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Abstract Variation in tropospheric delay is a major limiting factor on the accuracy of interferometric
synthetic aperture radar (InSAR) measurements. This is particularly the case when deformation and
topography are correlated. To address limitations of previous InSAR tropospheric correction methods,
here we present a new approach that combines the use of both external weather model data and the
interferometric phase. We assume that vertical refractivity profiles calculated from a high-resolution
weather model data can generally describe the form of the relationship between tropospheric delay and
height but that the magnitude can be incorrect. We estimate a magnitude correction by scaling the original
delays to best match the interferometric phase. We validated our new method using simulated data and
demonstrate that both coseismic and interseismic signals can be separated from strong tropospheric delays.
We also applied our algorithm to the central portion of the Altyn Tagh Fault in northern Tibet, where
deformation correlates strongly with topographic relief of 6,000 m, and show that the derived velocity field
is more internally consistent and agrees better with independent Global Positioning System measurements.

1. Introduction
As a geodetic tool, Interferometric Synthetic Aperture Radar (InSAR) is used to measure ground deformation
such as interseismic slip (e.g., Daout et al., 2018; Fialko, 2006; Hussain et al., 2016; Jolivet et al., 2008; Walters
et al., 2013; Wei et al., 2010), earthquake deformation (e.g., Ainscoe et al., 2017; Delouis et al., 2010; Hamling
et al., 2017; Lindsey et al., 2015), volcanic dike intrusions (e.g., Sigmundsson et al., 2015), landslides (e.g.,
Singleton et al., 2014; Yin et al., 2010), and urban subsidence (e.g., Chaussard et al., 2014; Perissin & Wang,
2011). The recently launched Sentinel-1 constellation can achieve high spatial resolution and short revisit
times with a wide spatial coverage, which has improved the coherence of interferograms and so increased
the potential of precise and large-scale InSAR studies of tectonic processes (Elliott et al., 2016). However,
variation in the phase delay, caused by the spatiotemporal variability of tropospheric properties, is still a
major limiting factor in Sentinel-1 InSAR measurements (Parker et al., 2015), particularly when deriving
long wavelength deformation signals that are partially correlated with topography.

Tropospheric delays depend on temperature, pressure, and relative humidity and can be split into hydrostatic
and wet components. In flat regions, hydrostatic delays are usually smooth in space as they are predomi-
nately pressure dependent. However, in areas of significant relief, spatial variations in hydrostatic delays are
strong and can lead to a correlation between phase and topography (Elliott et al., 2008). Therefore, while
it has been possible to measure relatively small interseismic signals in flat regions of the Tibetan Plateau
(Bell et al., 2011; Taylor & Peltzer, 2006), it has previously been hard to measure such deformation with high
accuracy at the steep margins of the Plateau. In contrast to hydrostatic signals, the magnitude of wet delays,
which are caused by the lateral variation in water vapor, is several times smaller (Hanssen, 2001), whereas
the spatial pattern is much more variable (Zebker et al., 1997). Both the hydrostatic and wet delays should
be accounted for to fully describe the tropospheric delays (Doin et al., 2009; Elliott et al., 2008; Puysségur
et al., 2007). Tropospheric effects can cause variations of up to 15–20 cm in magnitude over a distance on
the order of 100 km, which would overwhelm most slowly accumulating deformation or time-dependent
signals (Bekaert, Walters, et al., 2015; Fournier et al., 2011; Heleno et al., 2010; Hooper et al., 2012).

To reduce the tropospheric effects, various approaches have been tried, using either external data or the
interferometric phase itself. External data sets that have been utilized include local meteorological data (e.g.,
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Figure 1. Relative tropospheric delays estimated from the high resolution
European Centre for Medium-Range Weather Forecasts products for 53
small baseline interferograms (Figure S1) over northern Tibet. Each curve
shows the relative tropospheric delays for a point in (a) the Tarim Basin
(85.6◦E, 38.3◦N) or (b) the Tibetan Plateau (86.1◦E, 36.8◦N) from the
surface (note difference in surface elevation of 1.1 vs. 5.1 km).

Delacourt et al., 1998; Pinel et al., 2011), continuous Global Position-
ing System (GPS) zenith delay measurements (e.g., Li et al., 2006;
Onn & Zebker, 2006; Yu et al., 2017), spectrometer measurements (e.g., Li
et al., 2009), numerical metrological products such as the local weather
research (e.g., Puysségur et al., 2007) and forecasting model (e.g., Yun
et al., 2015), and global atmospheric reanalysis products (e.g., Doin et al.,
2009; Jolivet et al., 2014; Walters et al., 2013). However, local mete-
orological data, spectrometer, and continuous GPS stations are rarely
available for the time of each SAR acquisition: continuous GPS stations
are often absent and are generally distributed with a coarse spatial density
when considered globally; spectrometer observations from the Medium
Resolution Imaging Spectrometer or the Moderate Resolution Imaging
Spectroradiometer are not available at night, or over areas with cloud
cover, and in the case of Medium Resolution Imaging Spectrometer were
only available between 2002 and 2012. More importantly, spectrometer
data can only be used to estimate the wet delay. As for regional numer-
ical weather prediction models, although they have high temporal and
spatial resolutions and can account for both the hydrostatic and wet
delay, it has not been possible to obtain consistently robust results in a
wide range of settings (Bekaert, Walters, et al., 2015; Cimini et al., 2012;
Foster et al., 2013). In contrast, global weather models have the bene-
fits of complete spatial coverage and data availability (Dee et al., 2011)
and can also account for both the hydrostatic and wet delay. The latest
high resolution European Centre for Medium-Range Weather Forecasts
(HRES-ECMWF) analysis products have a much higher spatial resolution
(16 km) when compared with previous global weather models (e.g., the
spatial resolution of ERA Interim re-analysis products is 80 km), which
could be beneficial for describing smaller-scale variation in tropospheric

