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A Review of Gait Disorders in the Elderly and Neurological Patients for 

Robot Assisted Training 

Abstract:  

Purpose: Ambulation is an important objective for people with pathological 

gaits. Exoskeleton robots can assist these people to complete their activities of 

daily living. There are exoskeletons that have been presented in literature to 

assist the elderly and other pathological gait users. This article presents a review 

of the degree of support required in the elderly and neurological gait disorders 

found in the human population. This will help to advance the design of robot 

assisted devices based on the needs of the end users.  

Methods: The articles included in this review are collected from different 

databases including Science Direct, Springer Link, Web of Science, Medline 

and PubMed and with the purpose to investigate the gait parameters of elderly 

and neurological patients. Studies were included after considering the full texts 

and only those which focus on spatio-temporal, kinematic and kinetic gait 

parameters were selected as they are most relevant to the scope of this review. A 

systematic review and meta-analysis were conducted. 

Results: The meta-analysis report on the spatio-temporal, kinematic and kinetic 

gait parameters of elderly and neurological patients revealed a significant 

difference based on the type and level of impairment. Healthy elderly 

population showed deviations in the gait parameters due to age, however 

significant difference is observed in the gait parameters of the neurological 

patients.  

Conclusion: A level of agreement was observed in most of the studies however 

the review also noticed some controversies among different studies in the same 

group. The review on the spatio-temporal, kinematics and kinetic gait 

parameters will provide a summary of the fundamental needs of the users for the 

future design and development of robotic assistive devices.  

Keywords: Pathological gait, Biomechanics of gait alterations, Elderly gait, 

Exoskeleton robots, Gait disorders 



1. Introduction 

Neurological conditions are the most common causes of gait disorders that affect people to 

perform activities of daily living independently [1]. These common conditions and the 

diseases associated with them include Parkinson disease (PD) which progresses over time and 

mostly found in older people [2], group of Ataxia (AT) patients are included that are mostly 

linked to difficulty in balance and walking [3, 4], people with a condition known as cerebral 

palsy (CP) is also a part of this study which is found in young children. This is due to the loss 

of proper muscle coordination in CP patients [5]. Limited sagittal plane motion and crouch 

gait is associated with CP [6]. Group of neuropathy patients are included that are linked to 

nerve problems causing weakness. A group known as Charcot Marie tooth (CMT) disease 

also falls under neuropathy group that linked to damage to the peripheral nerves is also a part 

of this study [7, 8, 9]. There are some conditions apart from the above described cases that 

lead people to hemiplegic (one side affected) or diplegic gait (both sides affected) [10]. Major 

incidences reported by elderly population are the frequent falls and as a result of its 

consequence, some aspects of the movement are affected [11]. They are described as the 

principal causes of the accidental deaths in the elderly [1]. There is also a slight divergence of 

gait associated with ageing and this irregularity can also lead to an impaired gait as a result of 

falls [12].  

The assessment of gait impairment requires a clear distinction of pathological findings from 

the normal. To the authors’ knowledge, no previous study has been done that takes into 

account a wide variety of neurological gaits together with the elderly gait to assess the 

biomechanical gait deviations associated with them. The aim of this review is to highlight the 

biomechanical gait deviations associated with elderly and neurological patients. The 

knowledge of these deviations is important so that robot assisted devices could be designed 

based on the needs of the individual users. An assistive exoskeleton is a wearable device that 



is provided with actuators at the joints and is worn by the human [13]. An exoskeleton is able 

to assist the user based on its requirements. It has been observed that a simple use of cane can 

significantly improve gait parameters when compared with those walking without a cane 

[14]. Therefore, with the use of exoskeletons, the level of performance is greatly increased 

[15]. There is a need to develop a systematic approach and to thoroughly investigate the 

biomechanical gait parameters of elderly and neurological patients to highlight the assistance 

required in each category. The study forms a basis in evaluating the assistance requirement 

among different clinical population. There has been a lack of study highlighting the lower 

limb support requirement by the end users of the robot assistive devices which emphasises 

the need of this study. The requirements of the users identified through this review will set up 

a design criteria for robot assisted devices, which is critical in order to make sure the devices 

to be developed are fit for purpose. 

2. Methods 

2.1 Literature search process 

The articles in this review were obtained from various electronic database sources including 

Science Direct, Springer Link, Web of Science, Medline and PubMed. The search was 

systematically performed by the first author during the month of July-August 2017 reporting 

studies on biomechanical gait parameters of elderly and neurological patients. The search was 

restricted to articles published during the year 1985-2017. The keywords used for the search 

were Elderly, Parkinson, Ataxia, Cerebral Palsy, Charcot Marie Tooth, Neuropathy, 

Hemiplegia, Diplegia, Gait parameters, Kinematic and Kinetic characteristics, Robot assisted 

training, and Exoskeleton robots. The Boolean operator used –AND/OR. Full text articles 

were selected from the aforementioned duration.  



