exact parameters for running each tool

are provided under the “Materials and methods” section.

Note that we run alevin with the --keepDuplicates

flag during indexing, which ensures that even whenmulti-

ple sequence-identical transcripts exist in the annotation,

they are not discarded. This is to allow for fair compar-

ison against the other tools, since they do not discard

such transcripts, and the existence of such transcripts

will impact the number of multimapping reads. How-

ever, we do not generally recommended using this flag

when running alevin. We observe that the number of final

whitelisted cells predicted by alevin are in close proxim-

ity to the count of cells predicted by Cell Ranger (and

dropEst, since they use the same whitelist), but there

are non-trivial differences (Table 3). Comparison on data

using the Drop-seq [1] protocol is also detailed below.

Comparisons against the recently released version 3.0.0

of Cell Ranger are also provided (Additional file 1: Figure

S1), along with results from another run of alevin using

different parameters. Where mentioned, the results are

stratified by gene uniqueness which is the proportion of k-

mers, of size 31, that are not shared between two or more

genes. We note that varying the k-mer size changes the

stratification of the genes but does not impact the over-

all correlation and performance of the methods. We show

this for the mouse neuronal 900 dataset (Additional file 1:

Figure S2). We calculated this for each gene in the human

(GENCODE release 27, GRCh38.p10) and mouse (GEN-

CODE release M16, GRCm38.p5) transcriptomes. Note

that this was not calculated using the canonicalized k-

mers from the genes. This is because the scRNA-seq

protocols are stranded and a read, therefore, cannot mul-

timap between two genes if the reverse complement of one

of them is shared with the other’s forward sequence.

Accuracy of estimates against bulk data

To test the accuracy of the quantification estimates, we

aggregate the estimates from each of the single-cell quan-

tification tools (summing across all cells) and calculate

the correlation with estimates predicted by RSEM [16]

(paired with Bowtie2 [17] alignments) using bulk datasets

Table 3 Number of final whitelisted cellular barcodes output by
alevin and Cell Ranger

Dataset Cell Ranger Alevin No. of reads

Human PBMC 4k 4346 4341 379,462,522

Human PBMC 8k 8379 8291 784,064,148

Mouse neurons 900 933 1291 52,805,264

Mouse neurons 2k 2009 1881 147,010,995

Mouse neurons 9k 9116 8519 383,366,284

Srivastava et al. Genome Biology (2019) 20:65 Page 6 of 16

from the same cell types. While the differences between

single-cell and bulk sequencing protocols and techniques

are significant, we believe that, in the absence of estab-

lished benchmarks, the correlation between them is a

reasonable indicator of the accuracy of each quantifi-

cation method. Estimates from alevin, when summed

across all cells, have a higher Spearman rank correla-

tion than the Cell Ranger, dropEst, and naïve pipelines

(Table 4). Specifically, we posit that the methods demon-

strate a strong and persistent bias against groups of

two or more genes that exhibit high sequence similarity.

That is, the more sequence-similar a gene is to another

gene, the less likely these pipelines are able to assign

reads to it—in the extreme case, some genes essentially

become invisible due to the in silico biases of these

approaches (a similar effect was reported by Robert and

Watson [18] in bulk RNA-seq data when simple read-

counting approaches are used for quantification, where

they highlight that many such genes are relevant to human

disease).

To further explore this hypothesis, we stratified the

accuracy of the different methods by the uniqueness of

the underlying genes (Fig. 4a, Table 5). The bar plots

at the top of each subfigure represent the tiers of the

genes as assigned by alevin. Tier 1 is the set of genes

where all the reads are uniquely mapping. Tier 2 is

genes that have ambiguously mapping reads, but con-

nected to unique read evidence as well, which can be

used by the EM to resolve the multimapping reads.

Tier 3 is the genes that have no unique evidence, and

the read counts are, therefore, distributed between these

genes according to an uninformative prior. In agree-

ment with the hypothesized relationship, we observed

that the higher accuracy of alevin is particularly large for

genes with a lower proportion of unique k-mers, which

tend to belong to tier 2 or 3. On genes from tier 1,

all the methods perform similarly. Thus, the approach

of Cell Ranger, dropEst, and naïve, which discard reads

mapping to multiple genes, results in systematic inaccu-

racies in genes which are insufficiently unique (i.e., which

share a high degree of sequence homology with some

other gene).

Table 4 Average Spearman correlation of gene-level estimates
from each method for the single-cell datasets against bulk data
from the same cell types (four for human, three for mouse)

Dataset Alevin Cell Ranger Naïve DropEst

Human PBMC 4k 0.813 0.78 0.747 0.783

Human PBMC 8k 0.81 0.772 0.74 0.776

Mouse neurons 900 0.812 0.773 0.761 0.779

Mouse neurons 2k 0.822 0.781 0.767 0.784

Mouse neurons 9k 0.831 0.796 0.776 0.803

This bias could impact the expression estimates of

important marker genes, such as the genes for the

hemoglobin alpha and beta proteins in the mouse neurons

[19, 20]. Due to their lower uniqueness ratio, Cell Ranger

appears to exhibit a bias against such genes, and their

expression, as predicted by alevin, is systematically higher

(Fig. 5). Anecdotally, we also noticed that, in the human

PBMC data, alevin sometimes predicts the expression of

even relatively sequence-unique genes, like YIPF6, that we

expect to be expressed in a subpopulation of these cells

(monocytes) [21], but which exhibit almost no expres-

sion as predicted by Cell Ranger (Fig. 6). Because the

bias against sequence-ambiguous genes is fundamental

and sequence-specific, it cannot be easily remedied with

more data, but instead requires the development of fun-

damentally novel algorithms, like alevin, that account for,

rather than discard, reads mapping to such genes. Hence,

alevin not only quantifies a greater proportion of the

sequenced data than existing methods, but also does so

more accurately and in a less biased manner.

Accuracy of estimates using combined genomes

To further assess the accuracy of quantification esti-

mates, in the absence of any established read-level sim-

ulation protocol, we performed an experiment aimed

to introduce controlled gene-level multimapping to ana-

lyze its effect on the different methods. We quantified

the mouse neuronal 900 sequencing dataset using both

Cell Ranger and alevin, and each quantification was per-

formed under two separate references: the mouse genome

and the combined human and mouse genome. Not-

ing that the reads in this experiment originate from

mouse, we desire that the quantifications returned by

a method deviate as little as possible under the two

different reference configurations. Under ideal condi-

tions, for example, the gene counts under both references

should be the same. However, combining the mouse and

human references increases the gene sequence ambigu-

ity, due to the presence of homologous genes, resulting in

misestimation.