delays. However, they are models that are still limited by the assimilation of observations to constrain their
boundary conditions (Dee et al., 2016). In regions with sparse input data such as Western China, Africa,
Western South America, and the polar regions, it is unclear of the performance of the models at their high-
est resolution. In addition, global weather models including the HRES-ECWMF suffer from timing issues
as they are not sampled simultaneously with SAR acquisitions. This lack of synchronization is likely a con-
tributing factor to the lack of consistently robust results from global weather models (Gong et al., 2015) also
due to the relatively rapidly changing state of the troposphere.

There are two approaches to using the interferometric phase itself. Linear approaches assume a single
relationship between phase and topography over the whole interferogram (e.g., Elliott et al., 2008; Lin
et al., 2010; Wicks et al., 2002). The second assumes a power law correction relationship between phase
and height (Bekaert, Hooper, et al., 2015; Hanssen, 2001), which allows for a spatial variability in tropo-
spheric properties and estimation of long wavelength tropospheric signals as well as the topographically
correlated component. This is particularly important for larger interferograms, where the assumption of
consistent atmospheric properties across the whole image breaks down. However, measurements derived
from balloon-sounding data (Bekaert, Hooper, et al., 2015) and weather model data (Figure 1) show that
the actual observed and predicted patterns of differential tropospheric delays with height are more variable
than a simple power law can sufficiently describe.

In this study, we describe a new approach, which combines the use of both external weather model data
and the interferometric phase to address the limitations of using either approach individually. Rather than
assuming a power law relationship, we use the HRES-ECMWF data to define the form of the relationship
between tropospheric delay and height and then scale the magnitude of the delay to best match the inter-
ferometric phase. This can also be viewed as using the interferometric phase to refine the interpolation of
the weather model in time and space. As the scaling factor will differ for the two tropospheric delays that
contribute to an interferogram, we perform the scaling at each single epoch rather than for the interfero-
metric tropospheric delay. We validate our scaling technique using simulations and Sentinel-1 C-band SAR
data acquired over the central portion of the Altyn Tagh Fault in northern Tibet.
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Figure 2. (a) An interpretive cartoon showing how the scaling operates. The blue curve represents the mean tropospheric delay for any given height. The
magenta curve is the estimated tropospheric delay for a single acquisition time, and the yellow curve shows the same delay after scaling. Note that it is only the
difference between the magenta and blue curves that is scaled. (b) The comparison between the weather model phase delay anomalies and the InSAR phase
delay anomalies for the red patch in Figure 3a before and after scaling using the scaling factor estimated for the whole patch. (c) The RMSE variation between
the scaled weather model phase delay anomalies (cyan curve) and the tropospheric phase delay anomalies estimated from two continuous GPS stations in
Figure 4 when varying the standard deviation width of the Gaussian filter used for the scaling factor smoothing. The blue star indicates the optimal value of the
standard deviation, which is 71 km and the corresponding RMSE is 1.45 cm. The magenta line represents the RMSE between the nonscaled weather model
phase delay anomalies and the GPS anomalies, which is 1.53 cm. (d) The comparison between the weather model phase delay anomalies and the InSAR phase
delay anomalies for the red patch in Figure 3a before and after scaling using the smoothed scaling factor. (e) The comparison between the InSAR phase delay
anomalies and the weather model phase delay anomalies over the whole image. (f) The weather model delays in the LOS direction over the whole image before
and after scaling. InSAR = interferometric synthetic aperture radar; LOS = line of sight; RMSE= root mean square error.

2. Spatially Varying Scaling Method
The phase delay through the troposphere depends on the refractivity, N, which can be divided into hydro-
static and wet components. At a specific height, h, the tropospheric phase delay 𝜙tropo corresponds to the
integration of the refractivity between h and the top of the troposphere hT in the radar line-of-sight (LOS)
direction (Hanssen, 2001) as

N = Nhydr + Nwet = (k1
P
T
)hydr + (k′

2
e
T

+ k3
e

T2 )wet (1)

𝜙tropo = −4𝜋
𝜆

10−6

cos 𝜃 ∫
hT

h
Ndh (2)

where P is total tropospheric pressure, T the temperature, e the partial pressure of water vapor, 𝜃 the radar
incidence angle, 𝜆 the radar wavelength, an k1, k′

2, and k3 the constants that are empirically taken as 77.6,
23.3, and 3.75 · 105 K/hpa (Smith & Weintraub, 1953), respectively. Thus, given a weather model, such as
HRES-ECMWF, we can derive a model LOS tropospheric delay for a given time. We use the approach of
the triangle-based linear interpolation in space and linear interpolation in time to interpolate the weather
model to every pixel of the master image and every acquisition time.