2.2 Data collection process and criteria 

A total of 2245 records were identified from all of the mentioned database sources, out of 

which 1843 were obtained after removing duplicates. The total records initially screened for 

abstract/title were based on the question ‘Did the study reported at least one of the 

biomechanical areas of interest?’ The articles that remained relevant after initial screening 

were reviewed for full text (n=102) and excluded those that were not containing the required 

sufficient data. Studies were selected based on the inclusion/exclusion criteria shown in Table 

1. The selection of the studies was completed after reading full texts. Studies with a focus on 

spatio-temporal, kinematic and kinetic parameters were selected.  

2.3 Search Results 

The flowchart of the extensive literature search is outlined step wise in Figure 1. Studies were 

included in the review if they reported at least one parameter of interest in the three 

biomechanical areas of interests. 

2.4 Assessment of Quality of Studies 

The quality of the studies were assessed using a quality assessment tool developed by Downs 

and Black [16]. The overall scoring was done on 27 aspects however 11 questions in the 

Downs and Black assessment tool were found not relevant to the current reviewed articles. 

Therefore, a modified version of this tool was obtained which included 16 domains and the 

quality of the study was classified as poor (1-6/16), fair (7-12/16) and good (>12/16). The 

overall score of a study for each domain obtained during the assessment is shown in Table 2.  

2.5 Data extraction 

The process of data extraction was performed by the first author. All the extracted data from 

studies were entered into tables for easy comparison and grouping. Demographic 

characteristics of participants (number of participants, age, height, weight), and 



inclusion/exclusion criteria used by this study were recorded. If the data from any study was 

identified as missing, an attempt was made to contact the authors for the missing data but if 

the authors did not respond, the articles were excluded from the review. Studies that reported 

the outcome measure of interest were included for statistical analysis.  

2.6 Statistical Analysis 

The data was transformed into standardized units for comparison and analysis. The 

demographic variables were calculated as means with standard deviations. The meta-analysis 

using forest plot was performed on each individual outcome measure which is reported in the 

results section. Since the review articles contained participants from different neurological 

conditions and the sample size was also not equally distributed, therefore random effect 

model was used in the forest plot that computes the combined effect of the distribution. The 

results were reported as mean differences with 95 % confidence intervals and p values. The 

heterogeneity was calculated using the Iଶ statistic.  

3. Results 

3.1 Search results 

There were 2245 articles that were initially obtained when performing the search, however 

only 39 articles were finally selected for review. There were reasonable backgrounds for 

excluding the articles such as inappropriate title, use of inappropriate comparison groups, 

unsuitable study design, missing data and other irrelevant data. Several studies investigated 

on more than one study area. Spatio-temporal characteristics were reported by most of the 

studies, however there were only few studies that recorded kinetic variables.   



3.2 Quality of studies 

The majority of studies selected in the review were of good quality as assessed by the 

assessment tool of Downs and Black [16] given in Table 2. No study obtained an overall 

score of less than 6. Few studies fell under a score of fair while majority of studies were 

having a score of more than 13. The difference between the fair and good quality studies was 

due to the fact that some of them reported the exact value of p rather than reporting the 

approximate values. Additionally, they described the demographic and exact sites of the 

selected participants. 

3.3 Characteristics of Subjects 

The participants included in this review were categorized as elderly group, neurological 

group and the comparison healthy control group. The elderly participants included were fit 

without any previous known disorder. The characteristics of the participants are reported in 

Table 3. The participants that form part of the comparison group were the age matched 

control group without any previous known disorder. The gait data from physically fit 

individuals were used as a reference benchmark to obtain the level of impairment among 

different groups.  

3.4 Subject recruitment strategy 

The subjects were recruited from a variety of sources as documented by the studies. These 

included hospitals, community outpatients and volunteers. The healthy subjects recruited in 

some cases were on voluntary basis.   

3.5 Outcome results 

The variables of interest found in the majority of studies were spatio-temporal, kinematic and 

kinetic parameters. These variables are discussed in detail in the next section. 



