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Computational Methods for Optimal Deployment of
IoT Low Power Wide Area Networks

Abstract—In this paper, we tackle the design issue of op-
timal deployment of low power wide area network(LPWAN)
IoT gateways(GWs). We classify GW deployment problem into
two different categories, i.e., network spatial topology (NST)
aware and NST-agnostic. In NST-aware GW deployment, precise
location of IoT end devices (EDs) is known and thus the design
questions are: (i) where to place gateways, i.e. to maximize
received signal strength; and (ii) given received signal strength
which GW should the ED be associated with to balance the
network load. For, NST-agnostic GW deployment, same questions
are answered in the absence of precise knowledge for the locations
of EDs. For the NST-aware deployment we borrow tools from
machine-learning such as K-means clustering for determination
of optimized GW location. Subsequently, the link assignment
problem is presented as an Integer Linear Programming (ILP)
optimization. We prove that the NST-agnostic GW deployment
principle of placement of GWs at highest altitudes, if applied
automatically, may lead to poor network performance increasing
the network operational costs. Consequently, we introduce the
concept of network-agnostic GW placement algorithm whereby
the location of GWs can be estimated without prior knowledge
of specific locations of EDs and we use it as a guiding principle
to design spatial algorithm for finding GW locations. We show
that spatial algorithm can, in principle, provide effective gateway
placement suggestions compared to a network-aware method
such as K-means clustering. We show that using a computational
method for GW placement like K-means or spatial algorithm, has
a potential of creating competitive network performance using
just the same number of GWs, thus cutting down the financial
costs of the network and increasing its sustainability.

Index Terms—IoT, wireless, optimization, LPWAN, clustering

I. INTRODUCTION

L
OW Power Wide Area Networks (LPWAN) are being de-

ployed in increasing magnitudes as corresponding market

size is increasing at Compound Annual Growth Rate (CAGR)

of more than 90% [2]. Internet of Things (IoT), which is fore-

seen to be the future of smart living, heavily relies on LPWAN

technologies to ensure extended coverage in both outdoor

urban and rural settings. The reliability of LPWAN technology

due to its long range, low power, resilient frequency hopping
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(for instance such as Narrow Band frequency hopping for NB-

IoT and Chirp-Spread Spectrum (CSS) based modulation in

LoRA networks) qualifies it as ideal candidate for dense IoT

deployments spanning possibly hundreds of square kilometers

in complex terrain settings. LoRa [3], Sigfox [4] and NB-

IoT [5] are leading LPWAN technologies for IoT networks

that are still in infancy and yet to see a truly large scale

commercial deployment. Currently there are seven large scale

deployment studies funded through EU Horizon 2020 which

are underway [6] . Similar trials are being conducted across

the globe, interested reader is directed to [7] and [8]. One of

the common themes across these trials is optimal deployment

which maximizes the coverage.

A typical use case of such network deployment is in smart

city scenarios where there is need to cover large number of end

devices (EDs) randomly distributed across a city space with

some level of uncertainty about their number or geographical

location prior to deployment. LPWAN technologies promise

a coverage of more than 24 miles in rural and up to 3 miles

in urban areas under line of sight (LoS) conditions. Along

with long range, LPWANs operate on low power providing

more than 10 years of battery lifetime at a low cost [9], [10],

[11]. The goal of this paper is to explore the design space of

LPWAN networks (such as LoRA) with the aim of optimizing

the coverage while attaining appropriate load balancing.