As the interferometric phase represents the difference in signal delay, it is only sensitive to the variability
of the tropospheric delay with time and not the overall magnitude of the tropospheric delay. It is therefore
the difference from the mean tropospheric delay that we aim to scale, where the mean delay is the average
tropospheric delay in time for any given height (Figure 2a). For all epochs, we derive this difference from
the mean phase delay, which we term the phase delay “anomaly,” using a minimum norm inversion, noting
that there can be contributions other than the tropospheric delay in the resulting single epoch phase:

𝛿𝜙InSAR = GT(GGT)−1𝜙InSAR (3)
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where 𝜙InSAR is the vector of interferometric phase delays for a single pixel, 𝛿𝜙InSAR the vector of estimated
phase delay anomalies for every epoch, and G is the design matrix relating the relevant observation epochs
for each interferogram. Note that throughout this manuscript, we use the term “phase delay anomaly” to
refer to the portion of the interferometric phase allocated to a single epoch, whereas “phase delay” alone
indicates the phase delay between two epochs. We incorporate only small baseline interferograms so as to
minimize any decorrelation noise and contributions from deformation. The regularization of the minimum
norm inversion of the interferograms will introduce smearing of the phase between epochs, due to imperfect
resolution. To give the same smearing, we derive the single epoch anomalies from the weather model in
the same way, by first calculating estimates of the phase delay for each interferogram from the single epoch
delays and then inverting these using the minimum norm approach as

𝛿�̂�tropo = GT(GGT)−1�̂�tropo (4)

where �̂�tropo is the vector of tropospheric phase delays for a single pixel in each interferogram, derived from
the weather model, and 𝛿�̂�tropo is the vector of estimated phase delay anomalies for every epoch.

We assume that

𝛿𝜙tropo(x, 𝑦, h) ≈ K(x, 𝑦)𝛿�̂�tropo(x, 𝑦, h) (5)

where 𝛿𝜙tropo(x, y, h) is the actual tropospheric phase delay anomaly and K(x, y) is a spatially varying scaling
factor that is spatially smooth. We estimate values for K(x, y) empirically using the single epoch phase delay
anomalies derived from the interferograms, on the assumption that other interferometric components such
as tectonic deformation, Digital Elevation Model (DEM) errors, and other sources of noise are not correlated
with the scaled weather model phase anomalies.

2.1. Estimation of Scaling Factors
For each epoch, we divide the image into smaller windows and estimate the scaling factor, K, for each win-
dow. Because these single epoch phase maps (𝛿𝜙InSAR) are relative to a local spatial reference, we cannot
substitute them directly for 𝛿𝜙tropo(x, y, h) in equation (5) but must include the unknown phase of the ref-
erence point. We estimate this reference independently for each patch, which has the effect of ignoring
correlations between the InSAR and weather model anomalies at long spatial wavelengths. While using the
correlation at long wavelengths could potentially improve the accuracy of the scaling, the long wavelength
signals are often contaminated by nontropospheric errors from the ionosphere and orbital inaccuracy, which
can bias the estimation.

For each patch we have

𝛿𝜙n
InSAR = Kn𝛿�̂�

n
tropo + Cn (n ∈ N) (6)

where Kn and Cn are the scaling factor and the constant shift for the patch n that we estimate using least
squares. To ensure a sufficient number of scatterers for the inversion, we set the square window size as 50 km
(Figure 3a). However, as we smooth the scaling factor spatially in the next step, the final result is not strongly
dependent on the choice of window size. Figure 3c shows the estimated scaling factors for a representative
single epoch.

2.2. Scaling Factor Smoothing
The accuracy of the estimated scaling factor depends on the signal-to-noise ratio of the weather model
anomalies. Therefore, we define a variance ratio to weight each patch as

W n
var =

𝜎2
tropo(n)

𝜎2
res(n)

(n ∈ N) (7)

where 𝜎2
tropo(n) is the variance of the weather model delay anomalies in the patch n, representing the signal,

and 𝜎2
res(n) is the variance of the differences between the weather model delay anomalies and the InSAR

phase delay anomalies in the patch n, representing the noise. For 𝜎2
res(n), we also tried using the variance of

the difference after scaling of the weather model, but this led to an increase in the mean velocity standard
deviation from 2.6 to 3.4 mm/year.
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Figure 3. Example results of the scaling method applied to our testing area across the Altyn Tagh Fault. (a, b) The InSAR phase delay anomalies and weather
model tropospheric phase delay anomalies, respectively, estimated using the minimum norm approach for a typical epoch, that of 17 May 2016. The black
arrows indicate the fault orientation. The overlapped grid in (a) is rotated to the heading direction of the satellite, and each patch is completely within the SAR
area so as to make sure the number of points in each patch is similar. (c) The scaling factors of all patches. (d) The spatial pattern of the spatially varying
smoothed scaling factors. (e) The scaled tropospheric phase delay anomalies.