We show in Fig. 7a that the distance under the two ref-

erences is higher for the Cell Ranger estimates than for the

alevin estimates. Due to the increased homology among

genes between the references, the ratio of reads mapping

to multiple genes increases, resulting in more information

being discarded by Cell Ranger. The total number of UMIs

accounted for by Cell Ranger decreases by ∼ 20, 000, in

comparison, the number of distinct UMIs predicted by

alevin decreased by ∼ 1500, which one might attribute

to changes in the underlying PUGs as a result of map-

ping ∼ 0.01% more reads. The number of human genes

expressed (non-zero UMI count) under the joint refer-

ence is 624 for Cell Ranger and 600 for alevin, out of a

total of 58,288 genes. Note that in both cases, these genes

Srivastava et al. Genome Biology (2019) 20:65 Page 7 of 16

(a)

(b)

Fig. 4 a The Spearman correlation between quantification estimates (summed across all cells) from different scRNA-seq methods against bulk data
from the mouse neuronal and human PBMC datasets, stratified by gene sequence uniqueness. The bar plot on the top of each figure shows the
percentage of genes in each bin that have unique read evidence. Tier 1 is the set of genes with only uniquely mapping reads. Tier 2 is genes that
have ambiguously mapping reads, but are connected to unique read evidence that can be used to resolve the multimapping reads. Tier 3 is genes
that are completely ambiguous. Note that all methods perform very similarly on genes from tier 1, but the performance of alevin is much better for
the other tiers. b Comparison of various methods used to process Drop-seq data from mouse retina with 4k cells. The Spearman correlation is
calculated against bulk quantification estimates predicted using Bowtie2 and RSEM on data from the same cell type

account for < 0.05% of the total UMI count predicted by

each method.

To provide a statistical analysis of the differences

observed for the methods under the two different ref-

erence sequences, we performed the following test. We

sample, randomly, 1000 sets of 100 cells from the entire

experiment, and for each sample, we compute the sum of

Table 5 Number of genes in each bin, when stratified by gene
uniqueness

Bin number Human Mouse

1 3155 4786

2 894 1089

3 853 945

4 822 1061

5 962 1104

6 1174 1318

7 1565 1476

8 2546 1877

9 4695 2960

10 41622 36763

absolute difference between the predictions of each tool

under both references. We compare the resulting distri-

bution of differences for Cell Ranger with that of alevin

and find that the differences in alevin’s quantifications are

smaller than those of Cell Ranger (p < 0.001, Mann-

Whitney-Wilcoxon test). These distributions are plotted

in Additional file 1: Figure S3.

We also show in Fig. 7b that, for the genes that have

sequence similarity in the joint reference but are unique in

the mouse genome, Cell Ranger expression estimates vary

much more than those from alevin.

Time andmemory efficiency

The time and memory requirements for alevin are signif-

icantly less than those for the existing pipelines (Fig. 8),

where all methods were run using 16 threads. DropEst is

excluded from the figure since it consumes the BAM file

output by Cell Ranger and is not a complete end-to-end

pipeline. For the smallest dataset (900 mouse neuronal

cells), alevin was ∼ 5 times faster than naïve and ∼ 21

times faster than Cell Ranger. This difference increases

further as the size of the dataset increases, since the per-

formance of alevin scales better than the other tools.

Hence, where alevin took only 70 min to process the

Srivastava et al. Genome Biology (2019) 20:65 Page 8 of 16

Fig. 5 Expression of the Hba and Hbb genes as predicted by alevin and Cell Ranger in mouse neuronal cells. The title of each plot is the name of the
gene and its k-mer uniqueness ratio. Note that Cell Ranger systematically under-estimates the expression of these genes compared to alevin. This
bias is greater for the Hba genes, which have a lower uniqueness ratio, and therefore, a greater number of multimapping reads

human PBMC 8k dataset, Cell Ranger took 22 h and naïve

took 11 h. On this dataset, dropEst took ∼ 2 hours, after

Cell Ranger was used to process and align the reads. In

terms of memory, alevin used only ∼13 GB on the human

PBMC 8k cell dataset, whereas naïve took ∼ 20 GB and

dropEst took ∼ 32 GB. For the mouse neuronal 9k cell

dataset, alevin used ∼14 GB, naïve ∼18 GB, and dropEst

∼ 52 GB. In both cases, Cell Ranger required a minimum

of 16 GB just for STAR indexing.We note that Cell Ranger

allows the user to specify a maximum resident memory

limit, and we ran Cell Ranger allowing it to allocate up to

120 GB so that the extra runtime was not due to limita-

tions in available memory. We also note that for dropEst,

we were not able to run the Bayesian collision correction

algorithm implemented in dropEstr; however, given the

Fig. 6 Expression of the YIPF6 gene (which has a high uniqueness
ratio) as predicted by alevin and Cell Ranger in the PBMC8k data

relatively long UMI tags employed in chromiumV2 chem-

istry compared to inDrop, one would expect the effect of

this extra phase to be limited anyway.

We observe that the optimal number of threads for run-

ning alevin is 10–12, where the maximum gain in terms

of time and memory is achieved. Alevin is designed to

make efficient use of multiple threads, though the opti-

mal number of threads can depend on many factors, such

as the speed of the underlying disk and the size of the

raw input and output matrix to be written. While runtime

decreases with the number of threads used, the memory

profile changes very little as threads are added.

Comparison on Drop-seq data

In addition to the data generated using the 10X

Chromium protocol [3], we also tested alevin on mouse

retina data generated using the Drop-seq protocol [1].

We compare alevin against UMI-tools (the naïve pipeline

from the main paper), dropEst, and dropseq_utils [1]—

the processing pipeline originally used by Macosko et al.