3.6 Spatio-temporal characteristics  

Gait speed 

Gait speed was reported by four studies for elderly [17, 18, 19, 20] and many of them 

described for different neurological patients. These include ten studies for Parkinson [21, 22, 

23, 24, 25, 26, 27, 28, 29, 30], five for Ataxia [4, 25, 31, 32, 33], four for Cerebral palsy [6, 

34, 35, 36, 37], three for Charcot Marie Tooth [38, 39, 40], four for Neuropathy [41, 42, 43, 

44], four for Hemiplegia [14, 45, 46, 47] and four for Diplegia group [48, 49, 50, 51]. The 

meta-analysis report on gait velocity for elderly showed a significant difference when 

compared with the young group. The gait velocity in elderly was reported as significantly 

lower than the young control group. The heterogeneity among the studies were Iଶ =4% 

(Figure 2a). When gait velocity was observed among different neurological patients, it was 

reported significantly lower in all of the patient group types. The overall heterogeneity among 

the neurological group studies was reported as Iଶ =92% (Figure 2b). 

Stride length and Cadence 

By observing the studies in the elderly group [17, 18, 19, 20], the meta-analysis report on 

stride length recorded significantly lower value in the elderly group (Figure 3a) whereas 

cadence was observed to be higher in elderly patients (Figure 4a). The heterogeneity among 

the studies for stride length and cadence were less Iଶ =5% and Iଶ =21% respectively. These 

parameters when observed in the neurological group, it was reported as significantly lower 

when compared to the healthy control group. Only CMT and hemiplegia group showed 

insignificant difference in the stride length as observed in Figure 3b whereas the cadence in 

the cerebral palsy patients was reported to be higher than the healthy group (Figure 4b). The 

overall heterogeneity among the neurological patients were 90 % for stride length and Iଶ 

=79% for cadence.  



3.7 Kinematic characteristics 

Hip range of movement (ROM) 

The meta-analysis report on hip range of movement (ROM) included three studies for elderly 

group [17, 18, 20] and the individual studies for neurological group included Parkinson [21, 

22, 25, 26, 28, 29, 30], Ataxia [4, 25, 31, 32, 33], Cerebral palsy [6, 34, 35, 36], Neuropathy 

[42, 52], Hemiplegia [46, 47, 53]and Diplegia [49, 50, 51, 54]. The studies on the elderly 

group reported lower ROM (mean difference as -1.79, 95 % CI -5.63 to 2.05, p=0.36) as 

compared to the young group with Iଶ = 78% heterogeneity but it was not reported to be 

significant (Figure 5a). The seven studies that reported for Parkinson disease [21, 22, 25, 26, 

28, 29, 30] also observed a significant lower hip ROM in the elderly group, though the 

heterogeneity was Iଶ = 64%. The five studies for Ataxia group [4, 25, 31, 32, 33], four for 

Cerebral palsy [6, 34, 35, 36], three for hemiplegia [46, 47, 53] and four for diplegia group 

[49, 50, 51, 54] reported a difference that was not significant. Only two studies were found 

for neuropathy group [42, 52] that recorded a significant lower ROM in the elderly group. 

The meta-analysis report showed an overall significant difference in the neurological patients 

as compared to the age matched healthy group (Figure 5b). 

Knee range of movement (ROM) 

The knee joint was reported by three authors [17, 18, 20] for the range of movement and 

observed a significant difference between elderly and young group. It was recorded to be 

significantly lower in the first group with a heterogeneity of Iଶ = 0% (Figure 6a). The meta-

analysis report on the neurological group also suggested a significantly lower range of motion 

in the patients group. Only studies by [4, 25, 32, 33] for Ataxia and [48, 49, 50, 51, 54] for 

Diplegia group showed no significant difference whereas the studies for Parkinson [21, 22, 

25, 26, 29, 30], Cerebral palsy [6, 34, 35, 36], Neuropathy [42, 52] and Hemiplegia [46, 47, 



53] observed a significant lower range of motion at the knee joint. The overall heterogeneity 

among the neurological studies were Iଶ = 90% (Figure 6b). 

Ankle range of movement (ROM) 

The studies on the ankle range of movement (ROM) for elderly [17, 18, 20] and neurological 

patients [4, 6, 21, 22, 25, 26, 29, 31, 32, 33, 34, 35, 36, 42, 46, 51, 52, 53, 54] reported a 

significant lower value in the elderly and neurological group as compared to the healthy 

control group. In the neurological group, the meta-analysis report on all subgroup types 

suggested a lower ROM except Ataxia group in which no significant conclusion can be 

drawn. The heterogeneity among the studies in the elderly group was less Iଶ = 0% (Figure 7a) 

but a high variability has been observed in the neurological group has Iଶ = 79% (Figure 7b). 

