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A Parametric Level Set based Approach to

Difference Imaging in Electrical Impedance

Tomography
Dong Liu∗, Danny Smyl and Jiangfeng Du∗

Abstract—This paper presents a novel difference imaging
approach based on the recently developed parametric level set
(PLS) method for estimating the change in a target conductivity
from electrical impedance tomography measurements. As in con-
ventional difference imaging, the reconstruction of conductivity
change is based on data sets measured from the surface of a body
before and after the change. The key feature of the proposed
approach is that the conductivity change to be reconstructed
is assumed to be piecewise constant while the geometry of the
anomaly is represented by a shape-based PLS function employing
Gaussian radial basis functions (GRBF). The representation of
the PLS function by using GRBF provides flexibility in describing
a large class of shapes with fewer unknowns. This feature is
advantageous, as it may significantly reduce the overall number of
unknowns, improve the condition number of the inverse problem,
and enhance the computational efficiency of the technique. To
evaluate the proposed PLS-based difference imaging approach,
results obtained via simulation, phantom study, and in vivo pig
data are studied. We find that the proposed approach tolerates
more modeling errors and leads to significant improvement in
image quality compared with the conventional linear approach.

Index Terms—Electrical impedance tomography, parametric
level set method, difference imaging, lung imaging, inverse
problems.

I. INTRODUCTION

IN medical electrical impedance tomography (EIT), harm-

less electric currents are applied on a subject’s skin and

the resulting voltages are measured with an electrode array

attached on the body surface. From these boundary voltage

measurements, it is possible to estimate the internal conduc-

tivity distribution of the body. Medical applications include

imaging of brain activity [1], monitoring of lung function [2]–

[4], and detection of breast cancer [5] and thoracic vascular

structures [6].
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One of the main challenges of EIT is that the image re-

construction is a severely nonlinear ill-posed inverse problem;

therefore, robust methods for handling noise and modeling

errors and a stability-promoting regularization strategy are

required. Methods for solving the EIT problem can generally

be divided into absolute imaging and difference imaging.

In absolute imaging, the aim is to estimate the absolute

conductivity distribution based on measurements correspond-

ing to a single state. The reconstruction of the absolute

conductivity distribution requires accurate information of the

auxiliary model parameters, i.e., electrode placement, size and

shape, and the body shape or the domain boundary in general.

Therefore, most of the algorithms assume that the electrode

information and boundary of the body shape are exactly known

a priori, and the only unknown parameter is the conductivity

distribution. In practice, knowledge of these auxiliary model

parameters is incomplete and uncertain, especially in medical

EIT applications. For example, in the thorax applications, the

thorax shape varies due to breathing and changes of the patient

position during the measurements. It has been shown that

errors in these auxiliary model parameters, can lead to severe

errors in the absolute reconstructions [7], [8].

On the other hand, in difference imaging, the variations in

conductivity distribution w.r.t the reference is estimated based

on data sets collected before and after the conductivity change.

For example, in lung imaging, the data before the change

might be collected at respiratory inspiration and the data after

the change at expiration, in such a way that the difference

image shows the conductivity change between inspiration and

expiration [2]–[4].

Presently, numerous algorithms for solving the difference

EIT image reconstruction problem are available, as discussed

in the following. 1© Factorization methods [9]–[11] motivated

from the inverse scattering problem [12]. Factorization meth-

ods are useful for detecting conductivity changes; however,

their effectiveness may be questionable in cases using a small

data set and it is not presently clear how to incorporate

systematic a priori information. 2© Direct (non-iterative) al-

gorithms, such as Block method [13] and D-bar method [14]–

[19], solving the full nonlinear EIT problem – without the

requirement of any intermediate estimation of the conductivity

from a forward model. The Block method assumes that the

object to be imaged has a 2D rectangular shape and is made up

of identical fixed size blocks, causing some difficulties in the

practical applications. The D-bar method, on the other hand,

is based on computing a nonlinear Fourier transform of the
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conductivity from EIT data and then inverting the transform.

A detailed description of this method and its implementation

is provided in, e.g. [20]. For difference applications discussing

the utilities of the D-bar method, we refer the reader to

[2], [21]–[23]. To this end, real-time capabilities of the D-

bar method have also recently been demonstrated in [24].

It should be noted that, in the D-bar method, regularization

is provided by low-pass filtering in the nonlinear frequency

domain. However, the use of low-pass filtering of Fourier data

commonly results in reconstructed images that may suffer from

a loss of sharpness. 3© Linearization based methods, such

as NOSER [25], back projection method [26] and GREIT

[27], which are some of the most widely used methods.

In the linearization based method, the relationship between

the conductivity and measurement changes is often modeled

by a linearized model, through a global linearization of the

observation model. The linear difference reconstruction has

been found to tolerate modeling errors caused by uncertainties

in the auxiliary model parameters – to an extent. This feature

occurs when the unknown auxiliary parameters are time-

independent, leading to partial cancellation of the modeling

errors when the difference of the measurements is computed

[28].

Although the linear difference imaging approach is able

to suppress some of the effects of modeling errors, previous

studies have shown that artifacts are often present in the

reconstructions [29], [30]. Furthermore, a drawback of the

linear approach is that it is highly approximative since the

actual forward mapping is inherently nonlinear in nature,

such that it is only feasible for small deviations w.r.t the

reference conductivity [31]. For example, in EIT imaging of

lungs, significant accumulation of highly conductive liquids

or low conducting air may violate the linear hypothesis, and

thus the conventional linear approach may be inadequate for

detecting clinically relevant information in the lung [32].