[1]. Again, we compared the correlation of gene abun-

dances, summed across all cells and as produced by the

different methods with the estimates from bulk data [22]

in the same tissue (Fig. 4b). We observe a similar trend

across gene-uniqueness bins as was observed for the 10x

datasets. Alevin demonstrates higher correlation, overall,

with the bulk data, and the improvements are particularly

substantial for genes that are not sequence-unique. Fur-

ther, alevin is much faster and takes less memory than the

other pipelines. Alevin took 17 min to process this data,

which is much faster than the UMI-tools-based pipeline

(∼3.2 h), the dropseq_utils-based pipeline (∼15.5 h), and

even dropEst (25 min). The memory usage of alevin was

6.5 GB, which is less than half the memory usage of the

closest tool (UMI-tools at 17.72 GB). The dropseq_utils-

based pipeline took 25.07 GB while dropEst used 10.8 GB,

which does not include the memory consumed by Cell

Ranger to index the reference and align reads against

Srivastava et al. Genome Biology (2019) 20:65 Page 9 of 16

(a)

(b)

Fig. 7 a Histogram of the ℓ1 distance between the quantification estimates of tools on the mouse neuron 900 data, when run using different
references for quantification (just mouse versus mouse and human). Results are presented for both alevin and Cell Ranger. Since, in reality, all reads
are expected to originate from mouse, deviations from quantifications under the only mouse reference signify misestimation—often due to the
introduction of sequence-similar genes in the human genome. Alevin is able to resolve this ambiguity well, while Cell Ranger instead discards such
reads, leading to different quantification estimates under the two references. b Counts for the topmost genes that have high sequence homology
between human and mouse but are sequence unique in the mouse reference. The title of each plot is the gene name along with the sequence
uniqueness ratio under just the mouse reference and under the joint reference. Hence, the Cell Ranger counts decrease across cells when the gene
uniqueness decreases. Note that these genes were filtered such that they have > 100 count difference for either alevin or Cell Ranger when
summed across all cells

it to produce the BAM file. While alevin has been pri-

marily designed and tested with 10x data in mind, the

method is generic for droplet-based tagged-end proto-

cols, and we observe that it also seems to perform well on

Drop-seq data.

Conclusion
We present a new end-to-end pipeline for performing

gene-level quantification from dscRNA-seq that is accu-

rate, efficient, and easy to use. Our method, alevin, relies

on a new formulation of the UMI resolution problem

Fig. 8 The time and memory performance of the different pipelines on the five datasets. Alevin requires significantly less time and memory than the
other pipelines. Note that for Cell Ranger, the memory plotted is the lower bound, which is the size of the index and the actual memory usage can
be much higher

Srivastava et al. Genome Biology (2019) 20:65 Page 10 of 16

that both accounts for transcript-level constraints on how

UMIs may have been generated and that allows resolving

the potential origin of a UMI even when the correspond-

ing reads map between multiple genes.

Our analyses demonstrate that, compared to Cell

Ranger (and naïve), alevin achieves a higher accuracy, in

part because of considering a substantially larger num-

ber of reads. Further, alevin is considerably faster and uses

less memory than these other approaches. These speed

improvements are due to a combination of the fact that

alevin uses bespoke algorithms for CB and UMI edit dis-

tance computation, read mapping, and other tasks and is

a unified tool for performing all of the initial processing

steps, obviating the need to read and write large interme-

diate files on disk. These optimizations make it possible

to efficiently process dscRNA-seq datasets on commodity

computers reducing computational barriers to processing

and re-processing of such data.

In the future, we hope to further improve the bench-

marking of accuracy for single-cell quantification and

barcode whitelisting approaches, as the lack of stan-

dard benchmarks makes the assessment of new meth-

ods difficult. We also hope to explore alternative cell

barcode whitelisting and PUG resolution strategies—

for example, adopting a generative model for PCR and

sequencing error and seeking a maximum likelihood

rather than maximum parsimony-based resolution of

the PUGs.

Alevin is written in C++14 and is integrated into the

salmon tool available at https://github.com/COMBINE-

lab/salmon.

Materials andmethods

Initial whitelisting and barcode correction

After standard quality control procedures, the first step of

existing single-cell RNA-seq processing pipelines [1–3] is

to extract cell barcode and UMI sequences and to add this

information to the header of the sequenced read or save it

in temporary files. This approach, while versatile, can cre-

ate many intermediate files on disk for further processing,

which can be time- and space-consuming.

Alevin begins with sample-demultiplexed FASTQ files.

It quickly iterates over the file containing the barcode

reads and tallies the frequency of all observed barcodes

(regardless of putative errors). We denote the collection

of all observed barcodes as B. Whitelisting involves deter-

mining which of these barcodes may have derived from a

valid cell. When the data has been previously processed

by another pipeline, a whitelist may already be available

for alevin to use. When a whitelist is not available, alevin

uses a two-step procedure for calculating one. An initial

draft whitelist is produced using the procedure explained

below, to select CBs for initial quantification. This list

is refined after per-cell-level quantification estimates are

available (see “Final whitelisting (optional)” section) to

produce a final whitelist.

To generate a putative whitelist, we follow the approach

taken by other dscRNA-seq pipelines by analyzing the

cumulative distribution of barcode frequencies and find-

ing the knee in this curve [1, 2]. Those barcodes occurring

after the knee constitute the whitelist, denoted W . We

use a Gaussian kernel to estimate the probability density

function for the barcode frequency and select the local

minimum corresponding to the “knee.” In the case of a

user-provided whitelist, the provided W is used as the

fixed final whitelist.

Next, we consider those barcodes in E = B \ W to

determine, for each non-whitelisted barcode, whether (a)

its corresponding reads should be assigned to some bar-

code inW or (b) this barcode represents some other type

of noise or error (e.g., ambient RNA, lysed cell) and its

associated reads should be discarded. The approach of

alevin is to determine, for each barcode hj ∈ E , the set

of whitelisted barcodes with which hj could be associ-

ated. We call these the putative labels of hj—denoted as

ℓ(hj). Following the criteria used by previous pipelines

[1], we consider a whitelisted barcode wi to be a putative

label for some erroneous barcode hj if hj can be obtained

from wi by a substitution, by a single insertion (and clip-

ping of the terminal base) or by a single deletion (and the

addition of a valid nucleotide to the end of hj). Rather

than applying traditional algorithms for computing the

all-versus-all edit-distances directly, and then filtering for

such occurrences, we exploit the fact that barcodes are rel-

atively short. Therefore, we can explicitly iterate over all of

the valid wi ∈ W and enumerate all erroneous barcodes

for which this might be a putative label. Let Q(wi,H) be

the set of barcodes from E that adhere to the conditions

defined above; then, for each hj ∈ Q(wi,H), we append wi

as putative label for the erroneous barcode hj.

Once all whitelisted barcodes have been processed, each

element in E will have zero or more putative labels. If

an erroneous barcode has more than one putative label,

we prioritize substitutions over insertions and deletions.

If this does not yield a single label, ties are broken

randomly. If no candidate is discovered for an erro-

neous barcode, then this barcode is considered “noise,”

and its associated reads are simply discarded. Note that,

although adopted from existing methods, the alevin ini-

tial whitelisting process is designed to output a larger

number of CBs.

