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Annie Boned,2 Marc Dalod,2 Estelle Duprez,1 Paul Genever,7 Mark Coles,8 Marc Bajenoff,2 Luc Xerri,9

Michel Aurrand-Lions,1,10,* Claudine Schiff,2,10 and Stéphane J.C. Mancini1,2,11,*
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SUMMARY

In the bone marrow, CXCL12 and IL-7 are essential

for B cell differentiation, whereas hematopoietic

stem cell (HSC) maintenance requires SCF and

CXCL12. Peri-sinusoidal stromal (PSS) cells are

the main source of IL-7, but their characterization

as a pro-B cell niche remains limited. Here, we char-

acterize pro-B cell supporting stromal cells and

decipher the interaction network allowing pro-B cell

retention. Preferential contacts are found between

pro-B cells and PSS cells, which homogeneously

express HSC and B cell niche genes. Furthermore,

pro-B cells are frequently located in the vicinity of

HSCs in the same niche. Using an interactome bioin-

formatics pipeline, we identify Nidogen-1 as essen-

tial for pro-B cell retention in the peri-sinusoidal

niche as confirmed in Nidogen-1�/�mice. Finally, hu-

man pro-B cells and hematopoietic progenitors are

observed close to similar IL-7+ stromal cells. Thus,

a multispecific niche exists in mouse and human

supporting both early progenitors and committed

hematopoietic lineages.

INTRODUCTION

The influence of bone marrow (BM) mesenchymal stromal cells

on the differentiation program of mouse hematopoietic cells

has become increasingly clear over the last few years. A number

of stromal cell niches have been described, not only for hemato-

poietic stem cells (HSCs) but also for B cell progenitors (Aurrand-

Lions and Mancini, 2018). Stromal cells supporting HSC mainte-

nance have been separated into perivascular and endosteal/

peri-arteriolar niches. Indeed, recent results indicate that HSC

maintenance relies on peri-sinusoidal stromal (PSS) cells, which

secrete CXCL12 and stem cell factor (SCF) (Ding and Morrison,

2013; Ding et al., 2012; Méndez-Ferrer et al., 2010; Sugiyama

et al., 2006), while arteriole-associated pericytes expressing

Nestin have been shown to control HSC quiescence (Kunisaki

et al., 2013). Furthermore, arteriolar cells close to the bone sur-

face as well as sinusoidal BM endothelial cells (sBMECs) also

contribute to HSC maintenance and retention in the BM (Ding

and Morrison, 2013; Ding et al., 2012; Itkin et al., 2016). After

commitment to the B cell lineage, progenitor development de-

pends on CXCL12 and interleukin-7 (IL-7). Mice deficient for

CXCL12 or CXCR4 present B cell differentiation and retention

defects that start at the earliest pre-pro-B cell stages (Egawa

et al., 2001; Ma et al., 1998, 1999). IL-7 controls the commitment

of lymphoid progenitors to the B cell lineage and is required for

pro-B and pre-B cell proliferation (Dias et al., 2005; Marshall

et al., 1998).

In support of these results, pre-pro-B cells have been localized

near BM stromal cells expressing CXCL12, before re-localization

in the vicinity of IL-7-expressing stromal cells at the pro-B cell

stage (Tokoyoda et al., 2004). Most of the stromal cells express-

ing CXCL12 or IL-7 were localized in peri-sinusoidal areas of the

BM (Mourcin et al., 2011; Sugiyama et al., 2006). However, other

studies have suggested that osteoblasts (OBs) play a central role

in early B cell development (Wu et al., 2008; Zhu et al., 2007).

Finally, IL-7 depletion from CD31+ BM endothelial cells (BMECs)

causes a drop in B cell numbers (Cordeiro Gomes et al., 2016),

suggesting that endothelial sources of IL-7 are required for B

cell differentiation. More recently, it has been demonstrated

that the large majority of pro-B and pre-B cells are located in
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the same niche, but are respectively static and motile (Fistonich

et al., 2018). This has been attributed to cross-circuitry between

IL-7R and pre-BCR signaling, which positively and negatively

control a4b1 integrin-mediated adhesion, suggesting that high

level of IL-7R signaling in sessile pro-B cells is due to increased

exposure to IL-7 while pre-BCR signaling turns the motility on.

The heterogeneity of BM stromal cell niches remains unclear

because of the use of multiple reporter mice strains and experi-

mental setups. The study of CXCL12-GFP and SCF-GFP

knockin mice revealed that PSS cells are the main source of

CXCL12 and SCF (Ding et al., 2012; Omatsu et al., 2010; Su-

giyama et al., 2006). Co-expression of these factors by LepR+

PSS cells has been confirmed using CXCL12-dsRed/SCF-GFP

double-knockin mice (Ding and Morrison, 2013). With regard to

early B cell niches, it was initially postulated that distinct stromal

cell subpopulations express CXCL12 and IL-7 (Tokoyoda et al.,

2004). However, we identified a BM stromal cell subpopulation

co-expressing these two factors (Mourcin et al., 2011). This pop-

ulation was phenotypically defined as CD45�CD54+CD31�BP1+

stromal cells and morphologically similar to LepR+ cells that co-

express CXCL12 and SCF (Ding et al., 2012), suggesting that

LepR+ cell may co-express IL-7, SCF, and CXCL12. In accor-

dance with these findings, a recent study showed that some

LepR+ stromal cells co-express IL-7, SCF, and CXCL12 (Cor-

deiro Gomes et al., 2016). Importantly, specific deletion of

CXCL12 using LepR-Cre/Cxcl12lox/loxmice has a more profound

effect on HSC maintenance than deletion using IL-7-Cre/

Cxcl12lox/lox mice, suggesting that several PSS subsets special-

ized in HSC maintenance or IL-7 secretion may exist.

In the current study, we phenotypically characterized BM stro-

mal cell niches that were previously identified based on reporter

gene expression. This analysis revealed a limited diversity of BM

mesenchymal subsets, and PSS cells were found to co-express

LepR, BP1, CXCL12, SCF, and IL-7 at the single-cell level. HSCs

and pro-B cells were often simultaneously associated to PSS

cells and respectively formed specific interaction networks

involving genes implicated in HSC maintenance and lymphoid

development. Furthermore, among factors expressed by PSS

cells, we identified Nidogen-1 as a specific retention signal for

pro-B cells in the peri-sinusoidal niche. Finally, a global gene

expression analysis revealed that murine PSS cells were iden-

tical to CD317+ human BM stromal cells, and that both hemato-

poietic stem and progenitor cells (HSPCs) and pro-B cells were

located close to these cells. Taken together, our results demon-

strate the existence of a homogeneous BM stromal cell popula-

tion present in mouse and human that has the capacity to

produce niche factors involved in the maintenance and develop-

ment of distinct hematopoietic subsets.

RESULTS

Mesenchymal Cell Characterization in BM Reveals the

Existence of a Restricted Number of Subsets

To define mesenchymal cell heterogeneity in the BM, we used

multiparametric flow cytometry to simultaneously analyze the

different phenotypic markers described separately in the litera-

ture. BM cells were separated into conduit or bone fractions. In

the conduit fraction, CD31+ BMECs were mainly composed of

Sca1loEndomucin (Emcn)lo L-type sBMECs and of low numbers

of Sca1+Emcn� arteriolar BMECs (aBMECs) as expected (Ku-

sumbe et al., 2014). Two CD51+ stromal subsets were identified

(Figures 1A and 1B). CD54loNG2+ cells corresponded to peri-

cytes and CD54+NG2� stromal cells expressed high levels of

LepR, indicating that theywerePSScells. Furthermore, PSScells

expressed CD106, marker of CAR cells (Tokoyoda et al., 2004),

as well as BP1 and CD317, markers of IL-7+ PSS cells (James

et al., 2015; Mourcin et al., 2011), suggesting that they may

correspond to a single subset. In contrast, the bone fraction

was enriched for aBMECs, H-type (Sca1+Emcnhi) BMECs, few

L-type sBMECs, and CD51+ mesenchymal cells (Figure 1C).

Few PSS cells were observed and CD51+CD54lo/�BP1� cells

mostly corresponded to OBs as they did not express the

immature mesenchymal cell marker CD105 but expressed high

levels of Bglap, Col1a1, Col2a1 genes specific for mature OBs

(Figure 1D). These results suggest that BM mesenchymal sub-

sets are essentially composed of MSCs, PSS cells, pericytes,

and OBs.

Pro-B Cells Are in Direct Contact with PSS Cells

We next explored the localization of pro-B cells with respect to

PSS cells. LepR+ cells were clearly identified in the vicinity of

sinusoidal structures (Figure 1E). In the BM, most terminal deox-

ynucleotidyl transferase (TdT)-positive cells corresponded to

pro-B cells (Figures 1E and S1). TdT+ cells were detected close

to LepR+ PSS cells and mainly away from the endosteum (Fig-

ure 1F). Furthermore, localization of pro-B cells close to LepR+

cells was specific since cells positioned randomly in the same

images were found to be at a significantly greater distance,

whereas their positioning relative to the bone was not different.

These results indicate that PSS cells form a cellular niche for

pro-B cells.

IL-7 Is Exclusively Expressed by PSS Cells Co-

expressing High Levels of CXCL12 and SCF

Previous results showed that PSS cells are composed of IL-7+

and IL-7� subsets (Cordeiro Gomes et al., 2016). In order to

analyze these subsets molecularly and their relation to pro-B

cells, we used IL-7-Cre/Rosa-eYFP mice (hereafter IL-7 reporter

mice). YFP expression was only detected in PSS cells, pericytes,

and OBs (Figures 2A and 2B), and YFP+BMECswere neither de-

tected in the conduit nor in the bone fraction (n = 10). As shown

earlier (Cordeiro Gomes et al., 2016; Mourcin et al., 2011), most

of the YFP+ cells in adult mice corresponded to PSS cells (Fig-

ures 2A, S2A, and S2B). Furthermore, most of the LepR+ PSS

cells were YFP+ in contrast to pericytes and OBs (Figure 2C).

