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Abstract

Emotion is considered to be a core element in performances [1]. In computer anima-

tion, both body motions and facial expressions are two popular mediums for a character

to express the emotion. However, there has been limited research in studying how to

effectively synthesize these two types of character movements using different levels of

emotion strength with intuitive control, which is difficult to be modelled effectively. In

this work, we explore a common model that can be used to represent the emotion for the

applications of body motions and facial expressions synthesis. Unlike previous work

which encode emotions into discrete motion style descriptors, we propose a continuous

control indicator called emotion strength, by controlling which a data-driven approach

is presented to synthesize motions with fine control over emotions. Rather than in-

terpolating motion features to synthesize new motion as in existing work, our method

explicitly learns a model mapping low-level motion features to the emotion strength.

Since the motion synthesis model is learned in the training stage, the computation time

required for synthesizing motions at run-time is very low. We further demonstrate the

generality of our proposed framework by editing 2D face images using relative emo-

tion strength. As a result, our method can be applied to interactive applications such as

computer games, image editing tools and virtual reality applications, as well as offline

applications such as animation and movie production.

Keywords: motion capture, data-driven, motion synthesis, emotion motion, image editing,

facial expression, relative attribute
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Figure 1: Overview of the proposed methodology. Both of the motion synthesizing frame-

work (upper) and the face image editing framework are sharing the same set of core algo-

rithms.

1 Introduction

Editing and synthesizing multimedia data such as 3D human motions and 2D images is a

challenging task due to the high dimensionality of the data representation as well as the sub-

jective aesthetic judgment. As a result, most of the tasks in human motion and image editing

are still completed manually nowadays in the entertainment industry. With the advancement

of machine learning algorithms and technologies, learning how to edit and synthesize mul-

timedia data becomes an appealing direction.
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Synthesizing realistic human motion from existing motion data, either acquired by mo-

tion capture (MOCAP) devices or hand-crafted, has been an active research area in the

past two decades. In graphics applications such as movies, animation, interactive computer

games and virtual reality (VR), realism of human motion plays an important role in enhanc-

ing the user’s experience. In the past, motion naturalness and the ease of control have been

intensively studied. While they make the character animation tasks easier, we argue that

naturalness and control alone are not enough to generate realistic and diversified motions.

Emotion is considered to be a core element in performances [1], which is an indispens-

able piece in motion realism. In computer animation, both body motions and facial expres-

sions are two popular mediums for a character to express the emotion. To understand and

represent the emotion, there is an increasing focus on analyzing how motion emotion are

perceived by users [2, 3, 4, 5]. While it is possible to identify emotion automatically from

motion, synthesizing motion with controllable emotion intensity is much more challenging

due to the high-dimensionality in the control parameters as well as the complex relationship

between such control parameters and the emotional expressions.

The most relevant stream of work is style transfer from example motions to a new one

[6, 7]. However, the existing work solves this problem by interpolating sample motions. We

argue that a drawback of such an approach is interpolating the motion but not necessarily

interpolating the emotion. In other words, existing methods mainly learn low-level motions

features in the way that the control of interpolation only happens at the motion level, not

at the emotion level. This is because the learning methods ignore the relations between
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low-level motion features and high-level emotions. In this work, we tackle this problem by

learning the relationship between low-level motion features (such as joint positions, veloci-

ties) and high-level emotion attributes with different levels of strengths.

Learning the relationship between low-level motion features and mid-/high-level seman-

tic representation has been explored in the computer vision community. Attributes [8] have

been widely used in visual recognition tasks. In particular, relative attributes [9] that indicate

the relative strength of an attribute between two samples can naturally be used to describe

the differences in high-level semantics such as styles and emotions among different motions.

The relationship between motion features and the attribute can be learned from the training

data to facilitate motion synthesis.

In this paper, we propose a new data-driven method to synthesize motion with controlled

emotion expressions. The goal is to synthesize motions with emotions intuitively, such as

directly specifying the level of happiness (i.e a scalar scale) of the motion to be edited. Our

method treats the emotion of each motion as a high-level representation (i.e. attribute) and

learns the relative strength of the emotion by pairwise relative attribute. A scoring function

that evaluates the attribute strength will be learned and used to guide the motion synthesis

process. To our knowledge, our method is the first attempt to learn the relationship between

low-level motion features and human nameable attributes for motion synthesis instead of

interpolating motion directly. Since the learning process is done in the pre-processing stage,

the run time computational cost is very low. Our proposed methods are general which do

not make any assumptions on the features computed from the data. We further demonstrate
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the generality of our proposed framework by editing 2D face images using relative emotion

strength. As a result, our method can be applied to interactive applications such as computer

games, image editing tools and VR applications, as well as offline applications such as

animation and movie production.