Mapping reads and UMI deduplication

After labeling each barcode, either as noise or as belonging

to some whitelisted barcode, alevin maps the sequenced

reads to the target transcriptome [10, 11]. Reads map-

ping to a given transcript (or multimapping to a set of

transcripts) are categorized hierarchically, first based on

https://github.com/COMBINE-lab/salmon
https://github.com/COMBINE-lab/salmon

Srivastava et al. Genome Biology (2019) 20:65 Page 11 of 16

the label of their corresponding cellular barcode, and then

based on their unique molecular identifier (UMI). At this

point, it is then possible to deduplicate reads based on

their mapping and UMI information.

The process of read deduplication involves the iden-

tification of duplicate reads based on their UMIs and

alignment positions. Most amplification occurs prior to

fragmentation in library construction for 10X Chromium

protocols [23]. Because of this, the alignment position of a

given read is not straightforward to interpret with respect

to deduplication, as the same initial unique molecule may

yield reads with different alignment coordinates2. UMIs

can also contain sequence errors. Thus, achieving the cor-

rect deduplication requires proper consideration of the

available positional information and possible errors.

Our approach for handling sequencing errors and PCR

errors in the UMIs is motivated by “directional” approach

introduced in UMI-tools [5]. Let Ui be the set of UMIs

observed for gene i. A specific UMI un ∈ Ui, observed

cn times in gene i, is considered to have arisen by PCR

or sequence error if there exists um ∈ Ui such that

d(un,um) = 1 and cm > 2cn + 1, where d(·, ·) is the Ham-

ming distance. Using this information, only UMIs that

could not have arisen as an error under this model are

retained. However, this approach may over-collapse UMIs

if there exists evidence that similar UMIs (i.e., UMIs at

a Hamming distance of 1 or less) may have arisen from

different transcripts and, hence, distinct molecules. More-

over, this approach first discards reads that multimap

to more than one read, causing it to lose a substantial

amount of information before even beginning the UMI

deduplication process.

As previously proposed to address the problem of

cell clustering [24], an equivalence class [12, 13, 25–29]

encodes some positional information, by means of encod-

ing the set of transcripts to which a fragment is mapped.

Specifically, these equivalence classes can encode con-

straints about which UMIs may have arisen from the

same molecule and which UMIs—even if mapping to the

same gene—must have derived from distinct pre-PCR

molecules. This can be used to avoid over-collapsing UMI

tags that are likely to result from different molecules by

considering UMIs as distinct for each equivalence class.

However, in its simplest form, this deduplication method

is prone to reporting a considerably higher number of dis-

tinct UMIs than likely exist. This is because reads from

different positions along a single transcript, and tagged

with the same UMI, can give rise to different equiva-

lence classes, so that membership in a different equiva-

lence class is not, alone, sufficient evidence that a read

must have derived from a distinct (pre-PCR) molecule.

This deters us from directly using such a UMI-collapsing

strategy for deriving gene-level counts, though it may be

helpful for other types of analyses.

Given the shortcomings of both approaches to UMI

deduplication, we propose, instead, a novel UMI reso-

lution algorithm that takes into account transcript-level

evidence when it exists, while simultaneously avoiding the

problem of under-collapsing that can occur if equivalence

classes are treated independently for the purposes of UMI

deduplication.

UMI resolution algorithm

A potential drawback of the gene-level deduplication is

that it discards transcript-level evidence. In this case,

such evidence is encoded in the equivalence classes.

Thus, gene-level deduplication provides a conservative

approach and assumes that it is highly unlikely for

molecules that are distinct transcripts of the same gene

to be tagged with a similar UMI (within an edit distance

of 1 from another UMI from the same gene). However,

entirely discarding transcript-level information will mask

true UMI collisions to some degree, even when there is

direct evidence that similar UMIs must have arisen from

distinct transcripts. For example, if similar UMIs appear

in transcript-disjoint equivalence classes (even if all of

the transcripts labeling both classes belong to the same

gene), then they cannot have arisen from the same pre-

PCRmolecule. Accounting for such cases is especially true

when using an error-aware deduplication approach and as

sequencing depth increases.

To perform UMI deduplication, alevin begins by con-

structing a parsimonious UMI graph (PUG), G = (V ,E),

for each cell, where each vi = (u,Ti) is a tuple consist-

ing of UMI sequence u and a set of transcripts Ti =

{ti1 , ti2 , . . . , tim}. There is a count associated with each ver-

tex such that c(vi) = ci is the number of times this UMI

equivalence class pair is observed. G contains two types

of edges: directed and bi-directed. There exists a directed

edge between every pair of vertices (vi, vj) for which ci >

2cj − 1,
∣

∣Ti ∩ Tj

∣

∣ > 0, and d(umi(vi), umi(vj)) = 1. For

every pair of vertices for which there is no directed edge,

there exists a bi-directed edge if d(umi(vk), umi(vℓ)) ≤ 1,

and |Tk ∩ Tℓ| > 0. Once the edges of this PUG have been

formed, we no longer need to consider the counts of the

individual UMI equivalence class pairs.

Before proceeding further, we introduce the notion of

monochromatic arborescences in terms of this graph G.

We can refer to the transcript labels of each node as the

potential colors of the node. Since our graph is directed,

an arborescence would be a rooted tree in the graph,

where each node within the arborescence has exactly one

directed path reaching it from a determined root node,

using edges in the arborescence. Given these definitions,

a monochromatic arborescence is one where the set of

colors of the nodes within the arborescence have a non-

null intersection and, hence, the arborescence can be

labeled using a single color. Then, for a given connected

Srivastava et al. Genome Biology (2019) 20:65 Page 12 of 16

component in the graph, we can find different sets of

monochromatic arborescences and, for our graph, each

one represents a single pre-PCR molecule.

However, motivated by the principle of parsimony, we

wish to explain the observed vertices (i.e., UMI, equiv-

alence class pairs) via the minimum possible number of

pre-PCR molecules that are consistent with the observed

data. Hence, we pose this problem in the following man-

ner. Given a graph G, we seek a minimum cardinal-

ity covering by monochromatic arborescences. In other

words, we wish to cover G by a collection of vertex-

disjoint arborescences, where each arborescence is labeled

consistently by a set of transcripts, which are the pre-

PCR molecule types from which its reads and UMIs

are posited to have arisen. Further, we wish to cover all

vertices in G using the minimum possible number of

arborescences. Here, the graph G defines which UMI,

read pairs can potentially be explained in terms of oth-

ers (i.e., which vertices may have arisen from the same

molecule by virtue of different fragmentation positions

or which vertices may have given rise to other through

PCR duplication with error). The decision version of

this problem is NP-complete, as shown below and so,

alevin employs a greedy algorithm in practice to obtain

a valid, though not necessarily minimum, covering of

G. We note that while numerous covering and packing

problems related to arborescences have appeared in the

literature (Bernáth and Pap [30] and references therein),

to the best of our knowledge, the following problem

formulation is new.