YFP+ stromal cells were next isolated from the conduit and

bone fractions from IL-7 reporter mice, and tested for gene

expression by qPCR. Il7 was expressed by PSS cells sorted

from both fractions but was not detected in pericytes or OBs,

regardless of YFP expression status (Figure 2D). Since YFP

expression is irreversible in the Rosa-eYFP system once the

Cre recombinase has been expressed, this result indicates that

YFP expression may be related to lineage tracing of a progenitor

cell expressing IL-7. This is the case for OBs, which are known to

be generated from PSS cells in adult mice but not in young ani-

mals (Mizoguchi et al., 2014). Indeed, in contrast to adult, none of

3258 Cell Reports 26, 3257–3271, March 19, 2019



Figure 1. Phenotypic Characterization of the BM Microenvironment and Pro-B Cell Localization

(A) Analysis of the conduit fraction by flow cytometry. The dot plots show the strategy used to identify BMECs, PSS cells, and pericytes.

(B) Phenotypic characterization of the stromal cell subsets gated on the subpopulations shown in (A).

(C) Analysis of the bone fraction by flow cytometry. The dot plots show the strategy used to identify BMECs, MSCs, OBs, and PSS cells.

(D) CD105 expression by CD51+Sca1�CD54lo/�BP1� compared to PSS cells by flow cytometry (top) and qPCR analysis of the indicated genes (bottom).

(E) Immunostaining of pro-B (TdT+; see also Figure S1) and PSS cells (stained with an anti-LepR antibody) on BM sections of C57BL/6J mice. Two representative

regions were magnified. The images were obtained from maximum-intensity projection of tile Z scans. The bone border is represented as a dotted line.

(F) The 3D distance between pro-B and LepR+ PSS cells (left) and between pro-B and the bone surface (right) is shown as the average distance per mouse (n = 6;

191 TdT+ cells in total) and is compared to the distance measured after in silico random positioning of pro-B cells. The distances weremeasured on 3D images as

shown in (E). Error bars represent the SEM. Statistical significance was calculated using an unpaired t test. **p < 0.01.

Cell Reports 26, 3257–3271, March 19, 2019 3259



the bone lining cells in 2- to 3-week-old IL-7 reporter expressed

YFP (Figures S2A–S2C).

SinceYFP+PSScells representedonly 59.4%of total PSScells

(Figure 2C), their gene expression signature was compared to

PSS cells contributing to the HSC niche. Gene expression pro-

files obtained from PSS cells isolated from wild-type (WT) mice

as well as YFP+ and YFP� PSS cells from IL-7 reporter mice

were compared to public datasets of PSS sorted from

CXCL12-GFP+, CXCL12-dsRed+, Nestin-GFPlo, and SCF-GFP+

stromal cells.Microarrays from total BMwereusedasa reference

control between datasets and gene expression profiles for

BMECs, OBs, and MSCs as unrelated datasets. Unsupervised

principal-component analysis (PCA) showed that the stromal

cell subpopulations independently sorted from CXCL12, SCF,

Nestin, and IL-7 reporter mice clustered together (Figure 3A),

and were distant from BMECs, OBs, and MSCs. Technical bias

most probably account for the spreading of the PSScluster along

the first dimension. Indeed, SCF-GFP+ cells as well as total BM

samples from the same dataset were distant to a similar extent

from our PSS cell and total BM samples, respectively. Further-

more, spreading was also observed for PSS cells sorted from

two different CXCL12 reporter mouse models using GFP and

dsRed, respectively (Decker et al., 2017; Greenbaum et al.,

2013). Interestingly, PSS cells isolated from WT mice were iden-

tical to YFP� PSS cells from IL-7 reporter mice and both popula-

tions clustered with the other PSS cell datasets, indicating that

Cre/lox recombination is only partial in IL-7 reporter mice, and

that PSS cells may represent a homogeneous population. This

result was confirmed by qPCR showing Il7 expression in YFP�

PSS cells (Figure 2D). Unsupervised hierarchical clustering re-

vealed that the PSS cells from the different datasets expressed

both HSC and B cell niche genes (Figure 3B). Notably, Il7,

Cxcl12, and Kitl (encoding SCF) were co-expressed in PSS cells

irrespective of dataset origin and of the reporter system used,

and this result was confirmed by single-cell qPCR analysis on

PSS cells isolated from WT mice and compared to pericytes

(Figure 3C). Finally, single-cell RNA sequencing (scRNA-seq) of

BM stromal cells showed that PSS cells formed a single cluster

based on the significant upregulation and downregulation of

443 and 371 genes, respectively, as compared to MSCs, OBs,

BMECs, or pericytes (Figures 3D and S3; Table S1). Altogether,

these results indicate that Il7, Cxcl12, and Kitl are co-expressed

by CD54+BP1+ PSS cells, and that these cells are identical to

peri-sinusoidal CAR, Nestin-GFPlo, and SCF+LepR+ cells.

Figure 2. PSS Cells Are the Major Source of IL-7 in the BM

(A) Stromal cells from the conduit fraction of IL-7 reporter mice were gated on the YFP+ population and further analyzed based on expression of CD54 and NG2

(n = 4 mice).

(B) Analysis by flow cytometry of mesenchymal cells from the bone fraction showing the YFP+ subsets (PSS cells, n = 8 mice; pericytes, n = 4; OBs, n = 7).

(C) Proportion of YFP+ cells among PSS, pericytes, and OBs determined by flow cytometry. Error bars in (B) and (C) indicate SEM.

(D) qPCRwas performed on sorted PSS cells and pericytes fromWTmice, and onPSS cells, pericytes, andOBs from IL-7 reporter mice after gating on YFP+ cells.

YFP�PSS cells were also sorted. For each gene, the expression level was normalized relative toGapdh before representing levels on a heatmap. High expression

is indicated in red, and low expression in blue. See also Figure S2.
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PSS Cells Simultaneously Accommodate HSCs and

Early B Cells, Forming Specific Interaction Networks

with Them

We next examined the relative localization of HSCs and pro-B

cells with respect to PSS cells. HSCs were defined as Lineage-

negative (Lin�)CD41�CD48� cells expressing CD150 (Ding and

Morrison, 2013; Kunisaki et al., 2013) and pro-B cells as TdT+

cells. Both cell subsets were located close to LepR+ PSS cells

and were frequently seen in contact with the same LepR+ stro-

mal cell (Figure 4A; Video S1). Furthermore, the distribution anal-

ysis for HSCs compared to their closest pro-B cell neighbors in

three dimensions (3D) revealed that 15.2% were at a distance

Figure 3. IL-7, CXCL12, and SCF Are Co-expressed by the PSS Cell Subset

(A) The relationships between the different subpopulations indicated were determined by PCA. Numbers between brackets along axes indicate the proportion of

variance represented by PC1 and PC2.

(B) Heatmap of selected endothelial, mesenchymal/osteoblastic, and ‘‘niche genes’’ using datasets shown in (A). Unsupervised clustering was performed for

each row and column.

(C) Heatmap showing unsupervised clustering of single-cell gene expression by PSS cells and pericytes. Single cells are shown in columns and genes in rows.

(D) t-distributed stochastic neighbor embedding (t-SNE) analysis of mesenchymal and endothelial cells sorted from the BM of C57BL/6J mice and subjected to

scRNA-seq. Genes representative of each subset were used to define the identity of the clusters (see Figure S3). Number of cells: PSS cells, n = 271; L-type

BMECs, n = 163; H-type BMECs, n = 137; OBs, n = 86; pericytes, n = 54; MSCs, n = 18. The t-SNE analysis is representative of two independent experiments.

Cell Reports 26, 3257–3271, March 19, 2019 3261



of less than 16 mm (two-cell distance) and 50% at less than

41.7 mm (five-cell distance) (Figure 4B). Simulations of pro-B

cell random positioning in the image produced a significantly

greater average distance between pro-B cells and HSCs. These

results demonstrate that HSCs and pro-B cells are in the vicinity

of PSS cells and that migration of pro-B cell differentiating from

HSCs occurs over a relatively restricted area.

Since PSS cells have the capacity to sustain the development

of both HSCs and pro-B cells, we looked for receptor/ligand

pairs that could explain such multispecific cognate interactions.

To do so, we defined the interactome between PSS cells and

long-term (LT)-HSCs or pro-B cells. Pre-pro-B cells have been

reported to be in contact with PSS cells (Tokoyoda et al., 2004)

and were therefore used as positive controls. As negative con-

trols, we used the closest related hematopoietic subsets local-

ized to distinct niches: short-term (ST)-HSCs or pre-B cells

(Kiel et al., 2005; Mourcin et al., 2011) (Figure 4C). An interac-

tome bioinformatics pipeline was developed to confront gene

expression datasets from YFP+ PSS cells from IL-7 reporter

mice and publicly available datasets for LT-HSCs, ST-HSCs,

pre-pro-B cells, pro-B cells, and pre-B cells. Genes encoding

for trans-interacting ligand/receptor pairs were identified (Table

S2). When comparing LT-HSCs to ST-HSCs, a higher number

of gene products expressed by LT-HSCs were found to interact

with gene products expressed by PSS cells (12 gene products

specifically expressed by LT-HSCs had a ligand expressed by

PSS cells compared to 1 for ST-HSCs; Figure 4D). Similarly,

higher numbers of genes specifically expressed in pre-pro-B

and pro-B cells were involved in interactions with PSS cells

compared to pre-B cells. Furthermore, LT-HSC, pre-pro-B cell,

or pro-B cell-specific genes involved in interactions with PSS

cells—as identified in Figure 4D—were highly relevant niche

genes, as demonstrated by the greater significant enrichment

for Gene Ontology (GO) terms related to adhesion, secretion, dif-

ferentiation, or proliferation compared to ST-HSCs or pre-B

cells, respectively (Figure 4E; Table S3). We next compared

the expression signatures of LT-HSCs, pre-pro-B cells, and

pro-B cells by focusing on genes implicated in interaction with

PSS cells. As expected,Cxcr4, Kit, and the Il7r/Il2rg heterodimer

were identified as hematopoietic genes encoding ligands for

CXCL12, SCF, and IL-7, respectively (Figure 4F). More than

50% of the genes identified encoded proteins with known func-

tions in HSPC maintenance or lymphoid development and

migration. Among these, we found ligand/receptor pairs that

have been extensively studied in HSC regulation (Tie2/Angio-

poietin-1, TGFbR/TGFb, Integrina6b1/Laminin) or in early B cell

development (a4b1/VCAM-1). Furthermore, although some

overlapping gene expression was found between LT-HSCs

and pre-pro-B or pre-pro-B and pro-B cells, therewere few over-

laps between LT-HSCs and pro-B cells. Finally, we found that

hematopoietic cells expressed growth factors involved in the

development of mesenchymal or endothelial cells, indicating

that reciprocal interactions between PSS and hematopoietic

cells contribute to the maintenance of hematopoietic niches.