Moreover, the linearization point plays an important role in

the performance of the linear approach [33]. A commonly

used way of selecting the linearization point is to treat it

as a homogeneous estimate of the conductivity of the initial

state. However, in medical EIT, the initial state is often

highly inhomogeneous. Consequently, modeling errors will be

generated by a homogeneous approximation of the initial state.

One such example is EIT lung imaging in which the low

conducting lungs attract less current flow through the body

center compared to that predicted by a uniform, homogeneous

distribution [33]. Due to these problems, the conventional

linear approach usually only provides qualitative information

on the conductivity change.

Some exceptions to the above mentioned approaches exist:

one approach is to reconstruct the background conductivity of

the target simultaneously with the change of the conductivity

based on EIT measurements before and after the change, via

the inclusion of prior information in regularization terms for

each state and the employment of compound regularization,

see details in [7], [28]. Another approach is to compute

absolute reconstructions of the conductivities before and after

change based on the EIT measurements separately, and to

obtain the reconstruction of conductivity change by subtracting

conductivity before change from conductivity after change.

However, these two approaches belong to nonlinear iterative

methods and the minimization of such problems is computa-

tionally expensive. Therefore, from a practical point of view,

they are not flexible approaches for real biomedical EIT.

Over the years, a wide variety of shape-based reconstruction

methods have been proposed for many different applications.

Among the shape-based reconstruction methods, the level set

method (LSM) is likely the most common one [35]. Earlier

relevant work in EIT includes the investigation of applying

the level set method for locating the embedded objects, for

examples see [36]–[39]. The key idea of LSM is to implicitly

represent the conductivity distribution using a level set func-

tion, and the interfaces between regions are represented as the

zero level set. The conductivity reconstruction problem is then

transformed into a shape reconstruction problem.

In this paper, we aim to alleviate the ill-posedness of the

difference imaging reconstruction problem to some extent by

incorporating some shape-prior information. Inspired from

works [40], [41], here, we expand on our previous work

in [42] where a parametric level set (PLS)-based approach

was developed for absolute EIT. In this work, we consider

the use of a shape-based approach to difference EIT based

on a PLS formulation. In the proposed PLS-based difference

imaging approach, we assume that the conductivity change to

be reconstructed can be described as one or more embedded

objects with unknown piecewise constant conductivity change

values, and the geometry of the anomaly is represented by

a PLS function employing Gaussian radial basis functions

(GRBF). The representation of the PLS function by using

GRBF provides flexibility in describing a large class of shapes

with fewer unknowns. This brings at least the following

advantages: 1© greatly reducing the overall number of un-

knowns; 2© improving the condition number of the inverse

problem; and 3© enhancing the computational efficiency of

the technique. To solve the PLS-based inverse problem, an

iterative regime aiming to improve the chance of reliably

reconstructing conductivity change is employed.

Finally, we evaluate the performance of the proposed PLS-

based difference imaging approach via simulation, phantom

study, and in vivo pig data. Specifically, simulation data are

used to show (i) PLS reconstructions for difference EIT in

thorax imaging and (ii) the robustness of the PLS-based

approach considering the width of the Gaussian radial basis

function by varying the Gaussian width parameter. To study

the robustness of the approach w.r.t geometric modeling errors,

we reconstruct images using both phantom and in vivo pig

data. The results are compared against the conventional linear

difference imaging approach.

The remainder of this paper is organized as follows. In

Section II, we briefly review the EIT forward model. The prop-

erties of the conventional linear approach and the proposed

approach are then outlined in Sections III and IV, respectively.

In Section V, the test cases, model domain, estimates and

implementation issues are explained. Results and discussion

are given in Section VI, and conclusions are drawn in Section

VII.
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II. FORWARD PROBLEM OF EIT

Let an imaged body under investigation occupy a two-

or three- dimensional region Ω ⊂ R
q, q = 2, 3, with its

boundary denoted by ∂Ω. The forward problem of EIT can

be stated as follows: given a conductivity distribution σ(x)
within the domain of interest Ω, and a current injection pattern

Iℓ, compute the electrical potential u(x) at the measuring

electrodes. In this study, the so-called complete electrode

model (CEM) is employed [43]. Mathematically, the forward

problem of the CEM is stated as follows:

∇ · (σ(x)∇u(x)) = 0 , x ∈ Ω, (1)

u(x) + zℓσ(x)
∂u(x)

∂n
= Uℓ, x ∈ eℓ, ℓ = 1, ..., L (2)

∫

eℓ

σ(x)
∂u(x)

∂n
dS = Iℓ, ℓ = 1, ..., L (3)

σ(x)
∂u(x)

∂n
= 0, x ∈ ∂Ω\

L⋃

ℓ=1

eℓ (4)

where x ∈ Ω is the spatial coordinate, zℓ is the electrode eℓ
contact impedance; Uℓ is the electrical potential measured by

electrode eℓ; L and n denote the number of electrodes and an

outward unit normal to the boundary vector, respectively.

To numerically solve Laplace’s equation (1) with the CEM

boundary conditions (2-4), numerical techniques are required.

The finite element method (FEM) [44] is commonly the

approach of choice, and is used herein. Assuming the measure-

ment noise is additive and Gaussian, the observation model for

EIT can be written in the form

V = U(σ) + e, (5)

where V is the vector of the measured voltages, U(σ) is the

FEM-based forward solution, and e is a Gaussian distributed

noise with mean e∗ and covariance Γe.