Theorem 1 Minimum cardinality covering by

monochromatic arborescences is NP-complete.

Proof Consider a reduction from dominating set. Let

(G, k) be an instance of the dominating set problem where

G = (V ,E) is an undirected graph. Then, we can construct

a new graphG′ = (V ,E′) such thatG′ has a minimum car-

dinality covering by ≤ k monochromatic arborescences if

and only if G has a minimum dominating set of size ≤ k.

The color of an arborescence is chosen from among the

intersection of the set of labels for each node it covers and,

hence, is non-null. Construct G′ as follows. Convert each

edge in G to a bi-directed edge in G′ and label each node

with the union of its own label and the labels of all nodes

to which it is directly connected in G. In other words,

Ti = {i} ∪ {j | {i, j} ∈ E}.

→ If G has a minimum dominating set of size k, then G′

has a minimum cardinality covering by k monochromatic

arborescences. Every node in the original graph G has to

be connected to at least one node in the dominating set.

Due to the manner in which node labels are assigned in

G′, this means that every node in G′ can be covered by

an arborescence starting from a dominating set node; this

arborescence is colored by the label assigned to that node.

Since there are k nodes in the dominating set, there will

be k monochromatic arborescences in G′, and since the k

nodes inG dominateV, the arborescences will cover all ofV.

← If G′ has a covering of k monochromatic arbores-

cences, then G has a dominating set of size k. An arbores-

cence is assigned a color, let us say ℓi, from the intersection

of the labels of the nodes it covers. Hence, the node with

label ℓi in G′ has to be one of the nodes covered by

this arborescence. That node connects to all the nodes in

this arborescence; otherwise, they would not have shared

this label. Let these nodes be selected as the dominat-

ing set of G. Hence, if there are k arborescences, there

are k such nodes that are part of the dominating set, and

because the arborescences cover all of G′, the selected

nodes, likewise, dominate G.

The algorithm employed by alevin works as follows.

First, we note that weakly connected components of G

can be processed independently, and so, we describe

here the procedure used to resolve UMIs within a sin-

gle weakly connected component—this is repeated for all

such components. Let C = (VC ,EC) denote our current

component. We perform a breadth-first search starting

from each vertex vi ∈ VC and considering each tran-

script tij (the jth transcript in the equivalence class label-

ing vertex vi). We compute the size (cardinality) of the

largest arborescence that can be created starting from

this node and using this label to cover the visited ver-

tices. Let vi′ , ti′
j′
be the vertex, transcript pair generating

the largest arborescence, and let a
(

vi′ , ti′
j′

)

be the corre-

sponding arborescence. We now remove all of the vertices

in a
(

vi′ , ti′
j′

)

, and all of their incident edges, from C, and

we repeat the same procedure on the remaining graph.

This process is iterated until all vertices of C have been

removed. This procedure is guaranteed to select some

positive order arborescence (i.e., an arborescence con-

taining at least one node) in each iteration and hence is

guaranteed to terminate after at most a linear number of

iterations in the order of C.

After computing a covering, each arborescence is

labeled with a particular transcript. However, the selected

transcript may not be the unique transcript capable of

producing this particular arborescence starting from the

chosen root node. We can compute, for each arbores-

cence, the set of possible transcript labels that could have

colored it (i.e., those in the intersection of the equivalence

class labels for all of the vertices in the arborescence). If

the cardinality of this set is 1, then only a single tran-

script is capable of explaining all of the UMIs associated

with this arborescence. If the cardinality of this set is > 1,

then we need to determine if all transcripts capable of

Srivastava et al. Genome Biology (2019) 20:65 Page 13 of 16

covering this arborescence belong to the same gene, or

whether transcripts from multiple genes may, in fact, be

capable of explaining the associated UMIs. In the former

case, the count of pre-PCR molecules (i.e., distinct, dedu-

plicated UMIs) associated with this uniquely selected gene

is incremented by 1. In the latter case, the molecule asso-

ciated with the arborescence is considered to potentially

arise from any of the genes with which it could be labeled.

Subsequently, an EM algorithm is used to distribute the

counts between the genes. Note that other pipelines sim-

ply discard these gene-ambiguous reads and that both

manners in which alevin attempts to resolve such reads

(i.e., either by being selected via the parsimony condition

or probabilistically allocated by the EM algorithm) are

novel in the context of scRNA-seq quantification. The EM

procedure we adopt to resolve ambiguous arborescences

proceeds in the same manner as the EM algorithm used

for transcript estimation in bulk RNA-seq data [13], with

the exception that we assume the probability of generating

a fragment is directly proportional to the estimated abun-

dance, rather than the abundance divided by the effective

length (i.e., we assume that, in the tagged-end protocols

used, there is no length effect in the fragment generation

process).

Tier assignment

The alevin program also outputs a tier matrix, of the

same dimensions as the cell gene count matrix. Within a

cell, each gene is assigned one of four tiers. The first tier

(assigned 0) is the set of genes that have no read evidence

in this cell and are, therefore, predicted to be unexpressed

(whether truly absent, or the effect of some dropout pro-

cess). The rest of the tiers (1, 2, and 3) are assigned based

on a graph induced by the transcript equivalence classes

as follows:

1 All equivalence classes of size 1 are filtered out. The

genes associated with the transcripts from these

classes are assigned to tier 1.

2 For the remaining equivalence classes, of size > 1

gene, a graph G is constructed. The nodes in G are

transcripts, and two nodes share an edge if their

corresponding transcripts belong to a single

equivalence class.

3 All the connected components in G are listed, and

the transcript labels on the nodes mapped to their

corresponding genes. If any component contains a

node whose gene has previously been assigned to tier

1, that gene and all other genes in this connected

component are assigned to tier 2. Hence, tier 2

contains genes whose quantification is impacted by

the EM algorithm (after the UMI deduplication).

4 Genes associated with the remaining nodes in the

graph are assigned to tier 3. These are genes that

have no unique evidence and do not share reads (or,

in fact, paths in the equivalence class graph) with

another gene that has unique evidence. Hence, the

EM algorithm will distribute reads between these

genes in an essentially uniform manner, and their

estimates are uninformative. Their abundance

signifies that some genes (at least 1) in this ambiguous

family are expressed, but exactly which and their

distribution of abundances cannot be determined.