We then tested whether genes encoding niche proteins

involved in hematopoietic/PSS cell interactions were also ex-

pressed by sBMECs or ALCAM+Sca1� and ALCAM�Sca1�

OBs (Nakamura et al., 2010). Gene set enrichment analysis

(GSEA) revealed a significant enrichment (false discovery rate

[FDR] < 0.25) for niche gene expression by PSS cells as

compared to sBMECs and ALCAM+Sca1� or ALCAM�Sca1�

OBs (Figure 4G). Moreover, unsupervised hierarchical clustering

performed on HSC and B cell niche genes identified earlier

confirmed that the highest levels of these genes, including

Cxcl12, Kitl, and Il7, were found in PSS cells (Figure S4). These

results show that LT-HSCs, pre-pro-B cells, and pro-B cells ex-

press a network of genes allowing preferential interactions with

PSS cells rather than endothelial or osteoblastic cells.

Nidogen-1 Is Implicated in Pro-B Cell Retention in Their

Niche

Among thegenes involved in the specific interactionbetweenPSS

cells and pro-B cells, we identified the ligand/receptor pair Nid1/

Plxdc1. Nidogen-1 is part of the basement membrane together

with laminin and is involved in matrix to cell interactions with

PLXDC1 expressed at the plasma membrane (Lee et al., 2006).

Plxdc1 expression was shown to be controlled by the B cell tran-

scription factor Pax5 (Revilla-I-Domingo et al., 2012). Pro-B cells

indeedexpressedPLXDC1andwere locatedclose toLepR+Nid1+

sinusoidal structures (Figure 5A). Importantly, expression of

CD51, another cellular ligand for Nidogen-1 (Yi et al., 1998), was

undetectable in pro-B cells (Figure S5A), suggesting that pro-B

cell interaction with Nidogen-1 depends on PLXDC1. The influ-

ence of Nidogen-1 deficiency on pro-B cell differentiation was

analyzed in Nid1�/� mice. Total BM cellularity and B cell fre-

quencieswerenormal inNid1�/�mice (Figures5BandS5B).How-

ever, the frequency of pre-BI cells was specifically decreased,

revealing impaired pro-B to pre-BI cell transition. The decrease

in pre-BI cells in Nid1�/� mice had repercussions on the propor-

tion of the later large pre-BII cells, and thus on the most immature

BP1+ pre-BII cells, even though the overall frequency of pre-BII

cells was not affected (Figures 5B and S5B). As a consequence,

immature and recirculating B cells were also normally repre-

sented. This result indicates that the defect observed in Nid1�/�

mice is transient, and specific to the pro-B to pre-BI cell transition.

In pre-BII cells, the pre-BCR induces a strong proliferation, which

may explain the recovery in Nid1�/� mice. We thus analyzed

de novo B cell differentiation in WT and Nid1 deficient mice

7 days after injection of the cytostatic agent hydroxyurea (HU)

as described previously (Espeli et al., 2009). Pre-pro-B cells

were not affected, but the frequency of B cells was significantly

decreased fromthepro-B/pre-BIcell transition to the followingdif-

ferentiation subsets, confirming the existence of homeostatic

compensation at the pre-BII stage at steady state (Figure S5B).

To determinewhether this bottleneck is due to reduced acces-

sibility to IL-7, we checked IL-7 receptor signaling-mediated

phosphorylation of STAT5 and early B cell proliferation. As ex-

pected, phospho-STAT5 (pSTAT5) levels and the proportion of

proliferating cells were significantly higher in pro-B compared

to pre-BI cells in WT animals (Figures 5C, 5D, S5D, and S5E).

In Nid1�/� mice, both pSTAT5 and pro-B cell proliferation were

decreased to the levels observed in WT pre-BI cells, and this

was not due to reduced IL-7R expression levels (Figure S5F).

To exclude any contribution of Nidogen1 expressed by he-

matopoietic cells to the phenotype, wild-type BM was trans-

planted into lethally irradiated Nid1�/� mice (stroma knockout
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Figure 4. HSCs and Pro-B Cells Are Frequently Found in the Same Niche and Form Specific Interaction Networks with PSS Cells

(A) Immunostaining of pro-B cells (TdT+) and HSCs (Lin�CD48�CD150+; arrowhead) on bone sections of WT mice. The images were obtained from maximum-

intensity projection of tile Z scans. The region in the dotted square was magnified for better visualization of the contact between a LepR+ PSS cell, a HSC, and a

pro-B cell (right). See also Video S1.

(B) Quantification in 3D of the distance between each HSC and the nearest pro-B or the nearest randomly positioned cell (n = 158) as indicated.

(C) Gene datasets for YFP+ PSS cells from IL-7 reporter mice were compared to those of LT-HSCs, ST-HSCs, pre-pro-B cells, pro-B cells, and pre-B cells to

generate the respective interactomes.

(D) Genes of the interactome expressed by LT-HSCs and by pre-pro-B or pro-B cells were compared to ST-HSCs and pre-B cells, respectively. The Venn

diagrams display the number of upregulated genes for each of the indicated hematopoietic subsets.

(E) The genes overexpressed by each subset compared to their nearest related subset as defined in (D) were used to perform a functional profiling by defining the

enrichment for particular GO annotations (arrows point to the corresponding histogram). GO terms are represented on the y axis and the significance on the x axis

(±Log(p value); see also Table S3).

(F) Heatmap showing genes expressed by LT-HSCs, pre-pro-B cells, or pro-B cells and involved in the interactome with YFP+ PSS cells. The fold-change for

expression between extremes ranged from 1.7 to 31.8. Unsupervised clustering was performed on rows and columns.

(G) GSEA assessing enrichment of the stromal cell interactome as determined with LT-HSC, pre-pro-B, and pro-B, on the pairwise comparisons of PSS cells (red)

with OBs (Alcam� or Alcam+) or sBMECs (blue). NES, normalized enrichment score; FDR, false discovery rate. See also Figure S4.
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Figure 5. Nidogen-1 Allows Pro-B Cell Access to IL-7

(A) Maximum intensity projections of confocal images showing immunostaining for PLXDC1, TdT, and DAPI (top), or LepR, Nidogen-1, and PLXDC1 (top) on

femoral sections. PLXDC1+ cells are shown with arrowheads.

(B) WT (n = 12) and Nid1�/� mice (n = 13) were analyzed by flow cytometry. The total cell number in the BM and the frequency of each B cell subset are

shown.

(C) Mean fluorescence intensity (MFI) for pSTAT5 in the pro-B and pre-BI subsets from WT (n = 7) and Nid1�/� (n = 8) mice as assessed by flow cytometry.

(legend continued on next page)
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[KO]) and B cell differentiation was compared to controls. While

common lymphoid progenitor (CLP) frequency was similar be-

tween conditions, an accumulation of pre-pro-B cells was

observed in stroma KO chimeras as compared to controls (Fig-

ure 5E). B cell differentiation was significantly decreased from

the pro-B cell stage in the stroma KO chimeras only, confirming

the importance of Nidogen-1 produced by themicroenvironment

for pro-B cell development.

Further analysis of Nidogen-1 immunostaining revealed that,

in addition to sinusoidal expression (Figure 5A, bottom), bright

signals were associated to arterioles (Figure 6A), consistent

with Nid1 expression in PSS cells and BMECs (Figure S6A).

However, TdT+ pro-B cells were found in close vicinity to

Nid1+LepR+ PSS cells and mainly away from Nid1hi arterioles

(Figure 6A, bottom right). This localization was specific since

randomly positioned cells were at a significantly greater distance

from Nid1+LepR+ PSS cells but not from arterioles, suggesting

that Nidogen-1 associated to PSS cells is necessary for pro-B

cell localization in the peri-sinusoidal niche. This was confirmed

by the finding that the distance between pro-B cells and LepR+

PSS cells was significantly greater in Nid1�/� mice as compared

to control (Figure 6B, bottom right).

In addition to pro-B cell localization with respect to LepR+

cells, Nid1 deficiency affected the structure of sinusoids (Fig-

ure 6B, insets). This was consistent with a change in H-type

(EmcnhiCD31hi) vessel columns, which were much shorter and

lacked a straight columnar organization in Nid1�/� mice (Fig-

ure S6B), as previously reported in vascular specific itgb1- and

Lama5-deficient mice (Langen et al., 2017). However, this

modification in vascular organization had no effect on early he-

matopoiesis from LT-HSCs tomyeloid and lymphoid progenitors

(Figure S5G). Of note, the LepR staining appeared more diffuse

in Nid1�/� mice. This may be attributed to a decreased capacity

of PSS cells to spread on the Nidogen-1-depleted extracellular

matrix (ECM) surrounding sinusoids instead of PSS cell defects.

Indeed, the relative proportions of LepR+PSS cells and pericytes

were similar between Nid1�/� and WT mice, and PSS cells ex-

pressed normal LepR mRNA and protein levels (Figures S6C

and S6D). In addition, Nid1 deficiency did not affect expression

of HSC or B cell niche genes (Kitl, Cxcl12, Alpl, Angpt1, Il7,

Vcam1), of Foxc1, master regulator of the HSC niche (Omatsu

et al., 2014), or of ECM genes (Col1a1 and Lama4; Figure S6D).