The main contributions of this work can be summarized as follows:

• The first method to learn the relationship between low-level features and the strength

of emotion expressions for human motion and facial expression synthesis

• A real-time motion synthesis framework that is controlled solely by the strength of

emotion expressions

• A real-time face image editing framework that is controlled solely by the strength of

emotion expressions

2 Related Work

In this section, we will first review the related work in editing and synthesizing human

motion with styles, which creates new motions based on high-level properties. Next, we

review the work in learning the relationship between high-level semantic representations

and low-level features from the input data. Finally, we will review some of the recent work

in editing face images.
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2.1 Style-based motion synthesis and editing

An early work by [10] proposed to synthesize styled motion sequences by interpolating

and extrapolating the styles from the training motion data using a learned statistical model

called style machine. [11] proposed an approach to project input motion to lower dimen-

sional space by Principal Component Analysis (PCA) and compare the difference with other

example motions in the database. The differences are then to be used as the style of the in-

put motion and transferred to other motions. [12] proposed to learn the difference in the

styles in motion pairs (e.g. a neutral and a styled motion as input and output styles). The

relationship between the input and output motions in training can then be described by a

linear time-invariant (LTI) model. Using such a model, the learned style can be transferred

to a new input motion. [13] proposed a method for editing motion using Gaussian process

models of dynamics and kinematics. Such an approach can be used for motion style transfer.

[6] proposed a real-time approach for style transfer for human motion. Their method repre-

sents the style difference between the input and output motions by a time-varying mixture

of autoregressive models. Their method learns such models automatically from unlabeled

heterogeneous motion data.

While many style editing and transferring approaches have been proposed, most of the

work focuses on finding the differences between motions with different styles and creating

new motion by interpolation. We argue that such an approach does not necessarily interpo-

late the underlying emotion of the motion. In this work, we learn the relationship between
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motion features and emotion strength such that the motion synthesis process can be directly

controlled using the target emotion strength.

2.2 Attribute-based representations

Visual attributes are human-nameable semantic concepts of things in the world and are pop-

ular in the computer vision community for image recognition [8]. [9] further proposed the

concept of the relative attribute to capture the relative attribute strength between data. The

aforementioned approaches mainly focused on handling visual recognition tasks (e.g. image

classification). A recent work showed that images (e.g. 2D outdoor scenes) can be edited

by applying the relative attribute concepts [14]. Another recent work learns the mapping

between high-level descriptors (e.g. softness, silkiness) and simulation parameters for cloth

simulation [15]. A perceptual control space is then created and the cloth simulation can be

controlled by adjusting the degrees in selected high-level descriptors. These recent studies

motivated us to learn such a relative attribute strength for motion synthesis.

To sum up, most of the existing work focuses on learning the attribute strength from

input data for recognition tasks. While some recent work applied the concept of attribute-

based editing in the computer graphics community, our work is the first to make use of the

attribute strength for human motion editing.
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2.3 Facial image editing

Editing facial image attracts a lot of interests in the Computer Vision community in recent

years. Kaneko et al. [16] proposed a new deep learning framework for editing face image by

attributes. A Generative Adversarial Network (GAN) is used for learning the distribution of

the face image with emotion expression in the space. Since then, a wide range of GAN-based

face image editing approaches are presented. Expression Generative Adversarial Network

(ExprGAN) [17] encodes the ”expressive code” to improve the expressiveness of the image

representation and results in higher image quality based on a GAN network. In Computer

Graphics, a recent work proposed by Averbuch-Elor et al. [18] animates a single portrait

by an input video. The driving video is captured from another subject and the proposed

method extracts the facial deformation pattern from the video. The deformation pattern is

then applied to the target image by 2D image warping. Additional details such as creases

and wrinkles are added to the target image to further improve the quality of the resultant

image. Portenier et al. [19] proposed a deep learning framework based on deep Convolution

Neural Networks (CNN) and GAN for sketch-based face image editing.

While we share some similar interests in editing face image with intuitive controls as

in the aforementioned work, the existing work is either 1) require additional guidance for

control (such as driving video), or 2) solely focusing on editing face images. In contrast,

the framework proposed in this paper is generic and can be applied to both human skeletal

motion and face image editing.
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3 Overview

For the sake of clarity in presenting the proposed methods, the motion synthesis framework

will be explained first in Section 4. Then, the proposed face image editing framework will

be presented in Section 5.

The overview of our proposed motion synthesis framework is illustrated in Figure 1. There

are two stages in the proposed framework: pre-processing and run-time stages. The pre-

processing stage learns models for analyzing and synthesizing motions with different emo-

tion strength. Firstly, we collect motions with emotion labels as the input of our framework.

Next, the motions are represented compactly by keyframing and dimensionality reduction.

Then, the relative emotion strength of the training motion data is computed by a ranking

function. Finally, the relative emotion strength and compact motion representation will be

used for training a motion synthesis model.