III. CONVENTIONAL LINEAR DIFFERENCE IMAGING

In the conventional linear difference imaging approach, the

initial state σ1 and final state σ2 are linearly related through

the conductivity change ∆σ; i.e. σ2 = σ1+∆σ. The resulting

observation model is written

V1 = U(σ1) + e1 (6)

V2 = U(σ2) + e2 (7)

where ei ∼ N (e∗i ,Γei), i = 1, 2. Notice that typically the

noise is modeled stationary in the sense that e∗i = e∗ and

Γei = Γe. This model is also employed in this paper.

Difference image reconstruction seeks to reconstruct the

conductivity change ∆σ = σ2 − σ1 between states from the

difference data ∆V = V2 − V1. Generally, the reconstruction

of the ∆σ is based on the first order Taylor approximation of

the observation model in (6&7)

Vi ≈ U(σ0) + J(σi − σ0) + ei, i = 1, 2 (8)

where J = ∂U
∂σ

(σ0) is the Jacobian (sensitivity) matrix of the

forward map evaluated at an initial guess of the background

conductivity σ0 ∈ R. Homogeneous initialization σ0 is usually

computed by solving the least squares problem

[σ̂0] = argmin{‖(V1 − U(σ0))‖2}. (9)

Using the linearization and subtracting V1 from V2 gives

the observation model

V2 − V1︸ ︷︷ ︸
∆V

≈ J (σ2 − σ1)︸ ︷︷ ︸
∆σ

+ e2 − e1︸ ︷︷ ︸
∆e

(10)

The Tikhonov regularized solution for the conductivity change

∆σ is thus

∆̂σ = argmin
∆σ

{‖L∆e(∆V − J∆σ)‖2 + p∆σ(∆σ)}. (11)

Here, L∆e is defined as LT
∆eL∆e = Γ−1

∆e, where Γ∆e, the

covariance of the noise term ∆e, is Γ∆e = Γe1 + Γe2 = 2Γe.

The term p∆σ(∆σ) is a regularization functional, e.g., the most

commonly used ℓ2 norm that stabilizes the inversion.

IV. PARAMETRIC LEVEL SET BASED DIFFERENCE IMAGING

In this section, the parametric level set based difference

imaging approach used for estimating the conductivity change

is introduced. For simplicity of presentation, we assume that

there exists a boundary Γ ⊂ Ω that separates the domain

Ω into two parts Ω+ and Ω−, i.e., Ω = Ω+
⋃

Ω−. We

consider the case where the conductivity change ∆σ(x) is a

piecewise constant function of unknown conductivity change

value ∆σ(x) = ∆σ1 for x ∈ Ω+ and ∆σ(x) = ∆σ0 for

x ∈ Ω−, as shown in Fig.1.

Fig. 1. Illustration of object and level set representation of a free boundary
in two spatial dimensions.

A comprehensive study of PLS technique in the application

of absolute EIT has been given in [42]. However, for the

convenience of the reader, we will give in the following a

brief introduction into its underlying theory and extension to

difference EIT.

The level set method represents the boundary Γ = {x :
f(x) = 0} between regions, as the zero contour of a higher

dimensional function, f(x), called the level set function (LSF),

satisfying 



f(x) > 0 ∀x ∈ Ω+,

f(x) = 0 ∀x ∈ Γ,

f(x) < 0 ∀x ∈ Ω−.

(12)

In terms of the LSF f(x), we can express ∆σ as

∆σ(x) = ∆σ0(1−H(f(x))) + ∆σ1(H(f(x))) (13)

in which the later term represents the anomaly and H(s) is the

Heaviside function, where H(s) = 0 for s < 0 and H(s) = 1,

otherwise.
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In practice, to be able solve the inverse problem numerically

and make the update of the LSF possible, one typically uses

a smooth approximation of the Heaviside function. One such

choice is

Hε(s) =





0 s < −ε,
1
2 [1 +

s
ε
+ 1

π
sin(πs

ε
)] |s| ≤ ε

1 s > ε
(14)

Here, the parameter ε defines a band of width 2ε within which

the Heaviside function is smoothed [45].

In most contemporary shape-based approaches, the LSF

f(x) is commonly selected as a signed distance function [38],

which is associated with the discretization of x-space. Consider

now the LSF f(x) represented parametrically in basis set

P = {p1, p2, · · · pN}:

f(x) =
N∑

i=1

µipi(x), (15)

where N denotes the number of the radial basis functions

(RBFs) pi(x), and µ = [µ1, µ2 · · · , µN ] ∈ R
N is the unknown

PLS parameter vector which determines the weights of the

RBFs. Possible choices for the P basis set include Gaussian,

multi-quadric, poly-harmonic splines and thin plate splines

polynomial. As in [42], we use Gaussian RBF. That is,

pi(x) = exp
(
− ‖ x− xi ‖2

2γ2

)
, (16)

where γ is the Gaussian width, xi is the RBF center, see

details in Section V-D, and ‖ · ‖ denotes the Euclidean norm.

Based on the parameterization of the LSF, equation (12) can

be modified as





f(x, µ) > c ∀x ∈ Ω+,

f(x, µ) = c ∀x ∈ Γ,

f(x, µ) < c ∀x ∈ Ω−,

(17)

here, c is a small positive value.

Based on equation (17), the distribution of conductivity

change in (13) can be expressed as

∆σ(x, µ) = ∆σ0(1−H(f(x, µ)−c))+∆σ1(H(f(x, µ)−c)).
(18)

This new model, in fact, maps the space of unknown regions

Ω+ into the space of unknown PLS parameter µ, which greatly

reduces the overall number of unknowns for a given problem

and significantly enhances the efficiency of the technique, as

compared to traditionally used pixel/voxel-based non-linear

iterative methods, e.g., the modified Gauss-Newton algorithm

with Tikhonov style regularization [46] and the maximum a

posteriori estimation using a smoothness prior [8].