Finally, CXCR4 and CD49d (a4-integrin, VCAM1 ligand), shown

to be crucial for B cell localization in the niche (Fistonich et al.,

2018), were also normally expressed by pro-B cells in Nid1�/�

mice. Altogether, these results suggest that Nidogen-1 regulates

pro-B cell accessibility to IL-7-secreting PSS cells.

Human Pro-B Cells and HSPC Localize Close to a Human

StromalCellSubsetRelated to theMurinePSSCellNiche

Similarly to murine PSS cells, stromal cells expressing CD54,

LepR, and CD317, which represent 1%–3% of low-passage

BM mesenchymal cells, have recently been identified in human

BM samples (James et al., 2015). In addition, and in opposition

to CD317� mesenchymal cells, human primary CD317+ cells

express high levels of IL-7 at the transcript and protein level.

We thus compared gene expression profiles of murine PSS cells

to the published datasets fromCD317+IL-7hi (Y102 and Y202 cell

lines) and CD317�IL-7lo (Y101 and Y201 cell lines) human stro-

mal cells (James et al., 2015). Unsupervised PCA analysis

showed that mouse PSS cells clustered together with human

IL-7hi stromal cells (Figure 7A, top). Furthermore, when PCA

was restricted to the genes identified in murine PSS cells by

the interactome approach, the distinction between IL-7lo and

IL-7hi cells was even greater (Figure 7A, bottom).

This similarity between mouse and human CD317+IL-7hi cells

prompted us to analyze their distribution in human primary BM

samples and their localization relative to pro-B cells and

HSPC. We therefore analyzed expression of CD317, IL-7, and

CXCL12, and compared these patterns to CD34 expression,

which stains HSPCs and endothelial cells. Cells expressing

CD317, IL-7, and CXCL12 were localized close to CD34+ endo-

thelial cells (Figures 7B and S7). As expected, strong interstitial

staining was observed for CXCL12. Most remarkably, in some

cases we observed highly vascularized regions with strong

expression of CD317, IL-7, and CXCL12 (Figure 7B, bottom). In

agreement with results obtained in mouse tissue, TdT+ pro-B

cells were localized close to vessels and IL-7-expressing cells,

and their frequency correlated with levels of IL-7 expression.

Interestingly, like mouse pro-B cells, human pro-B cells also

expressed PLXDC1 (Figure 7C). Finally, CD34+ HSPCs were

also observed in contact with IL-7+ cells, sometimes in close

proximity to pro-B cells (Figures 7B and S7B). Overall, our results

demonstrate that PSS cells secreting IL-7 and CXCL12 exist in

humans and present a very similar gene expression profile to

the mouse PSS subpopulation, suggesting that a number of

biological questions related to leuko/stromal cross talk could

be addressed across multiple species.

DISCUSSION

In the present study, we have developed antibody panels for flow

cytometry to visualize and isolate different stromal cell subpop-

ulations from WT mice. Such a phenotypic characterization is

useful to precisely quantify the specificity of the different Cre

recombinase reporter systems that have been used to analyze

BM niches in the past. Our analysis indicates that BM mesen-

chymal cells are limited to four subsets: MSCs, pericytes, PSS

cells, and OBs. Although the existence of minor subsets cannot

be excluded, this result considerably reduces the number of

mesenchymal subsets described using various Cre recombi-

nase reporter systems and thus of potential hematopoietic

niches. We have found that PSS cells are the main IL-7-express-

ing cells (Mourcin et al., 2011), even though a small fraction of

(D) Proportion of pro-B and pre-BI cells fromWT (n = 8) andNid1�/� (n = 7)mice engaged in the S/G2/Mphases of the cell cycle. Cell cycle analysis was performed

by flow cytometry using TO-PRO3.

(E) B cell development analysis in the BM of stroma KO chimeras (WT donor BM transplanted to Nid1�/�mice) compared toWT control (WT intoWT) and hemato

KO chimeras (Nid1�/� intoWT). n = 4mice for each condition. Error bars represent SEM. Statistical significancewas calculated using an unpaired t test. *p < 0.05;

**p < 0.01; ***p < 0.001. See also Figure S5.
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OBs and pericytes expressed IL-7-Cre/YFP reporter but not Il7.

Because OBs differentiate from PSS cells in adult life only (Miz-

oguchi et al., 2014) and do not express YFP in 2- to 3-week-old

IL-7 reporter mice, we can assume that YFP expression in adult

OBs is due to IL-7-driven Cre recombinase expression in PSS

osteo-progenitors. Similar results were reported by Pereira and

colleagues (Cordeiro Gomes et al., 2016). In the case of peri-

cytes, the partial recombination that we observed at the Rosa-

YFP locus may be due to Il7 expression at levels below the

qPCR detection threshold. Indeed, RNA-seq studies previously

indicated very low levels of IL-7 in pericytes (Kunisaki et al.,

2013). Similarly, we did not detect IL-7-Cre reporter expression

in endothelial cells (Figures 2 and S3), although one study re-

ported detectable Il7 transcript expression in BMECs (Cordeiro

Gomes et al., 2016). We believe that this is due to very low activ-

ity of Il7 promoter in endothelial cells, since BMECs were shown

to express 20-fold less IL-7 than PSS cells. Approximately 60%

of PSS cells were found to be YFP+ using the IL-7 reporter sys-

tem (Figure 2C), suggesting that IL-7-expressing cells represent

a subset of PSS cells. However, YFP+ and YFP� fractions were

identical at the transcriptomic level, and both expressed Il7 (Fig-

ures 3A and 3B). This effect is most likely due to low Cre recom-

binase expression under the control of the IL-7 promoter, as

already reported by others (Alves et al., 2009; Mazzucchelli

et al., 2009). Indeed, conditional deletion of Cxcl12 using the

Il7-Cre or the LepR-Cre systems led to a decrease in HSCs in

Figure 6. Nidogen-1 Allows Pro-B Cell Retention in the PSS Niche

(A and B) Maximum-intensity projections of tile scan confocal images showing Nidogen-1 (blue), TdT+ (green), and LepR+ (red) immunostaining of bone sections

from WT (A) and Nid1�/� mice (B). Pro-B cells are indicated with arrowheads, and dashed lines delineate the bone border.

(A) Lower right charts show 3D quantitation of the distance between TdT+ pro-B cells and LepR+Nid1+ PSS cells as well as between TdT+ pro-B cells and Nid1hi

arterioles. Results are expressed as the average distance per mouse (n = 6) and compared to the distance measured after random positioning of pro-B cells.

(B) The lower right chart shows 3D quantitation of the distance between pro-B cells and LepR+ cells in WT and Nid1�/� mice. Results are expressed as the

average distance per mouse (Nid1+/+, n = 6;Nid1�/�. n = 8). Error bars represent SEM. Statistical significance was calculated using an unpaired t test. *p = 0.026;

**p = 0.0019.
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Figure 7. Human IL-7-Expressing Cells Are Very Similar to Mouse PSS Cells and Are in Contact with Pro-B Cells and HSPCs

(A) PCA of murine PSS cells with human CD317+IL-7hi and CD317�IL-7lo stromal cells with all expressed genes in mouse and human (top) or with genes identified

from PSS cell interactome with LT-HSC, pre-pro-B, and pro-B (top).

(B) Immunohistochemistry (IHC) was performed on human BM sections using anti-CD34, anti-CD317, anti-IL-7, anti-CXCL12, and anti-TdT antibodies

(see controls in Figure S7A). Immunostainings were performed on serial sections. Top and bottom panels correspond to sections from two different samples.

(legend continued on next page)
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the BM with both Cre systems, but loss of retention was only

observed in the LepR-Cre system. This difference has been

attributed to a differential role of CXCL12 produced by IL-7+

compared to IL-7� PSS cells (Cordeiro Gomes et al., 2016).

Based on our observations, it rather appears that CXCL12 dele-

tion is more efficient in LepR-Cre than in IL-7-Cre mice and thus

that a slight variation in CXCL12 levels has a more dramatic ef-

fect on HSC maintenance than on their retention in the BM.

Having established the nature of IL-7-expressing cells, we

examined the localization of pro-B cells, which strongly rely on

IL-7 for their development. Pro-B cells were mainly distributed

in the conduit close to LepR+ PSS cells, and away from the

endosteum, suggesting that OBs do not play a prominent role

in B cell differentiation as previously thought (Wu et al., 2008;

Zhu et al., 2007). This apparent discrepancy is most probably

due to the fact that the systems used to specifically induce

gene deletion in OBs such as Osx-Cre or Bglap-Cre mice were

also inducing deletion in PSS osteo-progenitors (Mizoguchi

et al., 2014; Zhang and Link, 2016). Alternatively, some systems

may affect PSS cells indirectly. Acute ablation of OBs using

thymidine kinase under the control of the Col1a1 promoter

(Col2.3DTK) leads to decreased numbers of early B cells (Zhu

et al., 2007). In this system, it is possible that a massive loss of

OBs triggers PSS cell differentiation, which affects the hemato-

poietic compartment as described in another study (Visnjic

et al., 2004). Finally, one could not exclude that PSS cells are

directly ablated in this system since they express Col1a1

(Figure 3C).

Through our interactome analysis, we identified Nidogen-1,

expressed by PSS cells, as a regulator of pro-B cell positioning

with respect to the LepR-expressing peri-sinusoidal niche.