During run-time, the target emotion strength (i.e. a scalar value) will be used as input

to control how the motion will be synthesized using the model trained in the pre-processing

stage. Full body motion can be obtained by back-projecting the synthesized compact motion

representation to full body motion space.

4 Learning Attribute Strength

In this section, we present the core methodology of the new data-driven motion synthesis

approach that learns the relationship between low-level motion features and the emotion
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strength. Firstly, the motion data being used in our approach for learning will be explained

in Section 4.1. Next, we propose to use a compact motion representation that removes the

temporal redundancy of the motion in Section 4.2. Thirdly, the dimensionality of the frame-

based (i.e. pose) representation (Section 4.2.3) is further reduced to facilitate the learning

process in a later stage. Finally, the learning process of the ranking function that computes

the emotion strength will be explained in Section 4.3.

4.1 Motions with Emotions

In order to analyze and learn the relationship between low-level motion features and the

strength of emotion expressions, a significant amount of human motion data has to be col-

lected. In this work, the MOCAP data from the Body Movement Library [20] was used.

This dataset contains 4080 human motion sequences captured using a commercial optical

motion capture system. The motions were captured from 30 (15 male and 15 female, ranging

from 17 to 29 years old and with a mean age of 22 years old) non-professional participants

in order to capture natural emotion expressions rather than capturing staged/exaggerated

motions from professional performers. There are three motion types: knocking, lifting, and

throwing.

Each motion contains a sequence of poses captured from a single subject and represented

by the joint positions in Cartesian coordinates in each frame. From the raw motion data, we

extracted 33 joint positions in each frame. The duration of each motion sequence ranges
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from 65 to 457 frames at 60 Hz. The dataset was designed for recognizing identity, gender

and emotion from the motion data. As a result, each subject performed each motion type

with 4 different emotion expressions: Neutral, Angry, Happy, and Sad .

In this work, we focus on using two emotion models, namely Happiness and Anger,

because a continuous emotion parameterization can be achieved. Specifically, for the Hap-

piness model, we define Happy and Sad to be opposite to each other and Neutral to be at the

middle. For the Anger model, we define Anger and Neutral as two extremes. As a result,

we can simplify the parameterization as a single scalar value to control the emotion level

continuously in Happiness (Happy ↔ Neutral ↔ Sad) and Anger (Angry ↔ Neutral). This

allows us to control the emotion strength continuously.

4.2 Motion Representation

Having presented the details of the motion data for training, we now explain the compact

motion representation used in our proposed framework. Each motion M contains a sequence

of poses p, i.e. M = {p1, ..., pn}, where n is the total number of frames (or poses) of M .

Each pose pi is represented by the 3D joint positions in Cartesian coordinates. As there are

33 joints extracted from the raw motion data, each pose is represented by a 99-dimensional

vector. In order to facilitate the learning process, we normalize all data by removing the

translation and the vertical rotation (i.e. y-axis) of the root joint in the first frame as in

other data-driven approaches (e.g. [21], [22]). By normalizing the pose in this way, the
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differences of the postures can be compared directly in the Euclidean distance of the 3D

joint positions. This has been widely used in data-driven motion synthesis approaches such

as Motion Graphs [22].

4.2.1 Keyframe Extraction

Human motions are naturally temporally redundant and removing such redundancy can fa-

cilitate the the learning process in later stages. In addition, the motion sequences we col-

lected have different durations. As a result, As a result, it is difficult to carry out machine

learning from the training motion without preprocessing the data [23]. To tackle the afore-

mentioned problems, keyframes of each motion are extracted by Curve Simplification algo-

rithm [24]. Given a motion M , a set of q keyframes K = {k1, ...kq} will be extracted, which

minimizes the reconstruction error when interpolating the in-between motion using spline

interpolation. In this study, we tested the reconstruction error with 10-15 keyframes and

empirically found that using 13 keyframes can balance the trade-off between reconstruction

error and compactness of the motion representation.

4.2.2 Joint Velocity

We observed that some of the subjects expressed different emotions by using different speed

and rhythm when performing the motion. Using the knocking door motion as an example.

The subjects tended to move faster when they were happy, and moved slower when they
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were sad. For this reason, the velocity of the joints between adjacent keyframes is computed:

vi+1 =
ki+1 − ki

∆t
(1)

where ∆t is the duration between the two adjacent keyframes. Here, we compute the

joint velocity from adjacent keyframes instead of adjacent frames in the original motion

because we want to reconstruct the full motion into different durations by editing the veloc-

ity. Specifically, given the adjacent keyframes and the joint velocity, the duration between

two adjacent keyframes can be approximated by:

∆t =
ki+1 − ki

vi+1

(2)

By this, the speed of the motion can be adjusted easily using this compact representation.