A. Research Challenges:

Network planning is often done under varying degrees of

uncertainty and constraints. In the context of LPWAN, GWs

can be deployed to serve already existing EDs or as backbone

infrastructure which is expected to serve a growing network

with EDs whose locations are yet to be determined. Therefore

there can be lack of knowledge about the complete set of EDs

which presents itself as a greater challenge especially when

the network is subject to high utilization. Hence, maintaining

the Quality of Service (QoS) while optimally balancing the

traffic load across the GWs to ensure overall network effi-

ciency becomes crucial. Therefore, deployments of LPWANs

spanning tens to thousands of nodes requires computational

approaches to determine efficient placement of GWs to provide

minimal cost and maximal coverage to EDs. Any variation in

architecture in terms of GW placement or link assignment

may result in incurring extra financial costs on purchases of

GWs. It may also undermine network sustainability cost in

terms of expected daily battery lifetime if it offers low link

budgets, stipulating for instance larger transmit powers which

increases device power consumption as explained in [11]. The

problem of optimal deployment is not straightforward as: (i)

the goal is to optimize coverage as the GW placement is
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NP-hard problem; (ii) Additionally, when load balancing or

balancing of devices and optimal associations are factored

into problem, it becomes even more challenging problem

considering intrinsic heterogeneity of devices and propagation

uncertainties (due to terrain variability). One of the funda-

mental assumptions which underpins the optimal deployment

of GWs is that geometric two-dimensional distance between

wireless nodes is always positively correlated with path loss,

this is not always true (as discussed later in this section).

Hence optimal placement of LPWAN GWs presents itself as an

important design challenge for the practical functioning such

networks in terms of ensuring coverage while balancing the

load across the network at a low cost. In a complex network

planning scenario, such as smart city, we are interested in

finding proper placements of GWs such that the proportion

of links which can be served by each gateway are balanced

while maximizing the average received power. In this paper

therefore, our aim is to uncover design principles for how to

efficiently deploy these GWs to maximize the efficiency of

future networks.

B. Related Work

1) Related Literature in LPWAN Planning & Deployment:

LPWAN, as an emergent technology, has been subject of

research to explore its basic landscape. In [12] authors explore

fundamental limits of LoRA type LPWANs. The authors

investigate scalability of properties of LoRA LPWANs. A

more detailed theoretical benchmarking was introduced for

LPWAN technologies such as LoRa, SigFox, Weightless,

and Ingenu in [13]. Quantitative research has attempted to

explore the radio limitations of various LPWAN technologies

through empirical field measurements in [11], [12], [14], [9],

or using wireless propagation simulation in [14]. More realistic

examination of LoRaWAN scalability was done in a simulated

rural environment in [15].

Internet Engineering Task Force (IETF) in [16] has clearly

identified that ultra-dense deployment of EDs will be key

characteristic for the future LPWANs. The density of de-

ployment expected is several order higher than small cellular

networks where the dense deployment improves both cov-

erage and capacity due to aggressive spectral reuse. While

LPWAN EDs draw parallels in terms of density with small

cellular network, from planning perspective LPWANs have

different characteristic. Firstly, the topology of network is

not cellular by design. Each LPWAN cell spans several kms

and usually employs some distance dependent transmission

adaptation scheme (such as different SFs in LoRA). From

spatial perspective LPWANs can be visualized as clustered

spatial networks rather than cellular networks. In cellular

networks the location of end users is generally unknown and

in past few years research community has employed spatial

stochastic models to cater for this spatial uncertainty [17].

However for LPWAN deployments generally the topology

of EDs can be established and GW placement needs to be

optimized accordingly. A simple approach would be to apply

K-mean clustering as presented in this paper. However, such

dependence of GW placement implies non-optimal coverage

for nodes commissioned thereafter. Also when coverage opti-

mization is coupled with load-balancing which is not intrinsic

for K-means (which maximizes SNR but does not yield equal

number of nodes per GW) the optimal association becomes

an open problem. To this end, this paper is geared to address

this open issue. Moreover, notice that the optimal deployment

of GWs in a network-agnostic setting is particularly more

challenging as compared to the scenario where locations of

EDs are known a priori. Consequently, to the best of our

knowledge this is first study to tackle this design challenge.