As the scaling is expected to vary spatially, we also estimate a distance weight for each pixel using a Gaussian
filter as

W n
dis(x, 𝑦) =

1
2𝜋𝜎2

d

exp
− (x−Xn)2+(𝑦−Yn )2

2𝜎2
d (n ∈ N) (8)

where (Xn,Yn) is the central coordinate of the window n and 𝜎d is the standard deviation width of the
Gaussian filter. We then determine a scaling factor for each pixel as

K(x, 𝑦) =
N∑

n=1
{Kn · W n

var · W n
dis(x, 𝑦)} (n ∈ N) (9)

Since the spatial pattern of the smoothed scaling factors is strongly dependent upon the Gaussian smooth-
ing width 𝜎d, we optimize it using the tropospheric delays estimated from two continuous GPS stations
(Figure 4). The total zenith tropospheric delay (ZTD) was processed with the GAMIT software (Liang et al.,
2013), which parametrizes the ZTD for each station as a stochastic variation from the Saastamoinen model,
with a piecewise linear function over the span of the observations (Herring et al., 2015). Taking the 2-hourly
estimates of the ZTD, we estimate the delay at each SAR acquisition time using spline interpolation and
transform into LOS delay. We then difference the single epoch values to give the delay for each interferogram
time span and invert using the minimum norm approach to give anomaly values for each epoch (Table S1 in
the supporting information). We scale the tropospheric delay anomalies estimated from the HRES-ECMWF
data using different values for 𝜎d and compare these to the delay anomalies derived from the GPS data. Note
that in the comparison, we select a continuous GPS station as the reference point and so the comparison is
based on the relative tropospheric delay. The optimal 𝜎d is chosen as the value with a minimum root mean
square error (RMSE) (Figure 2c). For regions without any continuous GPS stations, it will not be possible
to estimate the optimal Gaussian smoothing width. However, the RMSE between the weather model and
the GPS measurements varies little when the smoothing width changes over a broad range between 50 and
100 km, so using a default value of 71 km is likely to be fine in most cases. Figures 2b and 2d show the scaled
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Figure 4. Map of the scaling method study region over the Altyn Tagh Fault zone, Tibet. The blue rectangle represents
the extent of SAR data coverage. Gray dots indicate the high resolution European Centre for Medium-Range Weather
Forecasts points used for tropospheric delay corrections of which the spatial resolution is 16 km. Green stars show the
location of the only two available continuous GPS stations within the SAR image area (Liang et al., 2013). Yellow
arrows indicate velocities of available campaign GPS stations near the fault within the InSAR area (He, Lu, et al., 2013;
Liang et al., 2013). All of the GPS velocities are within the Eurasia reference frame, with uncertainties plotted at 95%
confidence level. The red parallelogram indicates the outline of deforming region that we mask out before estimating
phase ramps. The background shows the elevation of the study region derived from the Shuttle Radar Topography
Mission 3-arc seconds data (Farr et al., 2007), which is also applied to the subsequent figures.

results for the red patch in Figure 3a before and after smoothing of the scaling factor. Although the scal-
ing factors estimated for a single patch can have large errors with absolute values much greater than one
(Figure 3c), these patches are downweighted in the smoothing process, leading to smoothed factors close to
1 (Figure 3d).

Using the smoothed spatially varying scaling factors, we scale the tropospheric phase delay anomalies
estimated from the HRES-ECMWF for each epoch (Figure 3e) and calculate the scaled interferometric trop-
spheric delays from these. The scaled tropospheric phase delay anomalies are more consistent with the
InSAR phase delay anomalies (Figure 2e), as is to be expected. As the scaling is implemented on the tro-
pospheric phase delay anomalies, the absolute change to the total weather model delay resulting from the
scaling is small (Figure 2f). In the next section, we test how robust the approach is in the presence of tectonic
deformation.

3. Simulated Test Cases
To test the ability of the method to separate deformation from tropospheric signals, we simulated a sub-
vertical, strike-slip (Mw 6.7) earthquake (details in Table 1) on the northern strand of the Altyn Tagh Fault
in Northern Tibet (Figure 4), a region that is strongly contaminated by the variation in tropospheric delay
across the step in relief. We chose a subvertical, strike-slip earthquake because the Altyn Tagh Fault is of this

SHEN ET AL. 4056



Journal of Geophysical Research: Solid Earth 10.1029/2018JB016189

Table 1
Parameters of the Simulated Earthquake Used

Parameter Value
Fault center 87.3◦E, 38.3◦N
Magnitude (Mw) 6.7
Strike 66◦

Top depth 2 km
Dip 60◦

Bottom depth 15 km
Rake 0◦

Slip 1 m
Length 25 km
LOS vector unit (E, N, U) [0.6557, −0.1147, 0.7447]

Note. LOS = line of sight.

type. We determined the depth of rupture based on the previous measure-
ments for the locking depth of the fault (Elliott et al., 2008; He, Lu, et al.,
2013). We set the earthquake magnitude to be sufficiently large that the
spatial coverage of the simulated signal would be larger than the applied
Gaussian smoothing size. We added an example of real noise to the simu-
lated deformation, including tropospheric signal, as described in the following
paragraph.