Now the observation model in (10) can be expressed as

∆V = J∆σ(x, µ)︸ ︷︷ ︸
∆U(µ,∆σ0,∆σ1)

+∆e. (19)

Then, the shape reconstruction and estimation of piecewise

constant values ∆σ0 and ∆σ1 in PLS based difference imaging

amounts to solving the minimization problem

[µ̂, ∆̂σ0, ∆̂σ1] = argmin{‖L∆e(∆V −∆U(µ,∆σ0,∆σ1))‖2

+‖I(µ− µ∗)‖2 +
1∑

j=0

‖L∆σj
(∆σj −∆σ∗

j )‖2},
(20)

Here, I is the identity matrix. µ∗ is predetermined constant

values (see Sections V-D). In difference imaging, ∆σ∗

j is usu-

ally set to 0, since decreases and increases in ∆σ are equally

likely. The penalty terms added in (20) allows improving the

algorithm’s convergence speed and preserving its stability. We

note that in the minimization problem (20), unknown ∆σ0 and

∆σ1 are appended to the unknown PLS parameter µ, and are

estimated together with µ simultaneously.

A. Level set sensitivity analysis

Due to the nonlinearity of the minimization problem (20),

solutions are computed iteratively, and during the iterations,

the Jacobian matrix J(µ,∆σ0,∆σ1) is needed. Based on the

chain rule, the derivative of ∆U(µ,∆σ0,∆σ1) w.r.t the PLS

parameter µ can be split into a product of three partial

derivatives yielding

Jµ =
∂(∆U)

∂∆σ
· ∂∆σ

∂f
· ∂f
∂µ

= J(∆σ1 −∆σ0)(δ(f − c))
∂f

∂µ
,

(21)

where δ(·) denotes the Dirac delta function.

Similarly, we obtain

J∆σ0
=

∂∆U

∂∆σ
· ∂∆σ

∂∆σ0
= J(1−H(f − c)), (22)

and

J∆σ1
=

∂∆U

∂∆σ
· ∂σ

∂∆σ1
= J(H(f − c)). (23)

To solve the minimization problem in (20) we employ the

Gauss-Newton method equipped with a line search.

V. METHODS

In this section, the performance of the PLS based differ-

ence imaging approach is tested with numerical simulations

and experimentally. The test cases, estimates, implementation

issues, parameter selection used in the computational methods

and experimental evaluation are explained. For the results and

discussion, see Section VI.

A. Test cases

To study the performance of the proposed approach, the

following studies were carried out. In each test case, two mea-

surement sets were simulated or collected: V1 is a reference

set of measurements corresponding to an initial conductivity

σ1 and V2 corresponding to conductivity σ2 after the change.

Note that the measurements with a homogeneous object are

not required in this study.
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TABLE I
CONDUCTIVITY VALUES BASED ON TYPICAL VALUES OBTAINED FROM

THE WORK [47] ASSIGNED IN THE SIMULATION.

Tissue Conductivity (mS/cm)

Ventricle 2.5
Soft tissue 2.0

Inflated lung 0.5
Deflated lung 1.5

Collapsed lung 1.0
Descending aorta 3.1

Heart (mixture of blood and heart) 3.5

1) Simulated thorax imaging: To start, we consider three

simulated test cases 1-3 corresponding to different conditions

in thorax imaging for demonstrating the general behavior of

our PLS based difference imaging approach. As shown in

Fig.4, for Case 1, the initial state σ1 corresponds to the

end-expiration phase, and the conductivity after the change

σ2 corresponds to the end-inspiration phase. In Case 2, we

simulate a more realistic case in lung monitoring, in which

part of the left lung is collapsed. For Case 3, the initial

state σ1 simulates a heart in the end-systolic phase, and the

conductivity after the change σ2 simulates the heart in the

end-diastolic phase. It is important to remark that, in the

simulations, we did not use PLS functions to represent the

boundary of regions for assigning conductivity distributions.

Rather, the regions of lungs, heart, and aorta were defined by

using structural mesh.

The target shape was obtained from computed tomography

scan of human thorax. L = 16 equally spaced electrodes

with length 2 cm were placed around the thorax boundary.

The conductivities of the tissues used in the simulations were

listed in Table I, The measurement data was simulated with

adjacent current stimulation at amplitude 1mA and adjacent

measurement. To simulate real-life conditions, we added Gaus-

sian noise with standard deviation 0.1% of the difference

between the maximum and minimum value of the noise free

measurement data to the simulated data. The selected noise

level corresponds to the signal to noise ratio SNR=42.63 dB.

2) Water tank cases: In the phantom experimental studies

(Cases 4-7), the experiments were performed using a human

thorax-shaped water tank, see Fig.7. L = 16 identical metallic

rectangular electrodes with a width of 2 cm were attached

to the interior lateral surface of the tank. The horizontal

and vertical radii of the tank were Rh = 17.5 cm and

Rv = 14 cm, respectively. The tank was filled with tap

water, and objects made of different materials (agar, plastic

or copper) were placed inside the tanks to simulate different

conductivity distributions. To present the inclusions in an

easy-to-read style, the material type of each inclusion was

marked by a capital letter, e.g., the inclusion marked by a

letter ‘A’ meaning “made from agar”, see details in Fig.7.

All inclusions were homogeneous in the vertical direction and

extended through the water surface. The measurements were

acquired with the KIT4 system [48], using adjacent current

stimulation (frequency 10 kHz, amplitude 1 mA) and adjacent

measurement.