2) Related Literature in WSN Clustering: Since late 1990s,

extensive number of clustering algorithms for WSNs were

proposed which effectively also yield optimal location for

GWs or so called cluster heads. Contributions such as [18],

[19], [20], [21], [22] remain some of the most highly regarded

research efforts. Each paper proposes a different cluster head

(CH) election algorithm coupled with an energy efficient

protocol that realizes the algorithm in a conceptualization

of a WSN following purely random distribution. An energy

consumption model for WSN clusters is proposed in [22] and

is tested on the clustering protocol proposed in [18]. Authors

of [21] distinguish it as an approach for fixed location nodes,

while authors of [18] assume fixed CH locations and stationary

nodes and CHs all over the network. However, several research

efforts such as [23], [24] propose clustering approaches with

explicit assumption of mobility of nodes. Also, the CH elec-

tion approach in [21] explicitly assumes that CHs locations

are independent of each other. Clustering computations are

simplified by assuming homogeneous node energy constraints

such in [19], [18]. Finally, all propositions aim at minimizing

energy consumption in the network by providing, eventually,

energy efficient protocols which implement a self-clustering

algorithm in the WSN where any node in the network can

become a CH.

These studies abstract RF aspects into certain probabilistic

attributes. Consequently, they do not consider impact of terrain

geometry on WSN behavior and CH election. Following from

this is an overall inherent assumption of positive correlation

between Received Signal Strength Indicator (RSSI) and geo-

metric distance. Consequently, after CHs are elected, nodes

are assigned to geometrically closest CH indicated by the

maximum CH RSSI. Relatively recent effort such as [19] ex-

plicitly assumes that “distance between nodes can be computed

based on received signal strength”. While this maybe true

for distances on a planar surface, the geographical element

is a key determinant in realistic propagation loss which is a

major factor in the effective RSSI saturation in the network.

For example, a node may have strong RSSI from a farther

CH when both devices are separated by low altitude terrain.

But the same node could have relatively less RSSI from a

closer CH when both devices are separated by high altitude

terrain. The clustering algorithms are also assessed in abstract

simulations of theoretical diameters of up to 200 meters as

in [18] which are too small compared to LPWAN ranges

spanning several kilometers and where terrain geometry is

expected to play a significant role in the WSN behavior.

On the other hand, the general direction is focused only

towards the logical topology of the network assuming an
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ad-hoc WSN with rotating CHs (i.e. each node is likely to

be elected as CH at any point in time) and with multi-hop

routing through CHs to the base-station. Approaches in [18],

[21] explicitly elect every node i in the network at a given

probability Pi to be CH to achieve load balancing in the

network. However, topology of LPWAN is essentially defined

as star topology or star of stars where GWs (or CHs) are

predefined and are configured and mounted exclusively for this

function as in [25], [11], [9]. This change presents a departure

from the topological assumption in the previous papers.

Even when assuming energy efficient logical topology,

the energy saving on the physical layer sets the physical

lower limit of energy consumption in any transmission in the

network, regardless of the logical topology. This is because

higher RSSI saturation allows use of lower transmit powers,

which are key components in battery consumption during any

transmission.

Furthermore, an explicit assumption in all mentioned

sources is that nodes geometric distribution is following a

uniform random Poisson distribution across the entire surface

covered by the WSN. Therefore, all efforts benchmark their

approaches against homogeneous random conceptualizations

of WSN deployments. However, an urban deployment of

an LPWAN challenges the assumption of uniform random

distribution of WSNs. In the case study we will examine later

in the paper, we can see that the WSN simulated based on real

smart city parameters, follows a distribution across the city

area that is far from uniform, thus challenging the essential

premise of such approaches for LPWAN planning in urban

infrastructure monitoring.

C. Novelty Compared to state-of-the-art in Green IoT Deploy-

ment

Research in [26] represents state of the art in analytical

methods to design green IoT deployments in hierarchical orga-

nization using an NP-hard optimization model for planning an

optimized deployment. The model is utilized in an algorithm

(MECA) based on K-means clustering heuristic to determine

relay (i.e. GW) locations. The optimization method is formu-

lated as a constrained linear optimization model subject to

energy consumption constraints and budget constraints. The

network hierarchy is computed as Steiner tree (with link

energy consumption as the weights of the edges) which is

the basis of the NP-hardness of the problem formulation, as

explained by the authors.