We processed 19 SAR images acquired by Sentinel-1 on descending track 19
between October 2014 and September 2016 and generated 53 small baseline
interferograms using the Looking inside the Continents from Space SAR soft-
ware package (Figure S1; Wright et al., 2016). We used the Stanford Method
for Persistent Scatterers software package (Hooper, 2008) to remove the inco-
herent pixels and unwrap the phase of stable scatterers in the small baseline
interferograms with a 3-D unwrapping method (Hooper, 2010). After phase
unwrapping, we checked the phase closure and corrected unwrapping errors
manually. Significant interferometric processing parameters are summarized
in Table 2. Based on the 53 unwrapped small baseline interferograms, we
solved for InSAR phase delay anomalies for each epoch using the minimum

norm approach (Figure S2). We added the simulated earthquake signal (Figure 5a) to the InSAR phase delay
anomaly for the 14 September 2016 and then generated a 24-day interferogram with the InSAR phase delay
anomaly at the epoch 21 August 2016 (Figure 5b). We selected this interferometric pair because it is strongly
influenced by tropospheric delays and the short interval of the interferometric plane limits contamination
from any real interseismic tectonic deformation.

We processed the HRES-ECMWF pressure level data using the Toolbox for Reducing Atmospheric InSAR
Noise (TRAIN version 1; Bekaert, Walters, et al., 2015). HRES-ECMWF has a spatial resolution of 16 km, at
6-hr intervals, and provides parameters of temperature, pressure, relative humidity, and geopotential on 25
pressure levels. Within the TRAIN software, the HRES-ECMWF integrated refractivity is linearly interpo-
lated to match the SAR acquisition time. Figure S3 shows the estimated tropospheric phase delay anomalies
for the two selected epochs. We then used the InSAR phase delay anomalies associated with the simulated
interferogram to scale the weather model anomalies using a 50-km by 50-km grid. The simulated earthquake
signal above 2 mm covers 27 of 50 square patches in total (Figure 5a) and so the spatial coverage is much
larger than the applied Gaussian smoothing size, which is 71 km. Finally, as the real interferometric phase
that we added will also include long wavelength errors due to ionospheric signal and orbital inaccuracy, we
estimate a phase ramp from the nondeforming region shown in Figure 4 and subtract it.

Figure 5c shows the results after correction using the original HRES-ECMWF. Much of the noise has been
reduced when compared to Figure 5b. However, when using the scaled tropospheric delays, shown in
Figure 5d, the noise is reduced still further, with the RMSE between the corrected signal and the deforma-
tion signal alone dropping from 1.9 to 0.8 rad. Importantly, the scaling estimation process does not result in
an obvious reduction of the deformation signal.

As the magnitude and spatial extent of interseismic slip is very different to coseismic motion, we also simu-
lated 10-mm left-lateral strike-slip motion from 15 km downward along the central branch of the Altyn Tagh

Table 2
InSAR Processing Parameters

InSAR processing Small baseline analysis
Parameter Value Parameter Value
Wavelength 0.0555 m Number of patches 27
SRTM DEM 90 m Unwrap grid size 1,200 m
Multilook factor 20 × 4 Merge resample size 1,000 m

Merge 𝜎 1 rad

Note. InSAR = interferometric synthetic aperture radar; SRTM = shuttle
radar topography mission; DEM = digital elevation model.
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Figure 5. Tropospheric correction results for a 24-day interferogram to which deformation from a simulated
earthquake has been added: (a) the simulated earthquake signal and the grid of windows used for calculating the
scaling factor, K, (b) the uncorrected interferogram, (c) the interferogram corrected using the original high resolution
European Centre for Medium-Range Weather Forecasts and with an estimated phase ramp subtracted, and (d) the
interferogram corrected with the scaled tropospheric delays from high resolution European Centre for Medium-Range
Weather Forecasts and with an estimated phase ramp subtracted. For each panel, positive values indicate motion away
from the satellite. The red lines in the panels below indicate the interferometric phase along the black dashed profile.
The blue lines represent the simulated earthquake signals. The fault center (yellow star) is at the 0-km profile distance.
The black star indicates the InSAR reference point. InSAR = interferometric synthetic aperture radar; LOS = line of
sight.
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Figure 6. Tropospheric correction results for a 24-day interferogram to which deformation from a simulated
interseismic signal has been added: (a) the simulated interseismic deformation signal, (b) the uncorrected
interferogram, (c) the interferogram corrected with the original high resolution European Centre for Medium-Range
Weather Forecasts and with an estimated phase ramp subtracted, and (d) the interferogram corrected with the scaled
tropospheric delays and with an estimated phase ramp subtracted. For each panel, positive values indicate motion away
from the satellite. The red lines in the panels below indicate the interferometric phase along the black dashed profile.
The blue line represents the simulated interseismic signals. The fault dislocation is at 0-km distance. The black star
indicates the interferometric synthetic aperture radar reference point. InSAR = interferometric synthetic aperture
radar; LOS = line of sight.