3) Test cases using pig data: The pig data was collected

on anesthetized ventilated supine pigs (mean body weight

30.1 ± 2.3 kg) as part of the study in [32], using the Goe

MF II EIT system from University of Gottingen. L = 16
ECG electrodes were placed around the thorax 3 cm below

the axilla. Right-sided pneumothorax and pleural effusion were

artificially induced by means of manual injection of air up to

300 mL and 300 mL Ringer solution, respectively. To open

the pleural cavity for injection of air or fluid, a small surgical

incision into the chest wall was made and a plastic cannula was

fixed by a suture and sealed by cyanoacrylate glue. For more

details, we refer the reader to the paper [32]. The reference

data was obtained by averaging voltages data of 120 seconds

duration before intervention.

B. Computational domain modeling

• In the simulated cases 1-3, to test the general behavior of

our PLS-based difference imaging approach, we assume

that the target domain Ω is accurately known, and in

the reconstruction, we used the correct domain as the

model domain, i.e., Ω̃ = Ω, meaning that no geometric

modeling errors are present. However, during clinical

measurements, the body shape is not always known, and

an approximate model domain Ω̃ has to be employed.

Therefore, in the following experimental studies (Cases

4-9), we study the effect of modeling errors caused by

inaccurately known shape of the target domain.

• In water tank Cases 4-7, since the inclusions were homo-

geneous in the vertical direction and extended through the

water surface, a 2D model was adequate for modeling the

measurements. In the reconstruction, we used a 2D circle

domain with radius 17.5 cm as the model domain shown

in Fig.2.

• In the studies (Cases 8&9) using in vivo pig data, we

applied a cylinder with radius 11 cm and height 10

cm as the model domain, representing 3D studies using

incorrect model domain. Note that, since measurements

of the pig chest circumference at the electrode plane

were not available, the selection of the cylinder radius

was estimated from chest circumferences based on weight

information, by using a regression model 1 with 38 pigs:

chest circumference in cm = 0.992*weight in kg + 36.6

cm. In the model domain, the electrode plane was placed

at the half-height (z = 5 cm) of the cylinder.

The discretization details of the target domain are show in

Table II.

Fig. 2. Measurement domain Ω shown as gray patch and model domain Ω̃

(∂Ω̃ is shown with solid line) are used in Cases 4-7.

1The regression model was kindly provided by Prof. Günter Hahn, who
conducted the pig experiments.
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TABLE II
FINITE ELEMENT MESHES FOR THE TEST CASES. Nn IS THE NUMBER OF

NODES AND NE IS THE NUMBER OF ELEMENTS (TRIANGULAR ELEMENTS

FOR CASES 1-7 AND TETRAHEDRAL ELEMENTS FOR CASES 8-9).

Simulation studies Experimental studies
Cases 1-3 Cases 4-7 Cases 8-9

Simulated data Reconstruction Reconstruction Reconstruction
Nn 7150 5586 3301 12509
NE 13802 10674 6264 57006

C. Estimates

The following estimates were computed. For parameter

choices of each reconstruction, see Section V-D.

• (E1) Conventional linear difference imaging recon-

struction of ∆σ by solving :

∆̂σ = argmin∆σ{‖L∆e(∆V − J∆σ)‖2
+‖L∆σ(∆σ −∆σ∗)‖2}, (24)

where ∆σ∗ is the expectation of ∆σ, which is usually

set to 0. LT
∆σL∆σ = Γ−1

∆σ , and Γ∆σ is a smoothness

promoting covariance matrix with elements defined as

Γ∆σ(τ, κ) = a exp

{
−‖xτ − xκ‖22

2b2

}
+ dδτκ. (25)

Here, Γ∆σ(τ, κ) is a covariance matrix, element (τ, κ)
corresponding to a generic smoothness prior model for

the unknown conductivity change ∆σ at the nodes in

locations xτ and xκ. Parameters a, b and d are positive

scalar parameters, listed in table III for different test

cases, where a can be used to tune the variation of the

conductivity change, b sets the correlation length of the

model, and d is a small positive value which is used

to ensure that Γ∆σ is well-conditioned. The selections

of a, b and d are based on simulations and visual

inspection of the results. δτκ denotes the Kronecker

delta function, where δτκ = 1 for τ = κ and δτκ = 0,

otherwise. Note that, in estimate (E1), the conductivity

change is estimated by treating the internal distribution

to be continuous i.e. without considering the piecewise

constant assumption. Thus the corresponding unknown

parameters vector was (∆σ)T ∈ R
Nn

• (E2) Parametric level set based difference imaging

reconstruction: The estimates for the shape and binary

conductivity change values were computed by solving the

minimization problem as given in (20)

[µ̂, ∆̂σ0, ∆̂σ1] = argmin{‖Le(∆V −∆U)‖2

+‖(µ− µ∗)‖2 +
1∑

j=0

‖L∆σj
(∆σj)‖2},

(26)

D. Model implementation

In this section, we discuss important information related the

implementation of the proposed imaging approach. To start,

we remark that the µ′

is weight coefficients were initially set

to 0.5 for all test cases studied in this paper. We would like

TABLE III
PRIORI PARAMETERS AND GAUSSIAN WIDTH COEFFICIENT.

Simulated data Water tank data Pig data
Cases 1-3 Cases 4-7 Cases 8-9

E1
a 1.5 0.3 10−3

b 1 1 1.6

c 10−3 10−3 10−6

E2 K 1.3 0.2 0.5

to point out that the true values of the µ′

is weight coefficients

are not assumed to be known in a priori; rather, they are

estimated numerically. For the shape representation, Heaviside

function (14) with ε = A/2 was used, here, A denotes the

mean value of the element area/volume in the FEM mesh,

i.e., A = Area/volume of domain Ω
Number of elements

. A fixed constant c = fm level

set was applied for (17), where fm is the mean value of the

initial LSF fk. The Cholesky factor L∆σ in (26) or in (20)

is calculated as LT
∆σL∆σ = C−1

∆σ , where C∆σ is selected

as

[
1 0
0 100

]
. A large variance for ∆σ1 indicates that the

estimated value of ∆σ1 is spread out far from the initial guess,

while a small variance for ∆σ0 indicates the opposite.