Our key contributions as compared to the approach proposed

in [26] are as follows:

• The MECA algorithm in [26] relies in its foundation on

K-means clustering to determine relay (GW) locations

as a “canonical” clustering algorithm in a straightfor-

ward utilization. However, such an assumption consid-

ers only a predefined set of sensor node locations and

therefore would be inapplicable in a network-agnostic

mode. Moreover, it is important to take into consideration

the heuristic nature of K-means algorithm, especially

with the variation of its seed parameters. This means

that the computed solution is non-deterministic for the

same input. However, our research evaluates K-means in

conjunction with our proposed GW location deterministic

algorithm that is agnostic to sensor node locations. We

show how our proposed approach is deterministic for

any given terrain profile and we show also how its

performance is competitive to that of K-means clustering

but without any predefined knowledge of sensor node

locations.

• The link assignment problem is formulated in the research

as a Steiner tree problem, an NP-hard approach. However,

we propose an NP-complete approach as we solve it as a

pure constrained Integer Linear Programming (ILP) for-

mulation which enables research possibilities of looking

at the same problem from the point of view of any other

NP-complete approach.

• The approach is experimented on a small 100× 100m2

deployment area which does not consider any variation in

terrestrial elevation profile. However, a realistic LPWAN

IoT deployment spans hundreds of square kilometers

where terrain elevation profile plays a significant role

in propagation loss behavior. Furthermore, in the MECA

algorithm, particularly step 4, there is an implicit assump-

tion that Euclidian distance between nodes is synonymous

with path loss since it relies on Friis model. However, this

assumption contradicts the reality of radio propagation

in a pervasive geographical topology where LoS and

shadowing play a critical role and therefore, it is quite

possible and common that a larger distance with higher

LoS visibility will suffer less path loss than a small dis-

tance with lower LoS visibility. In contrast, the evaluation

experimental setting used in this research uses real data

set of sensor node locations spanning hundreds of square

kilometers in a real terrestrial topology of highly variable

elevation profile. We offer more realistic evaluation as we

rely on Irregular Terrain Model propagation loss model

which is aware of the geographical elevation profile of

the covered terrain.

• The experiments in the research is done on randomly

generated sensor node locations without defining the sort

of random distribution used (and therefore assumed to

be uniform distribution). However, a realistic data set for

sensor node locations (as used in our validation experi-

ments) is shown to be of highly non-uniform nature. In

such case, performance of the clustering algorithm can

and would differ because of biased node concentration

densities in the covered area. In our experimental setup,

since we use such a realistic setting, we show more

reliable evaluation of all suggested methods and we

show how our proposed network-agnostic approach in the

Spatial Algorithm shows competitive performance to K-

means clustering, even in such non-uniform distribution.

• Authors presume that all nodes (i.e. EDs or GWs) have

the same wireless properties, and thus simplifying the

problem to enable the proposed link assignment opti-

mization model. However, in a realistic setting, device

properties could be quite heterogeneous in terms of their

wireless properties. In contrast, our proposed link assign-

ment optimization model considers heterogeneous link
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budgets individually (where each link budget embeds var-

ious complex factors such as network interface properties

and path loss behavior). This is a significant feature since

not all devices would afford the same energy capacity

to transmit at the same power and range. Therefore, the

link assignment approach in this research offers a link

assignment approach that is flexible to adapt to both

homogeneous and heterogeneous deployment settings.

D. Contributions

In this paper, our aim is to provide design principles for

how to efficiently deploy LPWAN GWs to maximize the

coverage and load efficiency of future IoT networks. As

explained above, studies on network planning addressing the

deployment of LPWAN gateways are very limited. Hence, it

is essential to study various possible approaches and compare

their benefits in terms of coverage and cost optimization across

the network. Based on the findings, it is important to propose

new methodologies that overcome the shortcomings of existing

solutions. This paper is geared towards finding these optimal

design principles for LPWAN deployment. In summary, our

research has the following novel outcomes:

• We borrow tools from machine learning such as K-mean

clustering for devising LPWAN geographical planning

in an NP-complete approach when locations of ED are

precisely known.