SHEN ET AL. 4059
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Figure 7. (a–c) InSAR phase delay anomalies for three selected epochs, estimated from a small baseline interferogram
network using a minimum norm constraint. (d–f) Tropospheric phase delay anomalies for the same epochs estimated
from high resolution European Centre for Medium-Range Weather Forecasts using the minimum norm solution. (g–i)
The smoothed scaling factor applied to the high resolution European Centre for Medium-Range Weather Forecasts
correction, for the same epochs. (j–l) The scaled tropospheric phase delay anomalies for the same epochs. The phase
value in each epoch is referenced to the interferometric synthetic aperture radar phase delay anomaly of the
corresponding epoch for the comparison. LOS = line of sight.

SHEN ET AL. 4060
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Figure 8. Histograms of the interferometric synthetic aperture radar phase delay anomalies versus topography for the same three epochs shown in Figure 7
before (a–c) and after (d–f) tropospheric corrections with the scaled weather model anomalies. The black lines are the best fitting linear function, shown for
reference.

Fault and added it to the same 24-day interferogram (Figure 6). This simulation approximates a 1-year inter-
ferogram with a slip rate of 10 mm/year. Although the corrected results are not as clean as in the seismic case,
due to the lower magnitude of the signal, the isolation of deformation shows a marked improvement over
the unscaled case with the RMSE between the corrected signal and the deformation signal alone dropping
from 1.8 to 0.6 rad.

4. Case Study
To test our algorithm on real data, we applied the scaling method to interferograms over the central portion
of the Altyn Tagh Fault (Figure 4). The Altyn Tagh Fault is one of the major tectonic structures in northern
Tibet, and accurate determination of its slip rate has significant implications for the interpretation of tectonic
processes across the Tibetan Plateau region (Searle et al., 2011; Tapponnier et al., 2001). However, as the
fault is located at the border between the low Tarim Basin and the high Tibetan Plateau, the interseismic
deformation signals are strongly masked by the tropospheric delays resulting from the 6,000-m topographic
relief across it.

From the 19 SAR images that we processed (Figure S2), we selected three epochs that are strongly influenced
by the tropospheric delays as examples to show (Figure 7), which are 31 October 2014, 23 May 2015, and
16 June 2015. The InSAR phase delay anomalies are highly correlated with the topography (Figures 8a–8c
and S4), which implies the existence of strong tropospheric delays. We estimated the smoothed spatially
varying scaling factor for every epoch (Figures 7g–7i and S5) and then scaled the original weather model
anomalies (Figures 7j–7l and S6). After removing the scaled tropospheric delay anomalies from the InSAR
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Figure 9. Comparisons of the original and scaled weather model phase delay anomalies to the InSAR phase delay anomalies, for each epoch.
InSAR = interferometric synthetic aperture radar.

phase delay anomalies in each epoch, the phase no longer has strong correlations with the topography
(Figures S7 and 8d–8f). Although we deliberately omit the long wavelength component during the estima-
tion of the scaling factors, this does not prevent the application of the scaling from resulting in a gradient
in the tropospheric anomalies. Therefore, the long wavelength differences between InSAR phase delay

Figure 10. RMSE comparisons of deramped single master interferograms
before and after tropospheric corrections. The RMSE of all interferograms
reduces after correction with the scaled high resolution European Centre
for Medium-Range Weather Forecasts, even for the two interferograms for
which the RMSE increases after correction with the original
HRES-ECMWF. The master date of the interferograms is 17
November 2015. RMSE = root mean square error.

anomalies and the scaled tropospheric phase delay anomalies suggest
that nontropospheric long wavelength signal exists in the InSAR data.

In order to investigate whether the scaled weather anomalies are simply
mimicking the InSAR phase delay anomalies, we calculated the cor-
relation coefficient between the InSAR phase delay anomaly and the
scaled weather model anomaly for each epoch and compared them to the
correlation coefficient between the weather model anomaly and scaled
weather model anomaly. The results (Figure S8) show that the scaled
weather model data are more correlated with the original weather model
products than the InSAR phase delay anomalies, for 18 of the 19 epochs.
Figure 9 also indicates that the general characteristics of the weather
model have been kept after the scaling.