3.8 Kinetic characteristics 

The kinetic variable of interest was joint moment. The studies reported for the elderly group 

for the peak flexion moment at hip, knee and ankle joint were not sufficient to perform a 

meta-analysis. Regarding the neurological group, three studies reported for Parkinson [21, 22, 

29] at the hip and ankle joint and observed a significant lower peak joint moment. The 

heterogeneity was Iଶ = 0% in both cases. No conclusion can be drawn for CP [34, 35, 37] at 

the hip and ankle joint, however it showed a significant higher peak flexion moment at the 

knee joint [35, 37]. Studies for diplegia [48, 51] showed a significant lower peak moment at 

hip and ankle whereas no significant conclusion can be drawn at the knee joint. There were 

only two studies [41, 42] found for neuropathy patients at the ankle joint and showed a 

significant lower peak ankle dorsiflexion moment. Overall the meta-analysis report on the 

kinetic variables suggested no significant difference at the hip (Figure 8) and knee flexion 

moment (Figure 9) but a significant lower peak ankle dorsiflexion moment (Figure 10). There 



was also a lot of variability observed among the studies for peak flexion moment (Iଶ = 98%, Iଶ = 99% and Iଶ = 89% for hip, knee and ankle joint respectively). 

4. Discussion 

This study is a comprehensive analysis of the biomechanical alterations in elderly and 

neurological patients. The gait pattern was analysed in comparison with the healthy groups in 

terms of spatio-temporal, kinematic and kinetic characteristics and highlighted the support 

requirement in each category of the deviated gait. From the above findings and results, it 

appeared that there was a degree of agreement in reporting most of the spatio-temporal, 

kinematic and kinetic variables of various gait impairment types, though some inconsistency 

and variability has also been observed in describing certain parameters among the authors. 

The inconsistency among the studies could be as a result of different measurement 

approaches employed, varied number, age, mass and gender of subjects, the reference frame 

used, etc. It has been observed that there are difficulties in categorising patients as some of 

them do not match a single set of gait pattern. An improper coordination in any one of the 

input source can lead to gait impairment [10]. For better understanding, it would be 

appropriate to explore the parameters according to the review findings and results discussed 

above. From meta-analysis of the spatio-temporal parameters, it could be suggested that 

participants of Parkinson’s disease walked slower than CMT and Neuropathy patients but 

faster than participants of Diplegic gait. The main reason for slow gait speed in Parkinson 

disease (PD) is the disorder in the regulation of stride size [2, 55]. A large variation of gait 

speed, stride length and cadence exists in studies of Hemiplegic gait. The walking speed of 

Hemiplegic patients were directly related to the stage of motor recovery [56]. In elderly gait, 

the three spatio-temporal parameters of interests showed a decreasing trend that indicates a 

decline in the gait performance at older age. In cerebral palsy patients, the deterioration of the 



gait pattern was suggested to be responsible for decrease in spatio-temporal variables [57]. 

The overall results of the meta-analysis for the spatio-temporal characteristics showed a 

decreasing trend in elderly and neurological patients that indicates the need of the patients to 

use the robot assisted devices so that the deviations among them could be minimized. The 

study of these deviations in spatio-temporal parameters will also be helpful in the design of 

robot assisted devices. 

The results obtained for the kinematics of hip, knee and ankle joints also showed some degree 

of inconsistency among them but the overall results of the meta-analysis favoured elderly and 

neurological patients i.e. a decrease in hip, knee and ankle range of movement (ROM) is 

recorded and hence the need of robot assisted devices is highlighted. The meta-analysis report 

on the hip ROM of elderly showed a decrease in the ROM as it is reported that even a small 

reduction in hip ROM alters gait in elderly [19]. In order to produce the same output, there is 

a large contribution required from hip extensors [19] and small contribution from knee 

extensors and ankle flexors [58]. Knee ROM in elderly also showed a significant reduction 

and the studies also reported an increase in the knee extension angle during mid stance and a 

decrease during the swing phase [17, 18, 20]. The decrease in the ankle is associated with the 

ankle dorsi-flexion (DF) and plantar-flexion (PF) muscles weakness [18, 20]. The ROM of 

the Parkinson disease was observed to be significantly affected at the later stages of the 

disease. Knee flexion was usually observed to be increased in advanced stages of Parkinson 