Finally, each keyframe contains the pose features ki and velocity features vi and results in a

99 + 99 = 198-dimensional feature vector.

4.2.3 Manifold Learning

It has been argued that natural motions form a motion manifold and can be embedded in

a lower dimensional space [25], which gives a compact representation of motions. To fur-

ther reduce the dimensionality of the pre-frame (i.e. pose) feature to facilitate the learning

process (will be explained in Section 4.3), the pose features and velocity features are con-

catenated and projected to a low-dimensional space. While many dimensionality reduction

approaches are available, Principal Component Analysis (PCA) has been used for analyzing
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the style difference for motion synthesis [11]. This leads us to use such a simple, low-

computational cost and widely used dimensionality reduction techniques in the proposed

method.

One of the issues is to select an appropriate dimensionality in the latent space such that

the essential information in the original motion is retained. We empirically calculate the

reconstruction error (i.e. back-projecting the latent representation and compare the result

with the keyframe features) using different numbers of dimension in the latent space. We

found that projecting the keyframe features (for each keyframe) from 198-d to 40-d achieved

low reconstruction error and we use this setting in all experiments.

4.3 Learning the Ranking Function

In this section, we will explain how to learn the relationship between the latent representa-

tion and the strength of the attribute from two sets of inputs: i) the compact motion features

explained in Section 4.2.3 and ii) the emotion label associated with each motion. One sim-

ple way to learn such a function is to train a regression function on the ground truth emotion

strength and the corresponding motion features. However, the ground truth attribute strength

may not be available in the database. In the Body Movement Library database we used,

only a single label (i.e. the emotion) is associated with each motion. The relative emotion

strength between motions with the same class label is not available.

Inspired by [9], a ranking function can be learned from a small set of pairwise training
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samples with relative ranking on an attribute (i.e. emotion in our framework). Such a

ranking function can then be used for computing the attribute strength of unseen data. The

learning process can be formulated as a max-margin optimization problem. Specifically, we

learn a ranking function r(xi) in which :

r(xi) = wxi (3)

to weight each input feature and return the weighted sum as the attribute score that indicates

the attribute strength. When solving for the ranking function, a set of relative constraints

have to be satisfied. Using the notation in [9]:

∀(i, j) ∈ O : wxi > wxj (4)

∀(i, j) ∈ S : wxi = wxj (5)

where O and S are sets that contain ordered and similar paired samples, and xi and xj are

the feature vectors of the i-th and j-th samples (motions in our approach).

More specifically, the ordered set O contains motions with differences in ground truth

attribute strength in each pair as in Eq. 4. In the dataset we used, we setup the ordered

pairwise relative constraints according to the emotion labels of the training motions: Happy

> Neutral > Sad and Angry > Neutral when training the Happiness and Anger ranking

functions, respectively. On the other hand, the similar set S contains motions with similar

ground truth attribute strength in each pair as in Eq. 5. The similar set contains the pairwise

motions with the same emotion label in our proposed framework. The attribute strength of
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each sample can be computed by multiplying the learned weights w with the feature vector

(e.g. xi or xj) and our task is to learn w by:

min
w

1

2
‖w‖22 + C

(

∑

ξ2ij +
∑

γ2

ij

)

s.t. w(xi − xj) ≥ 1− ξij; ∀(i, j) ∈ O

|w(xi − xj)| ≤ γij; ∀(i, j) ∈ S

ξij ≥ 0; γij ≥ 0,

(6)

where C is the trade-off parameter to control the softness of the pairwise relative constraints

to be satisfied, and ξij and γij are slack variables. Introducing the slack variables are serving

the purpose of relaxing the constraints on classifying all training samples perfectly as in

conventional SVMs. Since there are two groups of samples, namely ordered and similar,

ξij and γij are introduced to relax the constraints for solving for w to satisfy all of the

ordered and similar samples, respectively. This primal problem can be solved efficiently by

Newton’s method [26].

4.4 Motion Synthesis by Attribute Strength

Having learned the ranking function as explained in Section 4.3, the emotion strength (a

scalar) of each training motion can be computed. Since our ultimate goal is to synthe-

size new motion by specifying the emotion strength, here we propose to learn a regression

model on the emotion strength and the corresponding motion features from the training data.

Specifically, we learn a regression function f(s) that takes the target emotion strength s as
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input and returns the dimensionality reduced motion feature x:

x = f(s) (7)

In the implementation of the proposed framework, we train the regression function using

the Neural Network regression model in Matlab [27]. The implementation details will be

explained in Section 6.1.

5 Editing Facial Expression on 2D Images by Attribute

Strength

Having presented the method to learn the mapping between high-level attribute strength and

low-level motion features for motion editing tasks in previous sections, we further show the

generality of our proposed method by editing facial expressions on 2D images. In particular,

the process to the ranking function is exactly the same as in the proposed motion editing

framework (Section 4.3). The main difference is the features used in the training. The

details will be explained below.