Although the vascular structure is modified in Nid1�/� mice

and the abundance of LepR+ structures seems affected, an indi-

rect effect on pro-B cell differentiation is unlikely. Indeed, HSCs,

which strongly rely on secretion of CXCL12 and SCF by BMECs

for their maintenance (Asada et al., 2017; Xu et al., 2018), are not

affected, and the frequency of PSS cells as well as their expres-

sion of crucial HSC and B cell niche genes were not altered in

Nid1�/� mice. More specifically, PSS and pro-B cells from defi-

cient animals express, respectively, normal levels of CXCL12/

VCAM1 and of their respective ligands CXCR4/a4-integrin,

shown to be crucial for pro-B retention in the niche (Arroyo

et al., 1996; Park et al., 2013). In addition, adoptive transfer

experiments show that the pro-B cell defect is not cell-

autonomous, suggesting that CXCR4 and a4-integrin signaling

may be necessary but not sufficient to explain pro-B cell

retention in the niche. On the other hand, we cannot exclude a

contribution of endothelial cells in the formation of the matrix

surrounding the PSS cells since Nidogen-1 is expressed by

BMECs. However, pro-B cells do not preferentially localize close

to Nid1hi arterioles, indicating that Nidogen-1 expression is not

sufficient to sustain B cell development. Instead, we believe

that a complex network of factors and signaling, involving Nido-

gen-1, CXCL12, and VCAM1, is required for localization of pro-B

cells near IL-7-producing PSS cells.

It is known that cultured pro-B cells need high concentra-

tions of IL-7 to proliferate, while decreasing IL-7 concentration

induces differentiation toward the pre-BI stage, V-to-DJ recom-

bination, and intracellular expression of IgH chains (Marshall

et al., 1998). Early B cells lose their dependency on IL-7 at

the pre-BCR+ pre-BII stage, as theymature toward the immature

B cell stage. In line with these observations, we found that

WT pro-B cells proliferate more than pre-BI cells (Figure 5).

When pro-B cells are far from the PSS niche, as is the case in

Nid1�/� mice, their proliferation rate is decreased to the level

of pre-BI cells. This suggests that pro-B cells need to move

away from the source of IL-7 to differentiate into pre-BI cells,

as also supported by recent studies in which the amount of

IL-7 in the peri-sinusoidal niche or the integrin-mediated adhe-

sion of pro-B cells were manipulated (Cordeiro Gomes et al.,

2016; Fistonich et al., 2018).

Our results and others suggest that distance of hematopoietic

cells to their niche is important for their development (Cordeiro

Gomes et al., 2016; Itkin et al., 2016; Kunisaki et al., 2013; Mour-

cin et al., 2011; Tokoyoda et al., 2004). However, as LepR+

stromal cells are widespread in the BM, we cannot exclude the

presence of fine reticular extensions of PSS cells deeper in the

parenchyma. These extensions may be implicated in the chemo-

kine or growth factor gradients that are formed along cell surface

in association with the ECM (Laguri et al., 2008). On the other

hand, our interactome analysis confirms that accessibility of

hematopoietic cells to a specific niche is related not only to

distance per se but also to the capacity to form specific interac-

tion networks. As an example, pro-B cells expressed a higher

number of genes involved in the interaction with PSS than pre-

B cells, which are known to be associated with distinct Gal1+

stromal cells (Figure 4D). This would be consistent with recent

results showing that a fraction of motile pre-B cells are located

close to peri-sinusoidal niches but do not engage stable interac-

tions with PSS cells (Fistonich et al., 2018). We can then specu-

late that both the distance to the sinusoidal regions and adhe-

sion to stromal cells or ECM are important for hematopoietic

differentiation.

Our work not only shows the influence of PSS cells on early

B cell development but also asks the question of BM compart-

mentalization and niche specificity. A PCA performed previously

showed the proximity of the different known PSS cell subsets

using Nes-GFP and SCF-GFP reporter mice and their distance

from other mesenchymal subsets (Isern et al., 2014). We now

confirm at the single-cell level that PSS cells form a homoge-

neous cluster distinct from BMECs, pericytes, OBs, or MSCs.

However, because of technological limitations due to the detec-

tion of the most abundant poly(A) RNA only, we cannot rule out

that a certain degree of intrinsic heterogeneity exists in the

PSS cluster. For example, since it is known that PSS cells can

differentiate in OBs and adipocytes, we cannot exclude that

IL-7+ cells are shown with arrowheads. Hematopoietic stem and progenitor cells (HSPCs) are indicated by an arrow in the CD34/TdT co-staining to show their

proximity to both CD34+ vessels and TdT+ pro-B cells. Large fields from which the bottom panels were extracted are presented in Figure S7B.

(C) IHC was performed on human bone sections using anti-TdT and anti-PLXDC1 antibodies. Hematoxylin was used as counterstain. The regions in the dotted

squares were magnified to better visualize PLXDC1/TdT co-staining (bottom).
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PSS cells engaged in differentiation contribute to undetected

intrinsic cluster heterogeneity. However, this should concern

only a limited number of PSS cells and genes since the cluster

is clearly homogeneous for the expression of a large number of

genes (Table S1). Moreover, in addition to the maintenance of

HSCs through secretion of both SCF and CXCL12 (Ding and

Morrison, 2013; Ding et al., 2012; Greenbaum et al., 2013;

Sugiyama et al., 2006) and of pre-pro-B cells through secretion

of CXCL12 (Ding and Morrison, 2013; Greenbaum et al., 2013;

Tokoyoda et al., 2004), our results demonstrate that the same

PSS cells sustain pro-B cells. Most importantly, HSCs can be

found together with pro-B cells in the same niche. Even if there

is competition to access factors such as CXCL12 (by HSC,

pre-pro-B, and pro-B) or IL-7 (by pre-pro-B and pro-B), HSCs

specifically interact with PSS cells through expression of ‘‘HSC

niche genes,’’ while early B cells engage specific interactions

by upregulating ‘‘lymphoid niche genes.’’ As a result, PSS cells

appear to be able to accommodate different hematopoietic cells

by supplying the appropriate crucial niche factors required for

the development of distinct lineages.

In addition to HSCs, pre-pro-B cells, and pro-B cells, other he-

matopoietic subsets are also associated with sinusoids. Indeed,

plasma cells have been shown to be in contact with peri-sinusoi-

dal CAR cells and to rely on CXCL12, CD54, and CD106 for hom-

ing and maintenance in the BM (DiLillo et al., 2008; Tokoyoda

et al., 2004). More recently, multi-potent progenitors (MPPs)

and CLPs were also found associated with PSS cells (Cordeiro

Gomes et al., 2016). Results from this study demonstrated that

CXCL12 favors positioning of CLP close to PSS to gain access

to IL-7, suggesting that PSS cells organize hematopoietic cell

positioning in the BM. This capacity of PSS cells to accommo-

date hematopoietic cells at distinct stages of development fits

with the hemosphere model proposed earlier (Wang et al.,

2013). In their study, Adams and colleagues described HSCs

forming units with both mesenchymal and endothelial cells.

Interestingly, this specific niche allowed local clonal expansion

of HSCs into more mature hematopoietic lineages. In line with

this organization, we found that half of the HSCs were located

at less than 41.7 mm from pro-B cells, suggesting that factors

involved in the development of distinct hematopoietic subsets

are supplied locally and that migration of developing cells rela-

tive to mother cell is relatively limited.

Although increasing evidence demonstrates the localization of

numerous hematopoietic subsets close to sinusoids, this does

not preclude the existence of other cellular niches. Indeed, arte-

riolar Nestin+ stromal cells have been shown to maintain HSCs

into quiescence (Kunisaki et al., 2013). In addition, the low

permeability of arteries as compared to sinusoids would be a

favorable niche for HSC quiescence through the maintenance

of low reactive oxygen species levels (Itkin et al., 2016). Finally,

CXCL12 and SCF expression by aBMECs is crucial for HSC

maintenance (Xu et al., 2018). According to these results, it can

be proposed that, in order to differentiate, quiescent HSCs enter

the G1 phase of the cycle but retain their capacity to self-renew,

while moving from the arteriolar to the sinusoidal niche. Once

in the sinusoidal region, the HSCs will find growth factors allow-

ing both their maintenance and their commitment into distinct

lineages.

Although considerable knowledge has been acquired with

respect to murine stromal cell niches in situ over recent years,

less is known in humans. Comparison of the transcriptomic pro-

files for murine PSS cells with IL-7hi stromal cells isolated from

human BM revealed a close relationship between them. Further-

more, human IL-7hi cells expressed genes involved in murine

PSS cell interactions with HSCs and early B cells, indicating

that they probably share the capacity to accommodate distinct

hematopoietic subsets, as already suggested by the preferential

localization of CD34+ progenitors in the vicinity of PSS cells (Tor-

min et al., 2011). We confirmed CD317, IL-7, and CXCL12

expression by human PSS cells in situ, and identified TdT+

pro-B cells and CD34+ HSPCs in close vicinity. In addition, we

observed that pro-B cells were more frequently associated

with IL-7-rich regions, suggesting that human pro-B cells are

also dependent on IL-7. This finding appears to contradict older

studies that suggested that IL-7 was not required for human

B cell development since B cells were present in SCID patients

where no IL-7R signaling occurs (Russell et al., 1995). However,

more recently, it was shown that IL-7 induces human pro-B cell

proliferation, suggesting that the B cells found in SCID patients

correspond to a wave of IL-7-independent fetal B cells (Bendall

et al., 2014; Johnson et al., 2005; Milford et al., 2016).