Alevin, optionally (using the --numCellBootstraps

flag), also outputs bootstrap variance estimates for genes

within each cell. These variance estimates could con-

ceivably be used by downstream tools for dimensionality

reduction, differential expression testing, or other tasks.

Final whitelisting (optional)

Many existing tools for whitelisting CBs, such as Cell

Ranger [3] and Sircel [7] perform whitelisting only once.

As discussed above, both tools rely on the assumption

that the number of times a CB is observed is suffi-

cient to identify the correct CBs, i.e., those originating

from droplets containing a cell. However, as observed

by Petukhov et al. [8], there is considerable variation in

sequencing depth per cell, and some droplets may con-

tain damaged or low-quality cells. Thus, true CBs may

fall below a simple knee-like threshold. Similarly, erro-

neous CBs may lie above the threshold. Petukhov et al. [8]

proposed that instead of selecting a single threshold, one

should treat whitelisting as a classification problem and

segregate CBs into three regions: high quality, low qual-

ity, and uncertain/ambiguous. Here, high quality refers to

the CBs which are deemed to be definitely correct, and

low quality are the CBs which are deemed to most likely

not arise from valid cells. A classifier can then be trained

on the high- and low-quality CBs to classify the barcodes

in the ambiguous region as either high or low quality. We

adopt this approach in alevin, using our knee method’s

cutoff to determine the ambiguous region. Specifically, we

divide everything above the knee threshold into two equal

regions: high-quality valid barcodes (upper-half), denoted

by H, and ambiguous barcodes (lower-half), denoted by

L. Since the initial whitelisting procedure is very liberal

in selecting a threshold, most of the recoverable, low-

confidence CBs tend to reside in the ambiguous region,

and to learn the low-quality region, we take nl = max(0.2 ·

|H| , 1000) barcodes just below the knee threshold.

In the implementation of Petukhov et al.[8], a kernel

density estimation classifier was trained using features

which described the number of reads per UMI, UMIs per

gene, the fraction of intergenic reads, non-aligned reads,

the fraction of lowly expressed genes, and the fraction

of UMIs on lowly expressed genes. In addition, a maxi-

mum allowable mitochondrial read content was set for a

CB to be classified as “high-quality.” Whilst these features

Srivastava et al. Genome Biology (2019) 20:65 Page 14 of 16

enabled the authors to build a classifier which efficiently

separated “high-quality” cells from “low-quality” cells, we

believe it may be possible to improve this set of features.

Specifically, most of these features would be expected to

correlate with the number of reads or UMIs per CB. Thus,

the classifier is biased towards attributes associated with

higher read depth, when in fact one wants it to learn the

feature attributes associated with high-quality cells. We

therefore used a slightly different set of features, listed

below, which we believemay better capture the differences

between high- and low-quality cells. While these features

work in general, they may not be suitable for all analy-

ses and will have to be tweaked accordingly. We chose

to use a naïve Bayes classifier to perform classification,

since we observed no clear difference between multiple

ML methods (not shown), and the naïve Bayes classifier

yields classification probabilities which are easy to inter-

pret. Our final set of whitelisted CBs are those classified

as high confidence.

1 Fraction of reads mapped

2 Fraction of mitochondrial reads (optionally activated

by --mRNA flag)

3 Fraction of rRNA reads (optionally activated by

--rRNA flag)

4 Duplication rate

5 Mean gene counts post deduplication

6 The maximum correlation of gene-level

quantification estimates with the high-quality CBs

(optionally activated by -useCorrelation flag)

Machine configuration and pipeline replicability

10x v2 chemistry benchmarking has been scripted

using CGATCore (https://github.com/cgat-developers/

cgat-core). The full pipeline and analysis are performed

using Stony Brook’s seawulf cluster with 164 Intel Xeon

E5–2683v3 CPUs.

For all analyses, the genome and gtf versions used

for human datasets were GENCODE release 27,

GRCh38.p10, and for mouse datasets were GENCODE

release M16, GRCm38.p5. All transcriptome files were

generated using these with “rsem-prepare-reference.”

Cell Ranger (v2.2.0): The following additional flags were

used, as recommended by the Cell Ranger guidelines:

--nosecondary --expect-cells NumCells,

where NumCells is 10,000 for PBMC 8k and Neurons

9k, 5,000 for PBMC 4k, and 2,000 for Neurons 2k and

Neurons 900.

Alevin (v0.13.0): Run with default parameters with the

Chromium protocol and --keepDuplicates flags and

the -lISR to specify strandedness. ThemRNA and rRNA

lists were obtained from the relevant annotation files

and passed as input. Experiments on v1 chemistry can

be run using the same flags but with the --gemcode

protocol flag. Alevin also supports 10x v3 chemistry via

the command-line flag --chromiumV3.

STAR (v2.6.0a): The following flag was used, as

recommended by the guidelines of UMI-tools:

--outFilterMultimapNmax 1

featureCounts (v1.6.3): This was run to obtain an output

BAM file and with stranded input (-s 1).

UMI-tools (v0.5.4): The extract command was used

to get the CBs/UMIs, when provided with an external

CB whitelist and attach it to the corresponding reads.

The following flags were used in the count command to

obtain the per-cell gene count matrix: --gene-tag=XT

--wide-format-cell-counts

DropEst (v0.8.5): This was run with the default param-

eters on the 10x BAM files, and the predicted cell counts

from Cell Ranger were used as input.

Dropseq utils (v2.0.0): All the commands were run as

recommended by the authors in the tool’s manual.

The bulk datasets were quantified using Bowtie2 and

RSEM, run as follows:

Bowtie2 (v2.3.4.3): The following flags were used, as rec-

ommended in the guidelines of RSEM: --sensitive

--dpad 0 --gbar 99999999 --mp 1,1 --np 1

--score-min L,0,-0.1 --no-mixed

--no-discordant

RSEM (v1.3.1): Run with default parameters.

Endnotes
1Note that we were not able to run the dropEstr

Bayesian correction method and the results presented are

after running just the dropEst pipeline [31].
2We note that whether the majority of amplification

occurs pre- or post-fragmentation can be protocol spe-

cific and can suggest different strategies for UMI dedu-

plication. Here, we are primarily concerned with the 10X

Chromium protocols, dominated by pre-fragmentation

amplification. However, the method we propose for UMI

deduplication can be applied to other protocols as well.