5.1 Face Images and Pre-processing

The 2D images used in the training process and experiments are obtained from the Labeled

Faces in the Wild (LFW) [28] dataset. The dataset contains 13233 images captured from

5749 subjects. The attributes of each image are calculated using the method proposed by
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Kumar et al. [29] and those values are available to the public on the author’s website.

Since the face images are obtained from different sources (so-called ‘in the wild’), im-

age pre-processing is required to facilitate the learning process in the later stages in the

framework. In particular, the illumination variations in 2D images will make the learning

process more challenging. To tackle this problem, 2D facial landmark positions are used

in our proposed framework as there will be no color and image appearance information

will be included in the training process. Using 2D locations can keep the facial expression

representation abstract to facilitate the attribute strength learning process as well.

In the pre-processing stage, the facial landmarks on each image are detected using the

method proposed by Zhu and Ramanan [30]. The source code provided by the authors [30]

were used in our experiments and 66 facial landmarks are extracted from each image. The

facial landmarks detected from two examples in the LFW dataset are illustrated in Figure 2.

The facial landmark positions are represented by a set of 2D coordinates.

5.2 Handling Pose Variation

In addition to the illumination variations, pose variations is another problem which af-

fects the performance of the learning process when images collected/captured from different

sources. To alleviate this problem, we cluster the images based on the contour of the face.

Specifically, the 2D facial landmarks coordinates are converted into local coordinates using

the average position of all extracted landmarks as the origin. Then, all images are clustered
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Figure 2: 68 facial landmarks (red dots) are detected using the method proposed by Zhu and

Ramanan [30].

by the local coordinates of the landmarks located on the contour. In our experiment, we

found that using k-means clustering with k = 12 to cluster the faces can lead to reasonable

cluster sizes for the learning tasks while containing faces with similar poses within each

cluster. An example is shown in Figure 3 and the centroids clearly show the pose variations

in the dataset we used.

5.3 Facial Expression Representation

While human faces have the same structure, the distances between different regions (i.e.

eyes, nose and mouth) vary on different faces. Directly using the absolute 2D facial land-

mark positions extracted using [30] will produce sub-optimal results. To tackle this problem,

the absolute facial landmark coordinates are converted into the local coordinates within each
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Figure 3: An example of the facial landmark positions of the 12 centroids computed from

the clustering process.
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region. The origin of each region is defined by the average position of all the landmarks be-

longing to that region. Finally, we concatenate the local 2D coordinates from 4 regions

(two eyes, nose and mouth) into a single vector as the input in the attribute strength learn-

ing process. Each face is represented by 49 landmarks and the 98-d vector contains the

corresponding local coordinates.

5.4 Learning Attribute Strength on Facial Features

The same ranking function learning process explained in Section 4.3 is used for learning the

attribute strength from 2D images. To handle the pose variations, the ranking function is

learned in each of the 12 face image clusters. The ‘smile’ attribute values computed by the

attribute prediction method [29] are used to construct O and S (the sets that contain ordered

and similar paired samples, explained in Section 4.3) for the training process. In particular,

we define the happiness attribute strength as the higher the smile attribute value, the more

happy the subject is.

5.5 2D Image Editing by Attribute Strength

Having learned the ranking function as explained in Section 5.4, the emotion strength, which

is a scalar, of each training facial landmark feature can be computed. Again, we learn a

regression model on the emotion strength and the corresponding facial landmark features

from the training data as in the motion synthesis framework explained in Section 4.4.
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Specifically, the input of the learned regression model is the desired emotion strength

and the output will be a set of facial landmark positions. To edit the 2D image, we first

compute the difference between the facial landmark positions on the original input image

and the output of the regression model. Then, the differences of the landmark positions

will be used for warping the 2D image by Large Displacement Optical Flow (LDOF) [31].

Samples of edited images will be presented in Section 6.6.

6 Experimental Results

In this section, we present the results obtained using the proposed method. Firstly, we visu-

alize the motions projected to a low-dimensional space when training our motion synthesis

models in Section 6.2. Next, we evaluate the performance of the learned ranking functions

that contain the relationship between low-level motion features and emotion strength numer-

ically in Section 6.3. Thirdly, we present the computational cost for the training process in

Section 6.4. Then, new motions are synthesized using the learned motion synthesis models

in Section 6.5. We further demonstrate the generality of our proposed framework by editing

2D face images in Section 6.6.

6.1 Implementation Details

We used the Toolbox for Dimensionality Reduction library [32] to reduce the feature dimen-

sion from 198-d to 40-d. For the relative attribute ranking, we used the Matlab implemen-
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tation provided by the authors of [9]. The proposed framework was implemented in Matlab

R2015a [27] and all the experiments were conducted on a 64-bit machine with Intel Xeon

2.4GHz (E5-2620) and 64GB memory. The experiments ran on a single thread without any

performance boost.