In conclusion, our results demonstrate that murine and human

PSS cells specifically supply niche factors required for HSC and

early B cell developmental programs. Although mesenchymal

cells are certainly heterogeneous, our results demonstrate that

hematopoietic niches in the BM can be multifunctional and that

their numbermaybe lower thanpreviously thought. Finally, the ex-

istence of a similar niche in humans will have considerable impact

on the development of regenerative medicine aiming to manipu-

late hematopoietic differentiation in pathological situations.
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Anti-Laminin antibody abcam Cat# ab11575; RRID: AB_298179

Mouse Leptin R, biotin R&D Cat# BAF497; RRID: AB_2296953

NG2 Chondroitin Sulfate Proteoglycan Millipore Cat# AB5320; RRID: AB_11213678

NG2 Chondroitin Sulfate Proteoglycan, Biotin Millipore Cat# AB5320B

NG2 Chondroitin Sulfate Proteoglycan, Alexa Fluor�488 Millipore Cat# AB5320A4; RRID: AB_11203143

NK-1.1 Clone PK136, APC BD Biosciences Cat# 561117; RRID: AB_10563422

CD49b clone DX5, biotin Biolegend Cat# 108904; RRID: AB_313411
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Ly6D clone 49-H4, eFluor 450 eBioscience Cat# 48-5974-80; RRID: AB_2574089

Endomucin clone V.7C7, Alexa Fluor 647 Santa Cruz Biotechnology Cat# sc-65495 AF647; RRID: AB_2100037

Human CD34 Class II clone QBEnd 10, Unconjugated, Agilent Dako Cat# IR632

Human Terminal Deoxynucleotidyl Transferase clone
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Human IL7, rabbit polyclonal Sigma Cat# HPA019590; RRID: AB_10794621

Human CXCL12 clone D8G6H Cell Signaling Technology Cat# 97958S

TEM7/PLXDC1 clone 197C193 (IM193) Novus Biologicla Cat# NB100-56557; RRID: AB_838963

Anticorps Nidogen (ELM1): sc-33706 Santa Cruz Biotechnology Cat# sc-33706 AF647; RRID: AB_627519

CD31 (PECAM-1), goat polyclonal, Alexa Fluor 488 R&D systems Cat# FAB3628G; RRID: AB_10972784

Alexa Fluor 594 AffiniPure F(ab’)2 Fragment Donkey

Anti-Rabbit IgG (H+L)

Jackson ImmunoResearch Cat# 711-586-152; RRID: AB_2340622

Alexa Fluor� 647 AffiniPure F(ab’)2 Fragment Donkey

Anti-Rabbit IgG (H+L)

Jackson ImmunoResearch Cat# 711-606-152; RRID: AB_2340625

AffiniPure F(ab’)2 Fragment Goat Anti-Mouse IgG (H+L) Jackson ImmunoResearch Cat# 115-006-003; RRID: AB_2338466

Alexa Fluor 488 AffiniPure F(ab’)2 Fragment Goat Anti-

Mouse IgG (H+L)

Jackson ImmunoResearch Cat# 115-546-003; RRID: AB_2338859

Alexa Fluor 647 AffiniPure F(ab’)2 Fragment Goat Anti-

Mouse IgG (H+L)

Jackson ImmunoResearch Cat# 115-606-003; RRID: AB_2338921

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Goat anti-Chicken IgY (H+L) Secondary Antibody, Alexa

Fluor 488

Thermo Fisher Scientific Cat# A-11039; RRID: AB_2534096

Donkey anti-Rat IgG (H+L) Highly Cross-Adsorbed

Secondary Antibody, Alexa Fluor 594

Invitrogen Cat# A-21209; RRID: AB_2535795

Streptavidin APC eBioscience Cat# 17-4317-82

Streptavidin BV480 BD Biosciences Cat# 564876

Streptavidin PE-Texas Red BD Biosciences Cat# 551487; RRID: AB_10054235

Streptavidin Alexa Fluor 700 ThermoFisher Cat# s21383

Biological Samples

paraffin embedded adult osteo-medullary biopsies Institut Paoli-Calmettes,

Marseille, France

http://www.institutpaolicalmettes.fr/

Chemicals, Peptides, and Recombinant Proteins

Hydroxyurea Merk Millipore Cat# 400046

Pierce 16% Formaldehyde (w/v), Methanol-free Thermo Scientific Cat# 28908

Liberase TL Research Grade Merk Cat# 05401020001 Roche

Collagenase from Clostridium histolyticum Sigma Cat# C0130

SYTOX Blue Nucleic Acid Stain Invitrogen Cat# S11348

Draq 7 Biolegend Cat# 424001

LIVE/DEAD Fixable Aqua Dead Cell Stain Kit ThermoFisher Cat# L34957

Critical Commercial Assays

TaqMan Universal PCR Master Mix Applied Biosystems Cat# 4304437

CellsDirect One-Step qRT-PCR Kit Invitrogen Cat# 11753500

GT 96.96 Dynamic Array Sample & Assay Loading

Reagent Kit—10 IFCs

Fluidigm Cat# 85000827

Control Line Fluid Kit—96.96 Fluidigm Cat# 89000021

RNeasy Plus Micro Kit QIAGEN Cat# 74034

TO-PRO-3 Iodide (642/661) Thermo scientific Cat# T3605

Fixation/Permeabilization Solution Kit BD Biosciences Cat# 554714

PerFix EXPOSE (Phospho-Epitopes Exposure kit) Beckman and coulter Cat# PN B26976

C1 Single-Cell Reagent Kit for Preamp Fluidigm Cat# 100-5319

Endogenous Biotin-Blocking Kit Invitrogen Cat# E21390

1X RBC Lysis Buffer eBioscience Cat# 00-4333-57

CFSA Lame adhesive Leica Cat# 39475209

96.96 Dynamic Array IFC for Gene Expression Fluidigm Cat# BMK-M-96.96

C1 Single-Cell Open App IFC, 5–10 mm Fluidigm Cat# 100-8133

ProLong Gold Antifade Mountant Thermo Fisher Cat# P36934

Actb TaqMan� Gene Expression Assays Thermo Fisher Mm00607939_s1

Alpl TaqMan� Gene Expression Assays Thermo Fisher Mm00475834_m1

Angpt1 TaqMan� Gene Expression Assays Thermo Fisher Mm00456503_m1

Col1a1 TaqMan� Gene Expression Assays Thermo Fisher Mm00801666_g1

Cspg4 TaqMan� Gene Expression Assays Thermo Fisher Mm00507257_m1

Cxcl12 TaqMan� Gene Expression Assays Thermo Fisher Mm00445553_m1

Cx3cl1 TaqMan� Gene Expression Assays Thermo Fisher Mm00436454_m1

Eng TaqMan� Gene Expression Assays Thermo Fisher Mm00468256_m1

Enpep TaqMan� Gene Expression Assays Thermo Fisher Mm00468278_m1

Foxc1 TaqMan� Gene Expression Assays Thermo Fisher Mm01962704_s1

Gja1 TaqMan� Gene Expression Assays Thermo Fisher Mm01179639_s1

Gjc1 TaqMan� Gene Expression Assays Thermo Fisher Mm01253027_m1

Gapdh TaqMan� Gene Expression Assays Thermo Fisher Mm99999915_g1

(Continued on next page)
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Stéphane

J.C. Mancini (stephane.mancini@inserm.fr).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice

C57BL/6J and C57NL/6N mice were purchased from Janvier Laboratories, France. IL7cre Rosa26-eYFP (Repass et al., 2009)

were backcrossed for more than eight generations onto a C57BL/6J background. Nid1�/� mice (Murshed et al., 2000) backcrossed

on a C57BL/6N background were a kind gift from Pr. Krieg (University of Cologne). Both male and female mice were used between

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Icam1 TaqMan� Gene Expression Assays Thermo Fisher Mm00516024_g1

Il7 TaqMan� Gene Expression Assays Thermo Fisher Mm00434291_m1

Itgav TaqMan� Gene Expression Assays Thermo Fisher Mm00434486_m1

Jam2 TaqMan� Gene Expression Assays Thermo Fisher Mm00470197_m1

Kitl TaqMan� Gene Expression Assays Thermo Fisher Mm00442972_m1

Lama4 TaqMan� Gene Expression Assays Thermo Fisher Mm01193660_m1

Lepr TaqMan� Gene Expression Assays Thermo Fisher Mm00440181_m1

Nid1 TaqMan� Gene Expression Assays Thermo Fisher Mm00477827_m1

Prrx1 TaqMan� Gene Expression Assays Thermo Fisher Mm00440932_m1

Pdgfra TaqMan� Gene Expression Assays Thermo Fisher Mm00440701_m1

Runx2 TaqMan� Gene Expression Assays Thermo Fisher Mm00501584_m1

Vcam1 TaqMan� Gene Expression Assays Thermo Fisher Mm01320970_m1

Deposited Data

Affimetrix Microarray datasets This paper GEO: GSE90588

Affimetrix Microarray datasets Ding et al., 2012 GEO: GSE33158

Affimetrix Microarray datasets Greenbaum et al., 2013 GEO: GSE43613

Affimetrix Microarray datasets https://www.ncbi.nlm.nih.

gov/geo/

GEO: GSE66206

Affimetrix Microarray datasets Nakamura et al., 2010 GEO: GSE17597

Affimetrix Microarray datasets http://www.immgen.org GEO: GSE15907

Affimetrix Microarray datasets Lee et al., 2018 GEO: GSE114469

Affimetrix Microarray datasets Decker et al., 2017 GEO: GSE84387

Affimetrix Microarray datasets Méndez-Ferrer et al., 2010 GEO: GSE55802

Affimetrix Microarray datasets James et al., 2015 ArrayExpress: A-GEOD-11339

single cell RNaseq datasets This paper GEO: GSE121568

Experimental Models: Organisms/Strains

Mouse: IL7-Cre Repass et al., 2009 N/A

Mouse: C57BL/6J Gt(ROSA)26Sortm1(EYFP)Cos/J The Jackson Laboratory JAX: 006148

Mouse: Nid1Tm1Ron Murshed et al., 2000 N/A

Mouse: C57BL/6JRj Janvier labs N/A

Mouse: C57BL/6NRj Janvier labs N/A

Software and algorithms

DIVA version 8.01 BD Biosciences http://www.bdbiosciences.com/

FlowJo version 10 TreeStar https://www.flowjo.com/

Fiji version 1.52 g ImageJ https://fiji.sc/

MATLAB version 9 MathWorks https://www.mathworks.com/

R studio version 8 Rstudio https://www.rstudio.com/

Prism version 5 GraphPad https://www.graphpad.com/
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6 and 15 weeks of age and were housed under specific pathogen-free conditions. Animals were randomly included in the experi-

ments according to genotyping results. The numbers of mice used per experiment are stated in the figure legends. Mice were

handled in accordance with the French Guidelines for animal handling (Agreement #02294.01) and the EU Directive 2010/63/EU.