[59]. Change in knee extension caused an overall reduction in the ROM of knee. Studies of 

the kinetic parameters showed a lot of variability among them in reporting most of the 

parameters. In Parkinson’s disease, more abnormalities were observed in kinetic profiles than 

the kinematics with the moments reaching peaks that were significantly different from the 

healthy group [60]. The peaks of the moment profile in Parkinson disease were observed to 

be different than normal, hip showed a prolonged and increase in the flexion moment, peaks 



of the knee extension moment were observed to be lowered [22]. The ankle ROM was 

reduced during push off and recorded a reduction of PF at toe off [24, 26, 29]. In PD patients, 

it was reported that there was an increase of PF moment at heel strike and a reduction before 

push off [22]. Studies of the Ataxic gait showed a lot of variability among them. A lack of 

inter joint coordination was suggested to be the main reason for gait impairment in Ataxic 

gait [31]. Studies documented on the kinematic and kinetic changes in ataxic gait observed 

the changes in stepping and lack of coordination of limb motion [3, 4]. This may lead to 

lurching in unusual directions. Ataxic patients showed less hip flexion at toe off [32]. The 

ROM in ataxic patients was reduced [4, 25, 33] and the effects were correlated with clinical 

severity. [32] pointed out a decrease in knee flexion at heel contact and mid stance and an 

increase in the flexion during swing. Changes in the kinematics of ankle joint were appeared 

to be significant in Ataxic gait even at moderate speed [25]. Limited sagittal plane motion 

and crouch gait is associated with CP [6].  Hip demonstrated a delay in shifting from 

extension to flexion moment. Hip extension was appeared to be reduced during mid stance 

[34]. There existed at least eight different clusters of gait; [61] and [49] used Principal 

Component Analysis (PCA) to classify gait patterns in CP. [62] established a correlation 

between higher gait speed and ankle ROM. Peak ankle PF and knee flexion at initial contact 

were observed to be decreased [34]. The increase in the moment of knee flexors was 

explained by [63] due to the large moment required for hip extension during walking. 

Although findings of the kinematic and kinetic variables for CMT were not significant to 

perform a meta-analysis report but it showed excessive hip extension in [38]. The CMT 

patients showed a delay in the peak DF in the terminal stance associated with the weakness in 

the ankle plantar flexors [40]. Two distinct gait patterns were reported in CMT, a steppage 

pattern and a clumsy pattern [64]. A delay in the peak value of ankle DF is a common finding 

in CMT patients [40]. The results of the findings of the hemiplegia and diplegia group 



showed a significant difference at the ankle joint and therefore favours the need of the use of 

an assistive device.  

The findings of this review will be helpful in proposing the design criteria for lower limb 

robot assisted training. By observing the torque deviations involved in different impaired 

gaits, maximum deviated value of the joint torque could be determined. This would indicate a 

threshold requirement of elderly and neurological gaits, hence a general support requirement 

from the robotic assistive devices is established.  It was also noticed that the torque and angle 

profile of the lower limb joints varies to a large extent among different categories of gait 

impairments so it was not possible to group patients with similar gait characteristics based on 

the joint angular displacement and torque profile. Even subjects belonging to the same 

category of neurological gait significantly differ among each other. The study reported a 

significant difference in the spatio-temporal, kinematic and kinetic variables in elderly and 

neurological patients, hence the need for robot assisted devices is highlighted. However, 

deviations in few parameters were observed to be insignificant.  

5. Conclusion 

The work presented in this paper is of great importance in analysing the design requirements 

of robotic assistive devices. It outlines the requirements among different types of gait 

impairments that will be beneficial in the design of assistive devices to help users complete 

the activities of daily living independently. The review and meta-analysis identified the gait 

deviations in spatio-temporal, kinematic and kinetic parameters among elderly and 

neurological groups. A systematic approach was developed to organise the gait data 

according to the alterations in the biomechanical parameters related with the various gait 

pathologies. The review was able to gather evidences of gait malfunctions in different 

categories of patients and established a general trend in the support requirements among 



them. The work covered in this review is helpful to define the end users of the robot assistive 

devices by investigating the support required for them in the spatio-temporal, kinematic and 

kinetic parameters involved in locomotion. Based on this review, future devices can be 

proposed based on the individual needs of the specific users to overcome the altered gait 

biomechanics. 
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Table 1. Inclusion and Exclusion Criteria for Studies 

Inclusion criteria Exclusion criteria 

Studies reporting elderly and 
neurological gaits in comparison to a 
healthy control group 

Studies that include a barefoot 
biomechanical analysis 

Studies have full text available 

Outcome measure of interest- 

(a) Spatio-temporal parameters (gait 
speed, stride length and cadence) 

(b) Kinematic variables of hip, knee and 
ankle (peak flexion/extension and range 
of movement (ROM)) 

(c) Kinetic variables of hip, knee and 
ankle (peak flexion/extension moment) 

Studies that did not compare elderly or 
neurological gait with the normal 
individuals 