6.2 Visualization of the Low-dimensional Space

In order to learn the ranking function efficiently and effectively, the motion features are

projected into latent space with a much lower dimensionality. In the experiments, each pose

(frame) is represented by a 40-d in the latent space (198-d in the original motion). The

dimensionality in the latent representation is selected empirically to balance the trade-off

between training time and reconstruction error rate. We use 10 as the hidden layer size

in the Neural-Network regression for training the motion synthesis model. We selected 10

empirically. We visually inspected the visual quality of the synthesized motions and the

ranking accuracy quantitatively. We found that the performance does not improve with

bigger hidden layer size and we selected 10 when implementing the framework. The latent

representation of the motions with different emotions are illustrated in Figure 4 and 5 (left

columns). Notice that only the first 3 principal components are displayed.

However, due to the style differences and variations between the subjects, the motions,

which are represented as curves, with different emotion labels are mixed together. This

shows that directly interpolating motions in the low dimensional space may result in signifi-
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cant change in the emotion strength as the motions (i.e. trajectories) with different emotions

(i.e. colors) are tangled.

To facilitate motion synthesis by controlling the emotion strength, our proposed frame-

work must be able to learn the important motions features that affect the emotion strength.

The relationship can be learned by training a ranking function as explained in Section 4.3.

The ranking function will be used for calculating the motion strength (a scalar value) of

each motion. Then, the motions are ranked by the motion strength as shown in Figure 4

and 5 (right columns). The results indicate that the learned ranking function can effectively

evaluate the emotion strength of each motion and is able to separate motions from different

emotion strength. This facilitates the motion synthesis process as the ranking function con-

tains the weights of each motion feature that reflects how much each feature contributes to

the change in the emotion strength.

6.3 Evaluating the Learned Ranking Function

In addition to visualizing the effectiveness of the learned ranking functions on evaluating the

emotion strength, we further evaluate the performance of the ranking function numerically.

Specifically, we split the collected motions into 2 sets with equal numbers of motions - one

set for training and the other set for testing such that the testing motions are ’unseen’ data

to the ranking function. Next, we use the labels of the training motions to setup the relative

constraints as explained in Section 4.3. We vary the percentage of training data to train
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(a) Throwing Motion (b) Knocking Motion (c) Lifting Motion

Figure 4: Visualizing the closeness of the training motions in (left column in each mo-

tion type) latent space (projected by PCA) and (right column) sequential order based on

the emotion strength computed using the learned happiness ranking function on different

motion types. Each keyframe is projected to the latent space using PCA and each of the

polygon line in the figure is representing a motion sequence. Motions are colored according

to the ground truth emotion labels: Happy (cyan), Neutral (red) and Sad (green).

(a) Knocking Motion (b) Lifting Motion (c) Throwing Motion

Figure 5: Visualizing the closeness of the training motions in (left column in each motion

type) latent space (projected by PCA) and (right column) sequential order based on the

emotion strength computed using the learned anger ranking function on different motion

types. Motions are colored according to the ground truth emotion labels: Angry (grey) and

Neutral (red).
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the ranking function by randomly selecting the samples without considering the emotion

strength. Then, the learned ranking function is used for computing the emotion strength of

the testing motions. Finally, we compare the computed relative emotions strength to the

labels of the testing motions and obtain the accuracy in ranking the testing motions. The

same process is conducted on 3 different types of features, namely PCA 80-d, PCA 40-

d and no PCA. The experiment is repeated 3 times and the average accuracy is reported.

The results are shown in Table 1 and 2. They indicate that high ranking accuracy can be

achieved in which the learned ranking function can be generalized to unseen data. This

highlights the robustness of the ranking function. Moreover, the results also show that using

PCA to reduce the dimensionality of the frame-based features does not have a significant

impact on the ranking accuracy while improving the efficiency of the training process. We

also vary the number of relative constraints used to train the ranking function as in [33] to

reflect the model generality and the results show that there are no significant differences in

the ranking accuracy. This further highlights the advantage of using our system as only a

relatively small amount is needed to train the ranking function.