Next, we address the selection of the Gaussian width

parameter γ for the GRBF (16) in the PLS-based difference

imaging approach. As in [42], we rewrite the GRBF (16) in

the new form of

pi(x) = exp(−λ ‖ x− xi ‖)2. (27)

where, λ = (
√
2γ)−1. Obviously, by adjusting the parameter

variant λ, the width γ of GRBF will be changed accordingly.

To allow a semi-automated way for choosing this variant λ,

we define

λ = KA, (28)

here, K is a free coefficient of the Gaussian width parameter,

which is given in Table III. The selection of K was based on

simulations and visual inspection of the results. A robustness

study of PLS-based difference imaging approach w.r.t the

Gaussian width coefficient K will be discussed in Section

VI-A.

According the work in [42], given a reasonable choice

of numbers of RBF centers (NRBFc) and roughly equally

distributed RBF centers xi in the domain to be imaged, the

PLS-based absolute reconstruction method is quite robust to

the choice of the initial distribution of xi. In this study,

using the same RBF centers selection strategy in [42], we

chose NRBFc = 38 for simulations and NRBFc = 31 for

experimental studies. Thus the corresponding unknown pa-

rameters vector was (µ,∆σ0,∆σ1)
T ∈ R

40 for simulations,

(µ,∆σ0,∆σ1)
T ∈ R

33 for experimental studies. A presenta-

tion image of the distribution of the xi for both numerical and

experimental test cases is shown in Fig 3.

Note that in the 3D reconstructions of Cases 8&9, the

RBFc’s height (z = 5 cm) was kept at the same height of

electrode plane.
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Fig. 3. Distributions of the RBF centers xi used for the PLS-based difference
imaging approach.

VI. RESULTS AND DISCUSSION

We now demonstrate the effect of the PLS-based difference

imaging approach on simulated as well as experimental data.

To quantitatively evaluate the performance of both estimates

(E1&E2), we computed the relative size/volume coverage ratio

(RCR) [28], shown in Table IV, for measuring how well the

sizes/volumes of inclusions were recovered:

RCR =
CR

CRTrue
, (29)

where CR measures the coverage ratio defined as the ratio of

the size/volume of the inclusions to the total size/volume of the

target. Correspondingly, CRTrue is the CR of the true target.

For determining the size/volume of the inclusion, a threshold

of half of the maximum/minimum of the ∆̂σ was used to

detect the inclusion.

Note that for computing the RCRs in Cases 8&9, it is dif-

ficult to know the true target volume, therefore we simplified

the definition of (29) into

RCR =
volume of estimated mass

volume of injected mass
,

which indicates how much difference is generated between

the estimated volume of the mass (air or fluid) volume and

the true mass volume.

Further, the minimum/maximum of the reconstructed con-

ductivity changes were used to measure the accuracy of the

recovered contrast. The contrasts of the reconstructed con-

ductivity changes are tabulated in terms of a relative contrast

(RCo)

RCo =
max|∆̂σ|

max|∆σtrue|
.

We should point out that, to compute the RCo values of

Cases 4 & 5, we assumed that the conductivity value of plastic

bar is zero, such that max|∆σtrue| = σtapwater. Note that

neither the conductivity values of the inclusions composed of

agar and copper in Cases 6 & 7 nor the conductivity changes

in the pig thorax (Cases 8 & 9) were accurately known.

Therefore, we didn’t compute the RCo values for those cases.

The relative quantities RCR and RCo are used here instead

of the respective quantities CR and max|∆̂σ| to facilitate

the comparison of the values in Table IV. For both RCR

and RCo, value of 1 would indicate an exact match of the

true and estimated values of the conductivity change, while

a value greater or less than 1 would imply overestimation or

underestimation, respectively.

In addition, for the simulation studies, we also computed

the structural similarity (SSIM) index, see details in [49], for

measuring the similarity between the true and reconstructed

images. A SSIM value of 1 represents the two compared

images are exactly the same, a perfect match, while value

of zero indicates little similarity. Note that no SSIMs were

computed for experimental test cases since the inclusions are

infinite conductors or resistors or the true images are not

available.

A. Reconstructions from simulated data

The true conductivity distributions and the estimates

(E1&E2) for the simulated test cases 1-3 are shown in Fig.4.

The conductivity distributions before (σ1) and after (σ2)

change, and the conductivity change ∆σ are shown in the first

to third columns, respectively. The fourth and fifth columns

shows the conventional linear difference imaging (E1) and the

proposed PLS-based difference imaging (E2), respectively.

In the estimate (E1), the shape of the changes in Cases 1-3

are recovered relatively well, although there is a clustering

of artifacts in the reconstructed images, and the amplitude

of reconstructed contrasts of ∆σ are heavily biased. The

reconstruction artifacts and contrast distortion are mainly due

to the use of an approximated J evaluated at a homogeneous

conductivity σ0, which is clearly a poor model for the thorax

[33], in which the lungs are far less conductive than the

background tissue.