For the generation of bonemarrow chimeras, recipientmicewere lethally irradiatedwith 7Gy of total body irradiation (X-ray source,

RS-2000 irradiator) one day before transplantation. Amoxicilline was added to the drinking water at 0.25 mg/ml and left during

2 weeks. Transplantation of 5x106 donor bone marrow cells was performed by intra venous injection via the retro-orbital sinus.

BM B cell development was analyzed 15 week post transplantation.

Hydroxyurea treatments were performed by injecting intraperitoneally 1 mg/g of body weight at a rate of 2 injections separated by

7 hours per day for 2 days as previously described (Espeli et al., 2009). BM B cell development was analyzed 7 days post injection.

Human tissues

Osteo-medullary biopsies from four normal male and female adult subjects from 18 to 56 years old were used. Patients provided

informed consent in line with the Declaration of Helsinki before sample collection. The study protocol was approved by the institu-

tional review board at Institut Paoli-Calmettes (agreement #IPC 2018-002).

METHOD DETAILS

Flow cytometry and cell sorting

For flow cytometry experiments, single-cell suspensions were stained using standard protocols and the antibodies listed in

Supplemental Experimental Procedures. Dead cells were excluded using Sytox Blue, LIVE/DEAD� Fixable Aqua Dead Cell Stain

(ThermoFisher) or DRAQ7 (Beckman Coulter).

To analyze hematopoietic cell populations, BM cells were extracted, lysed (1X RBC lysis buffer, eBiosciences) and stained. Cell-

cycle analysis was performed by staining double-stranded nucleic acids with TO-PRO-3 (ThermoFisher Scientific) following

fixation and permeabilization of the cells using the Cytofix/Cytoperm kit (BD Biosciences). Phosphorylated STAT5 was detected

using the anti-phosphoprotein pSTAT5 antibody following fixation and permeabilization of the cells with the PerFix EXPOSE

kit (Beckman Coulter). The lineage cocktail (Lin) used to identify the hematopoietic progenitors contains the following

markers: CD3, CD4, CD8a, DX5, B220, CD19, CD11b, CD11c, Gr1 and Ter119. Hematopoietic subsets were defined as

follow: LT-HSC: Lin-Sca1+CD11+(LSK)CD150+CD48-CD135-; ST-HSC: LSK CD150-CD48-CD135-; MPP2: LSK CD150+CD48+

CD135-; MPP3: LSK CD150-CD48+CD135-; MPP4: LSK CD150-CD135+; Myeloid progenitors: Lin-CD117+Sca1-; CLP: Lin-

CD117loCD127+CD135+; pre-pro-B: B220+CD19-CD43+CD24-CD117+CD127+; pro-B: CD19+B220+IgM-CD23-BP1-CD2-CD117+;

pre-BI: CD19+B220+IgM-CD23-BP1+CD2-CD117+; pre-BII: CD19+B220+IgM-CD23-CD2+; Immature B cells: CD19+B220+IgM+

CD23-; Recirculating B cells: CD19+B220+IgM+CD23+.

For analysis of BM stromal cells, femur and tibia frommice were crushed, deposited on a 100mmcell strainer and rinsed three times

with PBS to recover cells from the conduit fraction in the eluate. Mesenchymal and endothelial cells associated to the sub-endosteal

region were recovered from the crushed bones. Conduit fractions were incubated with 0.1mg/mL of Liberase TL Research Grade

(Roche) and 10 U/mL DNaseI (Invitrogen) at 37�C for 20 minutes. The bone fraction was treated with 2 mg/ml collagenase I and

10 U/mL DNaseI at 37�C for 40 minutes. BM stromal cells were enriched by negative selection using immunomagnetic anti–

rat IgG Dynabeads (Invitrogen) and antibodies recognizing CD45 (H129–326 supernatant), Ter-119 (BD Biosciences) and B220

(eBioscience). The stroma lineage cocktail is composed of the following markers: B220, CD19, CD11b, CD11c, Gr1, Ter119 and

CD117. For transcriptomic analysis, CD54+BP1+ stromal cells were sorted from WT mice, and CD54+BP1+YFP+ and

CD54+BP1+YFP- cells were sorted from IL7-Cre/Rosa-eYFP mice. CD31+ Sca1low sinusoidal BMEC were sorted from WT mice.

FACS analysis was performed on a FACS LSRII and cell sorting on a FACSAria III (BD Biosciences). Data were analyzed using

DiVa Version 8.01 (BD Biosciences) or FlowJo Version 10 software (TreeStar).

Immunohistofluorescence

Femurs and tibias were incubated for four hours in PFA 4% prepared in PBS, decalcified and incubated in cryoprotective buffer as

previously described (Kusumbe et al., 2015). Bones embedded in OCT were cryosectioned on Superfrost+ slides and immediately

fixed in acetone for 5 min at �20�C. After drying, sections were rehydrated in PBS for 5 min, saturated in blocking solution (Purified

Goat anti-mouse, Jackson ImmunoResearch, BSA 5%, Saponin 0.05% in PBS) for 30 min and finally incubated with primary anti-

bodies in a humidified chamber overnight at 4�C or for 1 h at room temperature. After washing three times, slides were incubated

with the appropriate secondary antibodies for 1 h at room temperature and mounted with Prolong (Pierce). Images were acquired

in z on 10 to 15mm for 3D reconstruction using LSM780 or LSM880 confocal microscopes (Carl Zeiss) and processed in Fiji

(https://fiji.sc/).

Quantification of confocal images

CustomMATLAB scripts were developed for calculation of the 3D distance between pro-B and nearest LepR+ cells, LepR+Nid+ cells,

Nid1hi arteries and bone surface. LepR and Nidogen images were segmented by successively median filtering over 3 by 3 pixels,

optimized thresholding and erosion, dilatation over 1 pixel. Finally, objects smaller than 70 voxels (128.7 mm3) were discarded
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from the final segmented result (binary images). Double positive structures, LepR+Nid+, were defined as pixels segmented both for

LepR and for Nidogen. Arteries were detected using a higher threshold coefficient, and by discarding objects smaller than 1 000

voxels (1 838 mm3). To get the envelope of the entire tissue, DAPI filtering was performed over 5 by 5 pixels and erosion, dilatation

over 12 pixels, to ultimately keep the convex shape surrounding the largest segmented object. MATLAB codes used to calculate

threshold values, freely obtained from the MATLAB file-exchange website, were written by Martı́n D., based on the work of Tsai

W. for LepR staining (optimal threshold), and by Marti, F.T. for Nidogen and DAPI staining (moment threshold).

For each 3D image stack, pro-B cells were manually identified by TdT staining on the maximum projection of each stack using the

ImageJ cell count plugin. Their axial position was then defined as corresponding to the maximum fluorescence intensity along z, for

each x, y position. Since the TdT staining can bemore or less diffuse from cell to cell, the fluorescence intensity was averaged in each

plane over 3 by 3 pixels around the detected position. For control, random positions were generated, with a number equal to the

number of pro-B cells detected in each stack. A mask was created in 3D to allow selecting these random positions. This mask

was defined by delineating the entire tissue, using the convex envelope surrounding all DAPI-stained cells. The LepR segmented

image stack was removed from this mask to allow cells to be positioned only in the parenchyma. This mask was dilated by 4 mm,

corresponding to the average cell radius, to avoid random cells overlapping the sinusoids. A random set of pixel positions was

selected within the mask to allow comparison between real and randomized cells.

3D Euclidian distances from each segmented staining were computed over the whole image stack using bwdistsc1. This MATLAB

function provides the distance from any point to the segmented structure and allowed to accommodate for anisotropic calibrations:

1.1 mm in x, y and 1.5 mm in z. The distance was then assessed for the 3D position of each real pro-B and randomly positioned cells.

Since bone sections were cut along the x axis, the distance from the bone border was computed along the orthogonal, y axis, from

each position of each real pro-B and randomly positioned cells to the border of the mask created from the convex DAPI staining.

Immunohistochemistry

Osteo-medullary biopsies were formalin-fixed and decalcified in 0.27M Ethylene diamine tetra acetic acid (EDTA) before embedding

in paraffin. 1.5 to 3 mm sections were used. Immunohistochemistry was performed on a Ventana Discovery XT biomarker platform.

Staining with the anti-CD34 (QBEnd-10, Beckman Coulter) and anti-TdT (Sen28, Novocastra) antibodies was performed after antigen

retrieval at pH 8. Staining with the anti-CD317 (ab134061, Abcam), anti-IL7 (HPA019590, Sigma Aldrich), anti-CXCL12 (D8G6H, Cell

Signaling Technology) and anti-PLXDC1 (197C193, Novus Biologicals) antibodies was performed after antigen retrieval at pH 6.

Multiplex staining was performed using the Discovery purple kit (Ventana), together with DAB substrate or the Discovery yellow

kit (Ventana). Slides were counterstained with hematoxylin.

Gene expression profiling

qPCR analysis

Single cells were sorted in two separate experiments using the autoclone module on an AriaIII sorter (Becton Dickinson) directly

into C1 chips (Fluidigm). Single cell loading, cell lysis and the pre-amplification steps using Taqman primers (see Supplemental

Experimental Procedures) were performed using the C1 auto-prep system according to the manufacturer’s instructions (Fluidigm).

Pre-amplified products were diluted in 25 mL of C1 DNA dilution reagents before further processing using Biomark (Fluidigm). Bulk

stromal cells were directly sorted into 96-well plates containing Cells Direct Reaction Mix (Life Technologies) using the autoclone

module on an AriaIII sorter (Becton Dickinson). Each subpopulation analyzed was obtained from two independent sorting processes.

Cell lysis and pre-amplification with Taqman primers (22 Cycles) were performed according to the Fluidigm Advanced Development

Protocol. Transcript quantization in single or bulk sorted cells was performed usingmicrofluidic real-time PCRonDynamic Array IFCs

(Biomark, 96.96 Dynamic Arrays, Fluidigm). Ct values were calculated using the system’s software (BioMark Real-time PCRAnalysis;

Fluidigm) and filtered based on expression levels for GAPDH and expression of the surface cell markers used for the cell sorting.