Additional file

Additional file 1: Supplementary material for alevin efficiently estimates
accurate gene abundances from dscRNA-seq data. Includes
supplementary figures. (PDF 669 kb)

Acknowledgements

The authors would like to thank Fatemeh Almodaresi and Hirak Sarkar for useful
discussions during the development of the alevin method, and would also like
to thank Hirak Sarkar for his help in crafting Fig. 1. The authors would also like
to thank Stony Brook Research Computing and Cyberinfrastructure, and the
Institute for Advanced Computational Science at Stony Brook University for
access to the high-performance SeaWulf computing system, which was made
possible by a $1.4M National Science Foundation grant (#1531492).

https://github.com/cgat-developers/cgat-core
https://github.com/cgat-developers/cgat-core
https://doi.org/10.1186/s13059-019-1670-y

Srivastava et al. Genome Biology (2019) 20:65 Page 15 of 16

Funding

This work was supported by the US National Science Foundation
(BIO-1564917, CCF-1750472, CNS-1763680), and the US National Institutes of
Health (R01HG009937). This project has been made possible in part by grant
number 2018-182752 from the Chan Zuckerberg Initiative DAF, an advised
fund of Silicon Valley Community Foundation.

Availability of data andmaterials

Alevin is implemented in C++14 and is released under the GNU General
Public License v3.0. The source code as used in the manuscript has been
deposited in archived format at https://doi.org/10.5281/zenodo.2583275 [39]
and the latest code is available at https://github.com/COMBINE-lab/salmon
[40]. The output quantification results of all the tools used in the validation of
alevin-pipeline have been deposited in archived format at https://doi.org/10.
5281/zenodo.2583228 [41].
All the single cell 10x datasets used in the paper are taken from https://
support.10xgenomics.com/single-cell-gene-expression/datasets [42] and the
DropSeq data is from SRR1853180. The relevant accessions for the bulk
RNA-seq datasets used for the validation are listed in Table 1.

Authors’ contributions

AS, LM, IS, TS, and RP designed the method. AS and RP wrote the
implementation of the methods. AS, LM, IS, TS, and RP designed the
experiments and helped analyze the results. All of the authors helped to write
the manuscript. All authors approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Competing interests

R.P. is a co-founder of Ocean Genomics, Inc. The other authors declare that
they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Computer Science, Stony Brook University, Stony Brook, USA.
2Cambridge Centre for Proteomics, Department of Biochemistry, University of
Cambridge, Cambridge, CB2 1GA, UK. 3Sheffield Institute for Nucleic Acids,
Department of Molecular Biology and Biotechnology, The University of
Sheffield, Sheffield, S10 2TN, UK.

Received: 28 November 2018 Accepted: 5 March 2019

References
1. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al.

Highly parallel genome-wide expression profiling of individual cells using
nanoliter droplets. Cell. 2015;161(5):1202–14.

2. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet
barcoding for single-cell transcriptomics applied to embryonic stem cells.
Cell. 2015;161(5):1187–201.

3. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al.
Massively parallel digital transcriptional profiling of single cells. Nat
Commun. 2017;8:14049.

4. Svensson V, Natarajan KN, Ly LH, Miragaia RJ, Labalette C, Macaulay IC,
et al. Power analysis of single-cell RNA-sequencing experiments. Nat
Methods. 2017;14(4):381.

5. Smith T, Heger A, Sudbery I. UMI-tools: modeling sequencing errors in
Unique Molecular Identifiers to improve quantification accuracy. Genome
Res. 2017;27(3):491–9.

6. Zhao L, Liu Z, Levy SF, Wu S. Bartender: a fast and accurate clustering
algorithm to count barcode reads. Bioinformatics. 2017;34(5):739–747.
Oxford University Press.

7. Tambe A, Pachter L. Barcode identification for single cell genomics. BMC
Bioinformatics. 2019;20(1):32.

8. Petukhov V, Guo J, Baryawno N, Severe N, Scadden DT, Samsonova MG,
Kharchenko PV. dropEst: pipeline for accurate estimation of molecular
counts in droplet-based single-cell RNA-seq experiments. Genome Biol.
2018;19(1):78.

9. Tian L, Su S, Dong X, Amann-Zalcenstein D, Biben C, Seidi A, et al.
scPipe: a flexible R/Bioconductor preprocessing pipeline for single-cell
RNA-sequencing data. PLoS Comput Biol. 2018;14(8):e1006361.

10. Srivastava A, Sarkar H, Gupta N, Patro R. RapMap: a rapid, sensitive and
accurate tool for mapping RNA-seq reads to transcriptomes.
Bioinformatics. 2016;32(12):i192–i200.

11. Sarkar H, Zakeri M, Malik L, Patro R. Towards selective-alignment:
bridging the accuracy gap between alignment-based and alignment-free
transcript quantification. In: Proceedings of the 2018 ACM International
Conference on Bioinformatics, Computational Biology, and Health
Informatics. BCB ’18. New York: ACM; 2018. p. 27–36. Available from:
http://doi.acm.org/10.1145/3233547.3233589.

12. Turro E, Su SY, Gonçalves Â, Coin LJ, Richardson S, Lewin A. Haplotype
and isoform specific expression estimation using multi-mapping RNA-seq
reads. Genome Biol. 2011;12(2):R13.

13. Patro R, Duggal G Love MI, Kingsford C. Salmon provides fast and
bias-aware quantification of transcript expression. Nat Methods.
2017;14(4):417.

14. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR:
ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.

15. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose
program for assigning sequence reads to genomic features.
Bioinformatics. 2013;30(7):923–30.

16. Li B, DeweyCN. RSEM: accurate transcript quantification from RNA-Seq data
with or without a reference genome. BMC Bioinformatics. 2011;12(1):323.

17. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2.
Nat Methods. 2012;9(4):357.

18. Robert C, Watson M. Errors in RNA-Seq quantification affect genes of
relevance to human disease. Genome Biol. 2015;16(1):177.

19. Han X, Wang R, Zhou Y, Fei L, Sun H, Lai S, et al. Mapping the mouse
cell atlas by Microwell-seq. Cell. 2018;172(5):1091–107.

20. Richter F, Meurers BH, Zhu C, Medvedeva VP, Chesselet MF. Neurons
express hemoglobin α-and β-chains in rat and human brains. J Comp
Neurol. 2009;515(5):538–47.

21. Nakaya HI, Wrammert J, Lee EK, Racioppi L, Marie-Kunze S, Haining WN,
et al. Systems biology of vacination for seasonal influenza in humans. Nat
Immunol. 2011;12(8):786.

22. Grant GR, Farkas MH, Pizarro AD, Lahens NF, Schug J, Brunk BP, et al.
Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq
unified mapper (RUM). Bioinformatics. 2011;27(18):2518–2528.