On the other hand, the estimate (E2) with the proposed PLS-

based difference imaging approach, in all the numerical test

cases, results in good qualitative estimates of the conductivity

change ∆σ. This observation is quantitatively confirmed by

SSIMs, RCRs and RCos closest to the true values, as given

in Table IV. It is worth noticing that in (E2), although the

amplitude of reconstructed contrasts of ∆σ is also biased, the

shape of the inclusions is still very feasible for all simulated

cases. Especially in Case 3, (E2) provides not only the best

shape estimation of the inclusion, which associates evidence

with the SSIM value 0.97, but also feasible reconstruction of

amplitude contrast of ∆σ, as evident from the RCo value 1.01

shown in Table IV.

Overall, the results of the simulated test cases indicate

that the PLS-based difference imaging approach improves the

accuracy of the estimates of ∆σ compared to the conventional

linear difference imaging approach, and that the proposed

approach tolerates modeling errors caused by the approxima-

tion of Jacobian matrix J better than the conventional linear

difference imaging.

In addition, similar to the robustness study considering vari-

ability of the Gaussian width parameter in [42], we computed

a set of (E2) estimation for Case 2 with 30 evenly spaced

width coefficients K in the interval [1/10, 3], and 4 evenly

spaced width coefficients K in the interval [4, 7]. Due to space

limitation, we only show part of the final reconstructions in

Fig. 5. The corresponding SSIM values are plotted in Fig.

6. The effect of Gaussian width parameter K is well seen

from Fig. 5, with smallest values K = 0.1, 0.3, the PLS-

based approach fails to produce meaningful reconstructions,
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TABLE IV
THE SSIM INDEXES AND RCRS OF THE RECOVERED INCLUSIONS AND THE RELATIVE CONTRAST VALUE (RCO) OF THE RECONSTRUCTED ∆̂σ.

Simulated data Water tank data Pig data

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9
SSIM RCR RCo SSIM RCR RCo SSIM RCR RCo RCR RCo RCR RCo RCR RCR RCR RCR

True 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
E1 0.73 0.56 3.75 0.76 0.52 3.77 0.81 2.93 0.64 2.99 0.58 1.78 0.96 2.53 8.47 2.05 2.45
E2 0.76 0.61 3.43 0.79 0.65 3.24 0.97 0.42 1.01 0.75 1.15 1.08 0.90 0.99 2.30 0.74 1.12

Fig. 4. Reconstructions with both conventional linear difference imaging (E1) and PLS-based difference imaging (E2) approaches from simulated data.

which is due to the fact that a small K, i.e., a big γ, for RBF

will lose the locality intended for the expected inclusions;

With the 3rd smallest K = 0.5, i.e., corresponding to the

3rd largest γ, the estimated image is blurry, which is an

expected result, since a large Gaussian width determines a

large degree of smoothing–the larger the width, the larger the

size of the structures which are smoothed away. Conversely,

too large values of K = 4, · · · , 7 (i.e., the values of width

γ are too small), produce in narrow-band inclusions around

the RBF centers. With all the other selected values of K, the

inclusions are relatively well recovered, producing enhanced

lung edges, which is also verified by the metrics parameter

SSIM indices shown in Fig.6. We note that the coefficient

K increasing from 1.7 to 2.3 tends to produce artifacts near

the edge of the inclusions, which may be related to a trend

that reflects producing edge artifacts. In choosing the Gaussian

width parameter γ or coefficient K, one always faces a trade-

off between ‘edge sharpening’ and ‘artifacts eliminating’.

B. Reconstructions from water tank data

Next, we proceed to reconstructions from water tank data.

Fig. 7 depicts the results of both estimates (E1&E2) on four

experimental test Cases 4-7. As the results shown in Fig. 7, the

conductivity change was detected in both estimates (E1&E2),

despite the significant error (see Fig. 2) in the shape of the

model domain. However, the accuracy of these reconstructions

based on (E1) is rather low, leading a large number of artifacts

in the reconstructed images, and especially the shapes of

the inclusions are not tracked very well. Consequently, (E1)

Fig. 5. Robustness study of the PLS-based difference imaging approach w.r.t

the Gaussian width coefficient K. The same data set as Case 2 was used for
the reconstruction.
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Fig. 6. SSIM index versus the Gaussian width parameter coefficient K in
case 2 using the PLS-based difference imaging approach for recovering the
conductivity change of the collapsed lung. The dashed vertical line denotes
the case shown in the 2nd row of Figure 4.

overestimates the coverage ratio RCRs significantly, see Table

IV. On the other hand, (E2) leads to the best estimation of

conductivity change for both high contrast (Cases 4,5 and 7)

and low contrast experiments (Case 6). (E2) also results in

the coverage ratio closest to the true value, e.g., RCR being

0.99 for Case 6, see Table IV. Note that the result of Case 7

indicates that the proposed approach has better potential for

the detection of the descending aorta using EIT.

To check how well the estimate (E2) based on the proposed

method tolerates the modeling errors, we also computed the

reconstructions with (almost) correct domain model for Case

6 in Fig. 8 for a comparison study. As is obvious from the

reconstructions in Fig. 8, with or without geometric modeling

errors, estimate (E2) produces better reconstructions than

estimate (E1). It is also evident from the RCR of the recovered

inclusions, e.g., RCR being 2.23 and 1.04 for (E1) and (E2),

respectively, in the case of applying (almost) correct domain

model for the reconstructions.

C. Reconstructions from pig data

The reconstructions of pig data described in Section V-A3

are shown in Figs. 9 and 10, The slices that are shown, are

the horizontal cross sections at z = 1, 3, 5, 7 and 9 cm of the

reconstructed 3D conductivity. The slices from ventral (upper)

to dorsal (lower) are presented in radiological convention,

which means that the left side of the image corresponds to

the right side of the pig. Note that in Figs. 9 and 10, we used

a colour map developed by Draegerwerk AG & Co. KGaA for

display of EIT ventilation images.