6.4 Computational Cost for the Training Tasks

In this section, we present the computational costs for the model training tasks. Table 3

shows the computation time required for training the ranking function explained in Section

4.3. The results show a significant reduction in training time when compared with the full
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motion frame % of training pairs

type feature 10% 30% 50% 70% 90%

Knocking

PCA 40-d 71.3% 70.1% 69.5% 69.2% 68.7%

PCA 80-d 71.9% 71.2% 70.8% 70.5% 70.4%

no PCA 72.5% 72.0% 71.7% 71.5% 71.3%

Lifting

PCA 40-d 72.7% 73.1% 73.1% 73.1% 73.3%

PCA 80-d 72.1% 72.9% 73.1% 73.1% 72.9%

no PCA 72.3% 72.8% 72.8% 72.7% 72.8%

Throwing

PCA 40-d 75.2% 75.6% 76.0% 76.0% 76.1%

PCA 80-d 75.3% 75.6% 75.9% 75.9% 76.1%

no PCA 75.3% 75.7% 75.9% 75.9% 76.0%

Table 1: Ranking accuracy of the trained anger ranking function on unseen motion data.
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motion frame % of training pairs

type feature 10% 30% 50% 70% 90%

Knocking

PCA 40-d 78.3% 76.6% 75.9% 75.2% 75.0%

PCA 80-d 80.6% 79.3% 78.9% 78.5% 78.4%

no PCA 81.1% 80.1% 80.0% 79.6% 79.7%

Lifting

PCA 40-d 79.9% 79.1% 78.6% 78.1% 77.7%

PCA 80-d 80.9% 81.0% 81.0% 80.9% 80.8%

no PCA 81.4% 81.3% 81.3% 81.3% 81.1%

Throwing

PCA 40-d 76.5% 76.0% 75.3% 74.9% 74.7%

PCA 80-d 76.8% 76.7% 76.2% 76.0% 75.8%

no PCA 76.8% 76.8% 76.3% 76.0% 75.8%

Table 2: Ranking accuracy of the trained happiness ranking function on unseen motion

data.
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motion emotion computation time (s)

type model PCA 40-d PCA 80-d no PCA

Knocking

Anger 3.09 15.09 152.41

Happiness 5.13 15.27 106.17

Lifting

Anger 2.33 14.77 116.75

Happiness 5.43 17.40 64.48

Throwing

Anger 2.70 15.02 108.00

Happiness 5.05 17.91 70.08

Table 3: Computational cost (in seconds) for training the ranking function using different

motion features.

feature setup (i.e. no PCA). This further highlights the performance gain using the proposed

dimensionality reduction approach.

Table 4 shows the computation time required for training the non-linear regression func-

tion explained in Section 4.4. The training time varies from 10 to 15.5 minutes. Never-

theless, this training process is performed in the pre-processing stage and thus the training

time is acceptable. A perform gain is expected when a parallel implementation of non-linear

regression is used.
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motion emotion computation time (s)

type model PCA 40-d

Knocking

Anger 491.01

Happiness 601.83

Lifting

Anger 915.60

Happiness 631.12

Throwing

Anger 889.16

Happiness 647.27

Table 4: Computational cost (in seconds) for training the non-linear regression function

using different motion features.

6.5 Synthesizing Motions with Different Emotion Strength

In this section, we show a number of motions with different emotion strength synthesized

by our proposed framework. As explained in Section 4.4, a regression function is trained

using the emotion strength and features obtained from the training data. At run-time, new

motions can be created by specifying target emotion strength. We compared the synthesized

motions with the training data at different emotion strength. Screen shots of training data

and synthesized motions are shown in Figures 6, 7 and 8. The results show that our proposed

method can synthesize motions with emotions that are comparable to the training data. More

results can be found in the video demo accompanying with this paper.

We further visualize the trajectory of the left hand in all of the synthesized motions in
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(a) Example of Angry motion

(b) Synthesized Angry motion

(c) Example of Happy motion

(d) Synthesized Happy motion

Figure 6: Knocking motions with (a) Angry and (c) Happy emotion expressions in the train-

ing data and the corresponding synthesized motions (b) and (d) created by our proposed

method.
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(a) Example of Happy motion

(b) Synthesized Happy motion

(c) Example of Angry motion

(d) Synthesized Angry motion

Figure 7: Throwing motions with (a) Angry and (c) Happy emotion expressions in the train-

ing data and the corresponding synthesized motions (b) and (d) created by our proposed

method.
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(a) Example of Angry motion

(b) Synthesized Angry motion

(c) Example of Happy motion

(d) Synthesized Happy motion

Figure 8: Lifting motions with (a) Angry and (c) Happy emotion expressions in the training

data and the corresponding synthesized motions (b) and (d) created by our proposed method.
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Figures 9-11 by showing a sphere on the 3D positions of the hand at every frame. The

spheres are coloured according to the speed in that frame (red refers to a higher speed while

blue refers to a lower speed). The spheres are the hand joint positions sampled evenly on

the time domain, and the difference in the speed between different synthesized motions over

time can further be highlighted by the sparsity of the spheres on the hand trajectory (the

more sparse the spheres are, the faster the motion is).