Studies that did not include a barefoot 
analysis or including an analysis using 
an assistive device 

Studies that did not report at least one 
outcome measure of interest 

Studies that include elderly people with 
a previous known disorder 

Studies that include pathological gaits 
other than neurological origin 

 

 

  



Table 2. Study Quality Assessment (Downs and Black [16]) 

Downs and 
black 

questions 

Anderson 
et al. [19] 

Judge 
et al. 
[20] 

Kerrigan 
et al. [17] 

Kerrigan 
et al. [18] 

Peppe et 
al. [27] 

Ferrain et 
al. [21] 

Roiz et al. 
[28] 

Ferrarin 
et al. 
[22] 

1 Y Y Y Y N N Y N 
2 Y Y Y Y Y Y Y Y 
3 Y Y Y Y Y Y Y Y 
4 NR NR NR NR NR NR NR NR 
5 N Y Y Y Y Y Y Y 
6 Y Y Y Y Y Y Y Y 
7 N Y Y N Y Y Y Y 
8 NR NR NR NR NR NR NR NR 
9 NR NR NR NR NR NR NR NR 
10 N N Y N N N Y N 
11 UTD Y Y N Y Y Y UTD 
12 UTD Y Y UTD Y Y UTD UTD 
13 UTD UTD NR Y Y Y UTD UTD 
14 NR NR NR NR NR NR NR NR 
15 NR NR NR NR NR NR NR NR 
16 Y Y Y Y Y N Y Y 
17 NR NR NR NR NR NR NR NR 
18 Y Y Y N Y N Y N 
19 NR NR NR NR NR NR NR NR 
20 UTD Y Y Y Y Y Y Y 
21 UTD UTD N Y UTD Y Y Y 
22 UTD UTD UTD Y UTD UTD UTD UTD 
23 NR NR NR NR Y NR NR NR 
24 NR NR NR NR UTD NR NR NR 
25 UTD UTD UTD UTD Y Y Y Y 
26 NR NR NR NR NR NR NR NR 
27 NR NR NR NR NR NR NR NR 
Total score 6 11 12 10 13 11 13 9 

Downs and 
black 
questions 

Sofuwa et 
al. [29] 

Zijlman
s et al. 
[30] 

Lewis et 
al. [24] 

Morris et 
al. [26] 

Mitoma 
et al. [25] 

Vasco et 
al. [32] 

Serraro et 
al. [31] 

Stolze et 
al. [33] 

1 Y Y Y Y Y Y Y Y 
2 Y Y Y Y Y Y Y Y 
3 Y Y Y Y Y Y Y Y 
4 NR NR NR NR NR NR NR NR 
5 Y Y NR Y Y Y Y Y 
6 Y Y Y Y Y Y Y Y 
7 Y Y Y Y Y Y Y Y 
8 NR NR NR NR NR NR NR NR 
9 NR NR NR NR NR NR NR NR 
10 Y NR Y Y N N Y N 
11 Y Y Y Y N UTD UTD UTD 
12 Y Y UTD Y Y UTD Y UTD 
13 UTD UTD Y UTD UTD UTD Y UTD 
14 NR NR NR NR NR NR NR NR 
15 NR NR NR NR NR NR NR NR 
16 Y Y Y Y Y Y Y Y 
17 NR NR NR NR NR NR NR NR 
18 Y N Y Y Y Y Y N 
19 NR NR NR NR NR NR NR NR 



20 Y Y Y Y Y Y Y Y 
21 Y Y Y Y Y Y N Y 
22 UTD UTD UTD UTD Y Y Y Y 
23 NR NR NR NR NR NR NR NR 
24 NR NR NR NR NR NR NR NR 
25 N Y Y N Y Y N Y 
26 NR NR NR NR NR NR NR NR 
27 NR NR NR NR NR NR NR NR 
Total score 13 12 13 13 13 12 13 11 

Downs and 
black 
questions 

Palliyath et 
al. [4] 

Chen et 
al. [45] 

Galli et 
al. [46] 

Kuan et 
al. [14] 

Mazure 
et al. [54] 

Romkes 
et al. [53] 

Adolfsen 
et al. [34] 

Gomes 
et al. 
[52] 