Again, both estimates (E1&E2) using the incorrect model

domain Ω̃ are able to localize the unilateral right pneumotho-

rax and pleural effusion, corresponding to the correct side of

injection, in the anesthetized, ventilated pig. More precisely,

the region with negative conductivity change after air injection

is located at the more ventral part of the images, and after

Ringer solution injection, the region with positive conductivity

change located in the middle region. Note that the recovered

fluid region is represented more dorsally than the air, which

is an expected result since the position of fluid accumulation

was below that of air accumulation in relation to the effect

of gravity in supine pigs. These findings are consistent with

those from previous studies [27], [32].

Comparing the reconstructions based on (E1) and (E2), the

(E2) based reconstructions show that conductivity changes are

more clearly defined and free of artifacts. Estimate (E2) also

results in the coverage ratio closest to the true value, RCRs

being 0.74 and 1.12 (see Table IV) for Cases 8&9, respectively.

Overall, the results of the test cases using pig data indicate

that the PLS-based difference imaging approach improves the

accuracy of the estimates, resulting superior visual quality

of the conductivity change, as is evident from the metric

parameter RCR, compared to that obtained by conventional

linear difference imaging approach.

D. Discussion on the results

Difference EIT has been well known to tolerate modeling

errors caused by inaccuracies in modeling target domains. To

some extent, this feature is observed in the results reported

herein. In all cases, the estimate (E1) is, at least, indicative

of the location of the conductivity change. Although the

conventional linear difference imaging approach is able to

suppress some of the effects of modeling errors, it has been

shown that a large number of artifacts are still present in

the reconstructions, which is mainly due to the fact that

the sensitivity distribution in the domain is affected by the

selection of a homogeneous conductivity distribution σ0 for

evaluating Jacobian matrix J .

On the other hand, the proposed PLS-based approach is

much less affected by modeling errors, caused by inaccurately

known domain geometry and the poorly approximated sensi-

tivity distribution, than that of the conventional linear differ-

ence imaging approach. This is probably due to the fact that, in

the PLS-based approach, the conductivity change was assumed

to be piecewise constant and the geometry of the anomaly was

represented by a shape-based PLS function using a low order

representation. The allows reducing dramatically the overall

number of unknowns, improving the condition number of the

inverse problem, and enhancing the computational efficiency

of the technique. Meantime, the PLS-based reconstruction

problem was solved iteratively, offering a greater chance of

arriving at an more accurate reconstruction of the problem.

Finally, we discuss computational aspects pertinent to the

efficiency of the reconstruction algorithm. It is well known

that, in the traditionally used pixel/voxel-based non-linear

iterative methods [46], a line search is usually performed

on the conductivity update. This process demands repetitive

calculation of the forward problem, which becomes a severe

bottleneck [50]. For example, the use of non-linear iterative

methods coupled with a line search takes several minutes [51]

to obtain the final reconstructions. In contrast, conventional

linear difference approaches are known to be computationally

fast since iteration is not needed. As an example, the estimate

(E1) shown in Fig. 7 was obtained from a MATLAB imple-

mentation of the conventional linear difference approach on a

desktop PC with an Intel Core i7-6700K processor and 32GB

memory within 6 to 8.5 seconds.

We would like to point out that the proposed PLS-based

difference imaging approach is, indeed, an iterative recon-

struction algorithm. However, implementation of the proposed
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Fig. 7. Reconstructions with both conventional linear difference imaging (E1) and PLS-based difference imaging (E2) approaches from water tank data. The
letters ‘A’, ‘C’ and ‘P’ marked in the phantom photos denote the inclusions which were made of agar, copper and plastic materials, respectively.

Fig. 8. Reconstructions with both conventional linear difference imaging (E1) and PLS-based difference imaging (E2) approaches for Case 6 using (almost)
correct domain model (1st row) and approximated circle domain model (2nd row). The 2nd row is a repetition of the 3rd row from Fig. 7.

Fig. 9. Reconstructed images of the right-sided pneumothorax. (E1): estimates based on the conventional linear difference imaging. (E2): the proposed
PLS-based difference imaging reconstructions.

approach still leads to speed-up in computing reconstructions via order reduction of a EIT reconstruction problem. As a
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Fig. 10. Reconstructed images of the right-sided pleural effusion. (E1): estimates based on the conventional linear difference imaging. (E2): the proposed
PLS-based difference imaging reconstructions.

demonstration of this realization, the final reconstructions

shown in Fig. 7 were obtained from a MATLAB implementation

of the proposed approach on the above PC within 5 to 10 sec-

onds. The CPU time of the proposed approach is comparable

to the conventional linear difference approach. Compared to

the traditional pixel/voxel-based non-linear iterative methods,

the reduced computing times of the proposed approach allows

for faster reconstruction of EIT images enabling improved

interaction. This positively impacts opportunities for exploring

different data sets with EIT and may provide better insight

to a large suite of data by experimenting with different

reconstruction parameters.

VII. CONCLUSION

In this paper, we proposed a parametric level set based

difference imaging approach for reconstructing the conductiv-

ity change in EIT. The proposed approach was evaluated by

simulations, phantom studies and in vivo pig data. We found

that the PLS-based approach provides more accurate recon-

structions of the conductivity change than the conventional

linear difference approach. It has been shown that the proposed

approach tolerates modeling errors caused by inaccurately

known domain geometry, as well as the poorly approximated

sensitivity distribution. The findings demonstrate that, given

the assumption that the properties of conductivity change are

piecewise constant, the proposed approach is not only robust,

but also compare favorably with the linear difference approach.
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