Gene expression analysis was performed with heatmaps generated using Morpheus (Broad institute). Unsupervised hierarchical

clustering was performed using one minus Pearson’s correlation distance metrics and the average linkage method.

Single cell RNaseq analysis

CD54+BP1+ PSS cells, CD51+BP1- mesenchymal cells and CD31+ BMECwere sorted by flow cytometry and mixed together. They

were then subjected to the 10X Genomics Chromium Single-Cell 30 v2 protocol according to the manufacturer’s instructions by

HalioDX (Marseille, France), and the resulting libraries were sequenced on an Illumina NextSeq500. A second replicate was

performed in the same conditions. Both datasets are available in the GEO database (GEO: GSE121568).

Cell Ranger software v2.1.1 was used to processes FASTQ raw files: reads alignment to the mm10 genomes, filtering, barcode

counting and unique molecular identifier (UMI) counting. Cells outside 2 medians absolute deviation (MADs) from the median for

UMI log-counts and 3MADs from the median for log-transformed number of genes detected were excluded, as well as cells above 5

MADs from the median for the percentage of mitochondrial genes. Genes not expressed in any cells of the remaining cells were

removed. Unsupervised clustering of single-cell RNA-seq 10X Chromium data and t-distributed stochastic neighbor embedding

(tSNE) for 875 cells with expression detected for 15,872 genes were performed with the Seurat package (v2.3.4) in R as described

previously (Macosko et al., 2015). Gene expression measurements were normalized for each cell by the total expression, multiplied

by a scale factor of 10,000 and log transformed. Variable genes were identified with the FindVariableGenes function of Seurat. Cell to

cell variation driven by the number of detected molecules as well as the percentage of mitochondrial genes were regressed with the
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ScaleData function. A principal component analysis (PCA) was then performed on variable genes and revealed that the first 11 prin-

cipal components (PCs) were significant with the jackstraw procedure (Macosko et al., 2015) and by identifying in the graph the elbow

of the standard deviation of PCs. These 11 PCs were then used to cluster the cells using the Louvain algorithm with the function

FindClusters with the resolution parameters set to 0.6 (k parameter set to 30 for the construction of the K-nearest neighbor graph). 7

clusters were obtained, among which 2 clusters of contaminant hematopoietic cells identified with specific markers (Ptprc, Cd69,

Fcer1a, Ccl3, Ccl4 andCxcr4) expressed by at least one these clusters but not by the others. The cells of these clusters were removed

and the remaining cells were re-analyzed using the same procedure from normalization to clustering. This time the first 7 PCs of PCA

were found to be significant. Unsupervised clustering of the cells on the 7 PCs with the same parameters as before resulted in 6 clus-

ters. Positive and negative markers for each cluster were determined with the function FindAllMarkers of the Seurat package using

the default Wilcoxon rank sum test and Bonferroni p values correction for multiple testing. Finally a tSNE were run on the 7 PCs

using the RunTSNE function of Seurat with default parameters except the do.fast option set to true. Number of cells analyzed:

PSS cells, n = 271; L-type BMEC, n = 163; H-type BMEC, n = 137; OB, n = 86; Pericytes, n = 54; MSC, n = 18.

Microarray analysis

Stromal cells were directly sorted in RLT Buffer for mRNA purification using an RNeasy plus micro-kit (QIAGEN). mRNA quality was

evaluated using an Agilent 2100 (Pico Chip) before sending samples to the GenomEast Platform (http://genomeast.igbmc.fr/; Stras-

bourg, France). Affymetrix MoGene 1.0 ST and 430 2.0 rawCEL files, either obtained from in-house experiments or downloaded from

the Gene Expression Omnibus (GEO) public database (see Supplemental Experimental Pocedures) were processed and normalized

by applying the Robust Multichip Average (RMA) method, using the Oligo package through Bioconductor in the R statistical environ-

ment (version 3.2.0).

Quality-control for array hybridization and compatibility between the different sources was also assessed using Oligo. To do so,

boxplots and density plots of raw and RMA-normalized expression data and subsequent classification analyses were examined.

Probe sets for which the normalized expression valuewas less than 6 (log2 scale) across all arrayswere considered as not expressed,

and were therefore removed from the analysis. PCA was performed on the samples using the MultiExperiment Viewer (MeV version

4.8.1) on Probesets that showed a minimal 2-fold differential expression (in linear scale) between at least two cell populations. Heat-

maps were generated using Morpheus software. Unsupervised hierarchical clustering was performed using one minus Pearson’s

correlation distance metrics and the average linkage method.

The human andmouse stromal cell datasets were aggregated as previously described (Charbord et al., 2014). Probes withmultiple

matching sequences were removed using version 17 of the custom ChIP definition file (Dai et al., 2005). PCA analysis was performed

either on the 14437 genes found in common between the datasets or on the genes found in the interactome between PSS cells and

LT-HSC, pre-pro-B or pro-B cells.Affymetrix datasets generated in the course of this study were uploaded to the GEO database

under accession number GEO: GSE90588.

Interactome analysis

The bioinformatics pipeline can be split into four main steps: collection of interaction data, building interactome reference map,

normalization of microarray data with conversion of gene identifiers conversions, and comparison of genes present in the different

cellular populations.

Interactome reference map

Interactome integration and analysis was done with tools initially developed for Interactome-Transcriptome analysis (Garcia et al.,

2014). For the interactome analysis, several protein-protein interaction (PPI) databases were downloaded, parsed and integrated

by superimposing all the interactions found. PPIs from the Database of Interacting Proteins, Human Protein Reference Database,

IntAct, the Molecular INTeraction database were integrated to build the interactome. A total of 13202 genes and 70530 interactions

were mapped in the interactome. Protein identifiers were mapped to Entrez GeneID accession numbers using correspondence

tables downloaded from the NCBI FTP site (date: November 5th, 2014; ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene_info.gz). In

addition to the cells profiled in-house, publicly available datasets were downloaded from the GEO as raw CEL files. All datasets

studied were analyzed on the Affymetrix Mouse Gene 1.0 ST platform data. Microarray data were parsed, underwent quality-control

and renormalized using the R/Bioconductor (Oligo package) and the RMA algorithm. Probes were then mapped to Entrez Gene

identifiers by maximum median value (Reyal et al., 2005). To compare gene expression from multiple samples, genes were classed

as expressed/not expressed for each sample using the postprocessing approach described for the Immgen dataset (Heng and

Painter, 2008). Briefly, gene expression data wasmodeled by applying a Gaussianmixture distribution (the number of chosenGauss-

ians was k = 4) (Package R Nor1Mix). The first Gaussians modeled were considered non-expressed genes. The threshold was set to

95% for the second Gaussian.

Gene accession number conversion

To compare gene expression profiles for mouse cell populations using a human interactome reference map, gene IDs had to be ho-

mogenized. Mus musculus Entrez GeneID accession numbers were automatically converted to Homo sapiens accession numbers

using the NCBI Homologene database downloaded as a flat file from the NCBI FTP site (ftp://ftp.ncbi.nih.gov/pub/HomoloGene/).

The final conversion to gene symbols was performed using the gene_info.gz file from the NCBI FTP site (ftp://ftp.ncbi.nlm.nih.

gov/gene/DATA/gene_info.gz).
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GO filtering

To focus on genes coding for surface or extracellular proteins, GO annotation-based filtering was performed on the genes from the

mouse genome. The GO terms selected for this filtering were: GO:0009897, GO:0005887, GO:0030246, GO:0031012, GO:0005581,

GO:0005923, GO:0048535, GO:0030595 and GO:0008083.

Population comparison

Interactions between YFP+CD54+BP1+ stromal cells from IL7-Cre/Rosa-eYFPmice and LT-HSC, ST-HSC, pre-pro-B, pro-B or pre-B

cells were identified using the human interactome described above. Cis interactions were considered to be false positives, and thus

only trans interactionswere considered. Trans-homotypic interactionswere included in the analysis. The relevance of the genes iden-

tified in the interactome for LT and ST-HSC was further improved by crossing data from two different datasets and considering only

genes identified in both (Table S2). The gene expression signatures obtained for each hematopoietic subset were compared as

follow: LT-HSC versus ST-HSC, pre-pro-B versus pre-B and pro-B versus pre-B. For the comparisons, Venn diagrams were gener-

ated, assuming that genes were specific for a population when the expression level was at least 2-fold higher.

GO enrichment

GO enrichment was analyzed for each population by hypergeometric testing associated with the custom multiple testing correction

procedure g:SCS implemented in gProfiler R version (Reimand et al., 2011). The threshold for significance was set to 5%, and the

reference annotation set was the same size as the annotated domain.

Gene set enrichment analysis

The GSEA method from the Broad Institute was used to statistically test whether the stromal cell interactome was enriched within

CD54+BP1+ stromal cells, sBMEC and osteoblasts (Alcam-Sca1- or Alcam+Sca1-) compared to each other. The stromal cell interac-

tome GeneSet was added to the c2v5.1 public GeneSet collection (4726 GeneSets) from the Molecular Signatures Database

(MSigDB) [Subramanian, Tamayo et al. (2005, PNAS 102, 15545-15550)] to provide the adequate statistical power. Statistical anal-

ysis was performed by determining the false discovery rate (q-value) based on 1,000 randompermutations between all the GeneSets.

Results were considered significant when the FDR q-value was below 0.25, as recommended by the software developers.

QUANTIFICATION AND STATISTICAL ANALYSIS

The number of biological replicates is indicated in the relevant figure legends. Error bars for pooled replicates represent standard

error of the mean (SEM). The distribution of samples was determined by applying the Kolmogorov-Smirnov test. Samples were

compared using a two-tailed unpaired t test or a Mann-Whitney test when normality was not reached. All statistical analyses were

performed with GraphPad Prism 6. *, p < 0.05; **, p < 0.01; ***, p < 0.001.

DATA AND SOFTWARE AVAILABILITY

The accession numbers for the microarray and single cell RNAseq datasets reported in this paper are GEO: GSE90588 and

GEO: GSE121568 respectively.
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