1 Y y Y Y N Y Y Y 
2 Y Y Y Y Y Y Y Y 
3 Y Y Y Y Y Y Y Y 
4 NR NR NR NR NR NR NR NR 
5 Y Y Y Y Y Y Y Y 
6 Y Y Y Y Y Y Y Y 
7 Y Y Y Y Y Y Y Y 
8 NR NR NR NR NR NR NR NR 
9 NR NR NR NR NR NR NR NR 
10 Y N N Y Y N Y Y 
11 UTD Y UTD UTD Y Y Y N 
12 UTD Y Y UTD UTD Y Y Y 
13 Y Y Y UTD UTD Y Y Y 
14 NR NR NR NR NR NR NR NR 
15 NR NR NR NR NR NR NR NR 
16 Y Y Y Y Y Y Y Y 
17 NR NR NR NR NR NR NR NR 
18 Y Y N Y Y N Y Y 
19 NR NR NR NR NR NR NR NR 
20 Y Y Y Y Y Y Y Y 
21 Y UTD N Y Y Y N Y 
22 Y UTD Y Y Y Y UTD UTD 
23 NR NR NR NR NR NR NR NR 
24 NR NR NR NR NR NR NR NR 
25 UTD Y Y Y N Y Y Y 
26 NR NR NR NR NR NR NR NR 
27 NR NR NR NR NR NR NR NR 
Total score 13 13 12 13 12 14 14 14 

Downs and 
black 
questions 

Davids et 
al. [35] 

Steinwe
nder et 
al. [36] 

Eek et al. 
[37] 

Sawacha 
et al. [44] 

Carreiro 
et al. [49] 

Langrak 
et al. [50] 

Saraph et 
al. [51] 

Bianco 
et al. 
[38] 

1 Y Y Y Y Y Y Y Y 
2 Y Y Y Y Y Y Y Y 
3 N Y Y Y Y Y Y Y 
4 NR NR NR NR NR NR NR NR 
5 N Y Y Y Y Y Y Y 
6 Y Y Y Y Y Y Y Y 
7 Y Y Y Y Y N Y Y 
8 NR NR NR NR NR NR NR NR 
9 NR NR NR NR NR NR NR NR 
10 N N Y Y Y Y Y N 
11 Y N Y Y Y N Y N 
12 Y UTD Y Y Y Y UTD Y 



13 Y UTD Y Y Y Y UTD Y 
14 NR NR NR NR NR NR NR NR 
15 NR NR NR NR NR NR NR NR 
16 Y Y Y Y Y Y Y Y 
17 NR NR NR NR NR NR NR NR 
18 N Y Y Y Y Y Y N 
19 NR NR NR NR NR NR NR NR 
20 Y Y Y Y Y Y Y Y 
21 N Y Y Y Y Y Y Y 
22 Y Y N N UTD N Y Y 
23 NR NR NR NR NR NR NR NR 
24 NR NR NR NR NR NR NR NR 
25 N Y UTD N UTD N Y Y 
26 NR NR NR NR NR NR NR NR 
27 NR NR NR NR NR NR NR NR 
Total score 10 12 14 14 14 12 14 13 

Downs and 
black 
questions 

Ferrain et 
al. [39] 

Onupu
u et al. 
[40] 

Rao et al. 
[41] 

Raspovic 
et al. [42] 

    

1 Y Y Y Y     
2 Y Y Y Y     
3 Y Y Y Y     
4 NR NR NR NR     
5 Y Y Y Y     
6 Y Y Y Y     
7 Y Y N Y     
8 NR NR NR NR     
9 NR NR NR NR     
10 Y Y Y Y     
11 N N Y Y     
12 Y Y Y Y     
13 Y Y Y Y     
14 NR NR NR NR     
15 NR NR NR NR     
16 Y Y Y Y     
17 NR NR NR NR     
18 Y Y Y Y     
19 NR NR NR NR     
20 Y Y UTD Y     
21 Y Y UTD UTD     
22 Y N Y Y     
23 NR NR NR NR     
24 NR NR NR NR     
25 N N Y N     
26 NR NR NR NR     
27 NR NR NR NR     
Total score 14 13 13 14     

*Y=1, N=0, NR=not relevant, UTD=unable to determine 

  



Table 3. Demographic data of participants from included studies 

Demographics Elderly 

Mean ± SD 

Pathological 

Mean ± SD 

Normal 

Mean ± SD 

Number of 
Subjects (n) 

90 647 676 

Age (years) 76.3 ±5.28 42.61 ±7.6 41.78±5.1 

Height (m) 1.61 ±8.7 1.63 ±10.9 163.41±8 

Weight (kg) 66.4 ±11.7 72.91 ±13.56 65.69±11.53 
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Additional records identified 

through sources e.g. text books, 

university library (n=15)  

Records after duplicates removed  

(n = 1843) 

Records screened  

(n = 1850) 

Records excluded  

(n = 1748) 

Full-text articles assessed 

for eligibility  

(n = 102) 

Full-text articles excluded 

that did not meet the 

inclusion criteria (n = 63) 

Studies included in 

qualitative synthesis  

(n = 36) 

Studies included in 

quantitative synthesis 

(meta-analysis)  

(n = 39) 

Figure 1. 