We then generated 18 single master interferograms and subtracted
the estimated tropospheric delays from each interferogram. For each
tropospheric-corrected interferogram, we also subtracted a ramp esti-
mated from the nondeforming region (Figure 4). The RMSE of the inter-
ferograms corrected using the scaled tropospheric delays drops 38% on
average compared with the interferograms corrected using the original
estimates derived from the HRES-ECMWF, with RMSE drops of 60% on
average compared with the uncorrected interferograms (Figure 10).
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Figure 11. LOS annual velocity maps derived from the single master interferograms corrected with (a) the original and
(b) the scaled tropospheric delays and their respective standard deviations (c and d) estimated by the percentile
bootstrapping technique (e.g., Efron & Tibshirani, 1994). Incoherent scatterers in the northern sandy area were masked
out. Positive values indicate motion toward the satellite and negative values indicate motion away from the satellite
relative to the reference region (black star). Black lines A-A′ and B-B′ represent profiles which are perpendicular to the
strike of the Altyn Tagh Fault with the center of 85.9◦E, 37.5◦N, 87.4◦E, and 37.9◦N, respectively, and a 120-km
extension of each side of the fault. The black dash line indicates the extent of the velocity projection (swath wides
30 km). Black line C-C′ represents profile which is perpendicular to the Manyi south branch. Yellow arrows show
velocities of available campaign GPS stations near the fault within the InSAR area (He, Lu, et al., 2013; Liang et al.,
2013), which are in a Eurasia reference frame with uncertainties plotted at 95% confidence level. LOS = line of sight.

Based on the 18 tropospheric corrected and deramped single master interferograms, we calculated LOS
velocities using the best linear unbiased solution (BLUE) (e.g., Puntanen et al., 2000). We calculated phase
variances for each epoch from the variances of the tropospheric corrected and deramped interferograms
with temporal baseline of less than 48 days, by least squares inversion. We then used these variances as the
elements on the principal diagonal of the variance-covariance matrix in the BLUE inversion. Off-diagonal
elements were set to zero since the noise of each epoch is considered to be independent. The velocity map
derived from the interferograms after correction using the scaled tropospheric delays (Figure 11b) is clearly
more consistent with left-lateral strike-slip deformation than that corrected using the original tropospheric
delays, with motion north of the Altyn Tagh Fault more consistently away from the satellite and motion on
the Plateau systematically toward. The mean standard deviation of velocities generated by bootstrapping the
signal master time series also drops from 2.9 mm/year (Figure 11c) to 2.6 mm/year (Figure 11d).
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Figure 12. LOS InSAR velocities for profiles A-A′ and B-B′ in Figure 11: (a, b) velocities estimated from interferograms corrected using high resolution
European Centre for Medium-Range Weather Forecasts and (c, d) velocities corrected by the scaled tropospheric delays. The red and blue full lines and dashed
lines represent the average values and the ±1𝜎 of the profiles, respectively, calculated from 5-kmlong bins. The black full line represents the maximum
likelihood solution for the interseismic deformation modeling estimated using a simulated annealing inversion. (e, f) The temporal evolution of deformation
between two distant points along the profile A-A′ and B-B′ , respectively (green points in Figures 11a and 11b). Error bars represent the ±1𝜎 spread. The
measurements are much closer to a linear model in time (indicated by the blue and red lines) when corrected using the scaled tropospheric delays. (g) The LOS
velocity comparison between the InSAR and surrounding campaign GPS measurements. The horizontal error bar represents the ±1𝜎 GPS errors, and the
vertical error bar shows the InSAR errors from bootstrapping. Proximity to the black line, which marks equality between GPS and InSAR, implies that velocities
match within error both before and after scaling, although errors are smaller after scaling. GPS = Global Positioning System; InSAR = interferometric synthetic
aperture radar; LOS = line of sight.
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As the campaign GPS data were not provided with vertical estimates, we projected GPS velocities estimated
from measurements made at sites shown in Figure 11 to the LOS direction by assuming vertical deformation
is negligible and then calculated the weighted mean offset from the InSAR results. We then added the off-
set to the InSAR measurements to tie them to the same reference frame as the GPS data, with Eurasia fixed.
We projected the referenced InSAR velocities to two profiles, A-A′ and B-B′ , which are perpendicular to the
fault strike, within a 30-km width (Figures 11a and 11b). We used a simple elastic half-space model (Savage
& Burford, 1973) to estimate the slip rate and the locking depth for profile A-A′ and B-B′ . Using the original
HRES-ECMWF corrections, we found slip rates of 11.5 ± 1.8 and 4.7 ± 1.2 mm/year and 10.5 ± 3.2 and
12.2 ± 2.6 km for the locking depth (Figures 12a and 12b). Errors represent 2𝜎 errors estimated using the
percentile bootstrap method (e.g., Efron & Tibshirani, 1994). Using velocities estimated from the interfero-
grams corrected using the scaled HRES-ECMWF, we found slip rates of 12.3 ± 1.5 and 9.0 ± 1.3 mm/year
and the locking depth of 10.0 ± 2.3 and 11.2 ± 2.6 km (Figures 12c and 12d), which are more consistent
with previous modeling of GPS measurements around this region, giving a slip rate of 9.0−3.2∕+4.4 mm/year
(He, Vernant, et al., 2013).

We calculated the time series of relative LOS displacement between two points located 200 km apart, either
side of the Altyn Tagh Fault along profile A-A′ and B-B′ , respectively, from the interferograms corrected
using both the original and the scaled tropospheric delays (Figures 12e and 12f). Both time series show
less scatter after scaling implying that the tropospheric delays have been reduced. The left-lateral strike-slip
deformation across the fault also becomes apparent for the time series along the profile B-B′ , where the scal-
ing has more impact. Comparing the InSAR estimates to the independent GPS measurements (He, Lu, et al.,
2013; Liang et al., 2013), the RMS misfit drops from 3.0 to 1.9 mm/year with application of the additional
scaling correction (Figure 12g).