23. 10x-Genomics Single-Cell 3’-V2 Kit. 2018. https://teichlab.github.io/
scg_lib_structs/data/CG000108_AssayConfiguration_SC3v2.pdf.

24. Ntranos V, Kamath GM, Zhang JM, Pachter L, David NT. Fast and
accurate single-cell RNA-seq analysis by clustering of
transcript-compatibility counts. Genome Biol. 2016;17(1):112.

25. Mezlini AM, Smith EJ, Fiume M, Buske O, Savich GL, Shah S, et al.
iReckon: simultaneous isoform discovery and abundance estimation from
RNA-seq data. Genome Res. 2013;23(3):519–29.

26. Patro R, Mount SM, Kingsford C. Sailfish enables alignment-free isoform
quantification from RNA-seq reads using lightweight algorithms. Nat
Biotechno. 2014;32(5):462.

27. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic
RNA-seq quantification. Nat Biotechnol. 2016;34(5):525.

28. Zhang Z, Wang W. RNA-Skim: a rapid method for RNA-Seq quantification
at transcript level. Bioinformatics. 2014;30(12):i283–i92.

29. Ju CJT, Li R, Wu Z, Jiang JY, Yang Z, Wang W. Fleximer: accurate
quantification of, RNA-Seq via variable-length k-mers. In: Proceedings of
the 8th ACM International Conference on Bioinformatics, Computational
Biology, and Health Informatics. ACM-BCB ’17. New York: ACM; 2017. p.
263–72. https://doi.org/10.1145/3107411.3107444. http://doi.acm.org/10.
1145/3107411.3107444.

30. Bernáth A, Pap G. Coveringminimumcost arborescences. Budapest: Egerváry
Research Group; 2011. TR-2011-13. www.cs.elte.hu/egres. Accessed 4th
March 2019.

31. Pipeline for initial analysis of droplet-based single-cell RNA-seq data.
2018. https://github.com/hms-dbmi/dropEst. Accessed: 19 Oct 2018.

32. Poldrack RA, Laumann TO, Koyejo O, Gregory B, Hover A, Chen MY, et al.
Long-term neural and physiological phenotyping of a single human. Nat
Commun. 2015;6:8885.

33. Dvinge H, Ries RE, Ilagan JO, Stirewalt DL, Meshinchi S, Bradley RK.
Sample processing obscures cancer-specific alterations in leukemic
transcriptomes. Proc Natl Acad Sci. 2014;111(47):16802–7.

https://doi.org/10.5281/zenodo.2583275
https://github.com/COMBINE-lab/salmon
https://doi.org/10.5281/zenodo.2583228
https://doi.org/10.5281/zenodo.2583228
https://support.10xgenomics.com/single-cell-gene-expression/datasets
https://support.10xgenomics.com/single-cell-gene-expression/datasets
http://doi.acm.org/10.1145/3233547.3233589
https://teichlab.github.io/scg_{l}ib_{s}tructs/data/CG000108_{A}ssayConfiguration_{S}C3v2.pdf
https://teichlab.github.io/scg_{l}ib_{s}tructs/data/CG000108_{A}ssayConfiguration_{S}C3v2.pdf
https://doi.org/10.1145/3107411.3107444
http://doi.acm.org/10.1145/3107411.3107444
http://doi.acm.org/10.1145/3107411.3107444
www.cs.elte.hu/egres
https://github.com/hms-dbmi/dropEst

Srivastava et al. Genome Biology (2019) 20:65 Page 16 of 16

34. Bouquet J, Soloski MJ, Swei A, Cheadle C, Federman S, Billaud JN, et al.
Longitudinal transcriptome analysis reveals a sustained differential gene
expression signature in patients treated for acute Lyme disease. MBio.
2016;7(1):e00100–16.

35. Shen Y, Lu Bu RL Chen, Tian F, Lu N, Ge Q, et al. Screening effective
differential expression genes for hepatic carcinoma with metastasis in the
peripheral blood mononuclear cells by RNA-seq. Oncotarget. 2017;8(17):
27976.

36. Schmitt BM, Rudolph KL, Karagianni P, Fonseca NA, White RJ, Talianidis I,
et al. High-resolution mapping of transcriptional dynamics across tissue
development reveals a stable mRNA–tRNA interface. Genome Res.
2014gr–176784.

37. Saito Y, Miranda-Rottmann S, Ruggiu M, Park CY, Fak JJ, Zhong R, et al.
NOVA2-mediated RNA regulation is required for axonal pathfinding
during development. Elife. 2016;5:e14371.

38. Fratta P, Sivakumar P, Humphrey J, Lo K, Ricketts T, Oliveira H, et al. Mice
with endogenous TDP-43 mutations exhibit gain of splicing function and
characteristics of amyotrophic lateral sclerosis. EMBO J. 2018;37(11):
e98684.

39. Srivastava A, Malik L, Smith T, Sudbery I, Patro R. Alevin efficiently
estimates accurate gene abundances from dscRNA-seq data: source
Code: Zenodo; 2019. Available from: https://zenodo.org/record/2583275.
Accessed 4 Mar 2019.

40. SrivastavaA, Malik L, Smith T, Sudbery I, Patro R. Alevin efficiently estimates
accurate gene abundances from dscRNA-seq data: github; 2019. Available
from: https://github.com/COMBINE-lab/salmon. Accessed 4 Mar 2019.

41. SrivastavaA, Malik L, Smith T, Sudbery I, Patro R. Alevin efficiently estimates
accurate gene abundances from dscRNA-seq data: data: Zenodo; 2019.
Available from: https://zenodo.org/record/2583228. Accessed 4 Mar 2019.

42. 10x-Genomics v2 Chemistry Data. 2018. https://support.10xgenomics.
com/single-cell-gene-expression/datasets.

https://zenodo.org/record/2583275
https://github.com/COMBINE-lab/salmon
https://zenodo.org/record/2583228
https://support.10xgenomics.com/single-cell-gene-expression/datasets
https://support.10xgenomics.com/single-cell-gene-expression/datasets

	Abstract
	Keywords

	Background
	Results
	Alevin overview
	Impact of discarding multimapping reads
	Accuracy analysis on real datasets
	Accuracy of estimates against bulk data
	Accuracy of estimates using combined genomes
	Time and memory efficiency
	Comparison on Drop-seq data

	Conclusion
	Materials and methods
	Initial whitelisting and barcode correction
	Mapping reads and UMI deduplication
	UMI resolution algorithm
	Tier assignment
	Final whitelisting (optional)
	Machine configuration and pipeline replicability

	Additional file
	Additional file 1

	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher's Note
	Author details
	References