 



 

Forest Plot: Gait Velocity ʹ Elderly vs Young 

Figure 2a.  



  

Forest Plot: Gait Velocity ʹ Neurological vs Healthy 

Figure 2b.  



 

 

Forest Plot: Stride Length ʹ Elderly vs Young 

Figure 3a. 

  



 

  

Forest Plot: Stride Length ʹ Neurological vs Healthy 

Figure 3b.  



 

Forest Plot: Cadence ʹ Elderly vs Young 

Figure 4a. 

  



  

Forest Plot: Cadence ʹ Neurological vs Healthy 

Figure 4b. 

  



 

Forest Plot: Hip Range of Movement (ROM) ʹ Elderly vs Young 

Figure 5a. 

  



  

Forest Plot: Hip Range of Movement (ROM) ʹ Neurological vs Healthy 

Figure 5b. 

  



 

 
Forest Plot: Knee Range of Movement (ROM) ʹ Elderly vs Young 

Figure 6a. 

  



  

Forest Plot: Knee Range of Movement (ROM) ʹ Neurological vs Healthy 

Figure 6b. 

  



 

 
Forest Plot: Ankle Range of Movement (ROM) ʹ Elderly vs Young 

Figure 7a. 

  



 

  

Forest Plot: Ankle Range of Movement ʹ Neurological vs Healthy 

Figure 7b. 

  



 

 

Forest Plot: Peak Flexion Moment at Hip ʹ Neurological vs Healthy 

Figure 8. 

  



 

 

Forest Plot: Peak Flexion Moment at Knee ʹ Neurological vs Healthy 

Figure 9. 

  



 

  

Forest Plot: Peak Dorsi-Flexion Moment at Ankle ʹ Neurological vs Healthy 

Figure 10. 

  



FIGURE CAPTIONS 

Figure 1. Flowchart Outlining Literature Search Process 

Figure 2a. Meta-analysis report for gait velocity comparing elderly with young group. A 

negative mean difference indicates a lower gait velocity in the elderly 

Figure 2b. Meta-analysis report for gait velocity comparing neurological with healthy group. 

A negative mean difference indicates a lower gait velocity in the neurological group 

Figure 3a. Meta-analysis report for stride length comparing elderly with young group. A 

negative mean difference indicates a lower stride length in the elderly 

Figure 3b. Meta-analysis report for stride length comparing neurological with healthy group. 

A negative mean difference indicates a lower stride length in the neurological group 

Figure 4a. Meta-analysis report for cadence comparing elderly with young group. A positive 

mean difference indicates a higher value of cadence in the elderly 

Figure 4b. Meta-analysis report for cadence comparing neurological with healthy group. A 

negative mean difference indicates a lower value of cadence in the neurological group 

Figure 5a. Meta-analysis report for hip range of movement (ROM) comparing elderly with 

young group. A negative mean difference indicates a lower hip ROM in the elderly 

Figure 5b. Meta-analysis report for hip range of movement (ROM) comparing neurological 

with healthy group. A negative mean difference indicates a lower hip ROM in the 

neurological group 

Figure 6a. Meta-analysis report for knee range of movement (ROM) comparing elderly with 

young group. A negative mean difference indicates a lower knee ROM in the elderly 

Figure 6b. Meta-analysis report for knee range of movement (ROM) comparing neurological 

with healthy group. A negative mean difference indicates a lower knee ROM in the 

neurological group 

Figure 7a. Meta-analysis report for ankle range of movement (ROM) comparing elderly with 

young group. A negative mean difference indicates a lower ankle ROM in the elderly 



Figure 7b. Meta-analysis report for ankle range of movement (ROM) comparing 

neurological with young group. A negative mean difference indicates a lower ankle ROM in 

the neurological group 

Figure 8. Meta-analysis report for peak flexion moment at hip comparing neurological with 

healthy group. A negative mean difference in Parkinson indicates a lower value of peak 

flexion moment at hip. Results do not favour any group in cerebral palsy and diplegia 

Figure 9. Meta-analysis report for peak flexion moment at knee comparing neurological with 

healthy group. A positive mean difference in cerebral palsy indicates a higher value of peak 

flexion moment at knee. Results do not favour any group in diplegia 

Figure 10. Meta-analysis report for peak dorsi-flexion at ankle comparing neurological with 

healthy group. A negative mean difference indicates a lower value of peak dorsi-flexion 

moment in the neurological group 