5. Discussion
In this study, we use the HRES-ECMWF data rather than a power law relationship to define the form of the
relationship between tropospheric delay and height and then scale the magnitude of the delay to best match
the interferometric phase. The results demonstrate that our method is able to better isolate deformation
across the Altyn Tagh Fault zone.

Although the magnitudes of the estimated scaling factors are generally close to 1, indicating that significant
information is being provided to the correction from the weather model, there are cases where it is very small
(Figure S5). This tends to be where the HRES-ECMWF anomaly values are themselves small (Figure S10)
and therefore have a lower signal-to-noise ratio. The effect of a small scaling factor is to reduce the influence
of the HRES-ECMWF correction still further, which makes sense if it is dominated by the prediction error.

To investigate what proportion of the information contained in the weather model is still being used after
the scaling, we randomized the weather model epochs (Table S2) and reapplied our method, using the ran-
domized weather model products to derive the velocity map. The comparison between the InSAR results
and the surrounding campaign GPS measurements shows that randomizing the weather model makes the
result much worse (Figure S11). This demonstrates that important information from the weather model is
being utilized in the scaling process and that the method does not simply reduce all of the signal in the
interferograms, which would include the deformation.

For some epochs, the difference between the scaled weather model anomalies and original weather model
anomalies has a long wavelength component which could be contributed to by ionospheric effects or orbital
errors. To test whether our algorithm artificially removes long wavelength errors due to nontropospheric
contributions, we added a simulated ramp to the original InSAR phase delay anomalies and reestimated the
scaled weather model anomaly. The results show that the added ramp does not dominate the values of the
scaling factor (Figure S12).

We also applied the power law method (Bekaert, Hooper, et al., 2015) to the same region within the TRAIN
(Table S3) and found that the average RMSE of the 18 single master interferograms increases by 20% after
tropospheric corrections. The LOS annual velocity derived from the interferograms corrected with the power
law method shows that it is unable to separate the left-lateral strike-slip deformation across the Altyn Tagh
Fault (Figure S13). We calculated the time series of relative LOS displacement derived from the interfero-
grams corrected using the power law method between two distant points along the profile B-B′ (Figures 11a
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and 11b), whereas the results (Figure S14) indicate an opposite (right-lateral) motion trend across the fault.
It is possible that the failure of the power law method is caused by the extremely high relief in this region.

As well as the motion across the Altyn Tagh Fault, the final LOS annual velocity map reveals an approx-
imately 5-mm/year velocity gradient across the Manyi south branch (Profile C-C′ in Figure 11b), where a
Mw7.6 earthquake occurred in 1997; Funning et al., 2007; Wang et al., 2007). We compared the LOS veloc-
ity profile (Figure S15) to the interseismic deformation estimates prior to the earthquake (Bell et al., 2011)
and the measurements of the postseismic motion following the earthquake (Ryder et al., 2007), respectively.
We find that the current deformation rate across the Manyi south branch is smaller than the rate during
the 4 years immediately following the earthquake, which was around 1 cm/year but still larger than the
estimated interseismic rate of 3 mm/year, indicating that the elevated signals are caused by the postseismic
motion, 20 years after the event.

The InSAR data (Figure 11b) are noisy for some areas in the Plateau region, which is likely to be caused by
the permafrost (Daout et al., 2017). The data also show a step in velocity over the southern Tarim, which
may be associated with vertical deformation in this region.

While we have tested this method on tectonic applications, we expect it to work well for other applications
also, such as volcanic deformation and anthropogenic subsidence. We do not expect it to be unduly influ-
enced by the correlation of deformation and topography that is sometimes present in the case of volcanic
deformation as the method does not estimate the troposphere directly from its correlation with topography
and the scaling factor that is estimated from a wider is than just the volcano itself. The simulated earthquake
scenario (Figure 5) is similar to the volcanic scenario, where deformation correlates with topography, but
the tropospheric signal is nevertheless well retrieved. However, the method could potentially be enhanced
by simultaneously estimating a model for deformation while estimating the scaling parameter.

6. Conclusions
We have developed a novel approach for reducing tropospheric effects in InSAR which combines the use of
both external weather model data and the interferometric phase. We use the HRES-ECMWF data to define
the form of the relationship between tropospheric delay and height and then scale the magnitude of the
delay to best match the interferometric phase. We tested our new method on simulated data, and the results
demonstrate that it can separate both coseismic and interseismic signals from an interferogram contami-
nated by strong tropospheric delays. We also applied the method to the central portion of the Altyn Tagh
Fault in the northern Tibet. We find that our method better reduces the strong tropospheric delays in this
region, leading to clearer long wavelength deformation signals. These results suggest that the extra scaling
step should be applied wherever weather model data are being used to correct interferograms.
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