Figure 9 illustrates the hand trajectories of throwing motions synthesized by adjusting

the emotion strength. In Figure 9 (a), the hand trajectory becomes sparser and more spheres

are colours in red when increasing the anger level (from left to right). It implies the hand

is moving faster when the anger level increases. Also, the strongest anger level shows the

motion exaggerated more. These observations align with our observations in real-life. The

relationship between the speed of the hand and emotion strength also applies to happiness

as shown in Figure 9 (b). However, we can see the difference in the hand trajectories in the

motions synthesized by anger and happiness. All motions synthesized by adjusting the hap-

piness level are having similar hand trajectories. This result highlights the effectiveness in

synthesizing a wide variety of motion by adjusting the emotion strength using our proposed

method.

Figure 10 illustrates the hand trajectories of lifting motions synthesized by adjusting

the emotion strength. In general, the lifting motions synthesized by adjusting the happiness

level (Figure 10 (a)) are having a slower hand movement (i.e. denser sphere trajectories) than

those synthesized by adjusting the anger level (Figure 10 (b)). The synthesized motions also
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showed a consistent trend in increasing the speed of the motion when the emotion strength

increases.

Figure 11 illustrates the hand trajectories of knocking motions synthesized by adjusting

the emotion strength. In general, the knocking motions synthesized by adjusting the happi-

ness level (Figure 11 (a)) are having a more similar hand trajectory than those synthesized

by adjusting the anger level (Figure 11 (b)). The knocking motions synthesized by adjusting

the anger level showed an interesting pattern in which the character is a bit hesitant in the

motions with lower anger level. The difference in the hand trajectories again highlights the

effectiveness of our proposed method.

6.6 Editing 2D Images using Attribute Strength

In this section, we present the results on editing 2D face images using the proposed frame-

work. We used the Labeled Faces in the Wild (LFW) [28] dataset in our experiment. The

dataset contains 13233 images captured from 5749 subjects. We divided the dataset into

two halves as training and testing sets by randomly assigning images to the image sets. The

attributes of each image are calculated using the method proposed by Kumar et al. [29] and

train the ranking function and regression model using the methods explained in Section 5.

At run-time, given an input image and the desired change in attribute strength value,

the facial landmarks are extracted using [30]. Next, the facial landmarks are converted

into local coordinates by using the average positions of the facial landmarks and the local
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(a) Synthesizing throwing motion by anger

(b) Synthesizing it throwing motion by happiness

Figure 9: Synthesizing throwing motion by increasing emotion strength (from left to right)

in (a) anger and (b) happiness. The new generated motions are best viewed and understood

from the supplement videos.
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(a) Synthesizing lifting motion by anger

(b) Synthesizing it lifting motion by happiness

Figure 10: Synthesizing lifting motion by increasing emotion strength (from left to right) in

(a) anger and (b) happiness.
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(a) Synthesizing knocking motion by anger

(b) Synthesizing it knocking motion by happiness

Figure 11: Synthesizing knocking motion by increasing emotion strength (from left to right)

in (a) anger and (b) happiness.
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coordinates are compared to those 12 centroids computed in Section 5.2. The model trained

with the cluster which is closest to the input face image will be selected to alleviate the pose

variations problem. Since the models are learned offline, the face image can be edited at

interactive rate at run-time.

Examples of the edited images are shown in Figure 12 and 13. The results show that

our proposed framework is general and able to edit images by simply specifying the desired

change in attribute strength.

7 Conclusion and Discussions

In summary, this paper presents a new data-driven approach to learn the underlying rela-

tionship between low-level features and high-level emotion expressions at different level of

strength. Our method takes the advantages of using relative attribute [9] to learn a ranking

function that evaluates the attributes strength from low-level motion features. Since only

weak relative constraints are used in the training process, the training data is not necessarily

labeled with ground truth attribute strength as in the data set we used. Our method further

makes use of the computed attribute strength for motion and facial expression synthesis.

Once the model is learned in the pre-processing stage, synthesis can be done by specifying

the target attribute strength at run-time. Our method can be applied to a wide variety of ap-

plications such as animation and movie production, as well as interactive applications such

as computer games and virtual reality applications.
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Figure 12: Examples of the edited 2D face images. Left column: less happy (edited). Middle

column: input (original). Right column: happier (edited).
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Figure 13: Examples of the edited 2D face images. Left column: less happy (edited). Middle

column: input (original). Right column: happier (edited).
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As the first attempt and a preliminary study on analyzing and utilizing learned attribute

strength for motion and facial expression synthesis, we only focused on learning a single

attribute from the data. However, as shown in previous studies in recognition tasks [33],

taking into account the correlations between multiple attributes can improve the attribute

learning performance. In our application, such an approach could enable the synthesis with

multiple types of emotion expression, which is an interesting future research direction. An-

other future direction is conducting a user study to evaluate the emotion strength level of the

synthesized results for validating the ranking function learned by our method. We are also

planning to explore other possible low-level motion and facial features to be included in the

learning process.
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