• In order, to balance the load across GWs, we formalize

LPWAN network link assignment procedure in an ILP

form for network QoS optimization, thus presenting a

generalized NP-complete form for the problem. This

makes it possible to converge on global optimal solution

with maximum RSSIs in the network under defined GWs

load constraints.

• In a Network-agnostic deployment approach, we prove

that principle of highest altitude for GW placement, if

applied automatically irrespective of terrain nature or

network distribution, can lead to very poor deteriorated

network coverage.

• We introduce the concept of "Network-Agnostic Wireless

Planning" where GWs locations can be estimated without

prior knowledge of specific locations of EDs in a dense

pervasive distribution. We introduce a spatial algorithm

for network-agnostic planning and show that the algo-

rithm can, in principle, provide near-optimal solutions for

GW placement given only the terrain profile of the city.

• We carry out a detailed case study of an LPWAN GW de-

ployment for the city of Leeds, operating in the ISM band

868MHz (which is employed by LoRA in EU). We show

that the network-aware method (K-means) provides the

best coverage measured in terms of RSSI providing up to

20% network RSSI gain as compared to other approaches.

We show that network-agnostic planning method, Spatial

Method, can provide solutions with competitive RSSIs

to network-aware method, without prior knowledge of

existing EDs locations. We also demonstrate that ILP link

assignment method can provided optimal load balancing

solution in traffic hot spots without any tangible deterio-

ration to network RSSIs.

We examine application of K-means clustering, otherwise

known as Lloyd’s algorithm [27] for selecting GW deployment

locations assuming that ED locations are known. The resulting

model is non-deterministic polynomial (NP)-complete [28].

We also adopt a network agnostic (Spatial and Grid) ap-

proaches to find optimal GW placement locations assuming

ED locations are not known. For these approaches we find the

propagation losses and then examine application of Integer

Linear Programming (ILP) based constrained optimization for

link assignment between respective GWs and EDs. We employ

the Irregular Terrain Model (ITM) [29] implemented by the

International Telecommunications Union (ITU), to capture the

geographical profile of the terrain of the deployment area. We

rely on Simplex Method implementation of ILP which is a core

foundation of linear optimization applications as presented in

[30]. Even though Simplex Method runs in exponential time

for worst cases, it is highly efficient and normally behaves

as an efficient polynomial time algorithm as theoretically

explained in [31]. We compare the GW deployment and link

assignment approaches and demonstrate that network agnostic

approach with ILP based link assignment outperforms other

approaches in terms of link quality and load distribution across

the network.

E. Organization

The paper is organized as follows. In section II, we present

our proposed methodology. We explain the formal foundations

of our experimental techniques. In section III, we present our

experimental setup. In section IV, we present the aggregation

of results of all experiments and we benchmark the perfor-

mance of each resulting network architecture. In section V,

we present the foundations for generalization of our patterns

in the classic literature of Irregular Terrain Model. In section

VI, we present our conclusions.

II. METHODOLOGY:

In our methodology, we split the network planning process

to four core phases as depicted in the Unified Modeling

Language (UML) diagram in figure 1. The input to our

experiments can be either site elevation data of the terrain to

be covered or locations of EDs to be covered. Then planning

process proceeds as follows:

• Phase I, GWs locations computation: this phase has two

subcategories of methods: 1) Network Aware, where lo-

cation of network EDs are completely known and are not

expected to change much. For this category we examine

K-means clustering 2) Network Agnostic, where GWs

locations is computed with no prior knowledge of EDs

locations. For this category we examine two methods:

Grid method and Spatial Method.

• Phase II, propagation loss modeling: we compute link-

budgets based on point-to-point wireless propagation

simulations among all EDs and GWs

• Phase III, link assignment: this phase has two subcate-

gories of methods: 1) Unconstrained, where GWs have

virtually unlimited capacity relative to the number of

EDs to be covered. Here we examine two assignment
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Fig. 1: Experiment Design

methods: A) Assignment to based on minimal distance

and B) assignment based on maximum Received Signal

Strength Indicator (RSSI). And 2) Constrained, where

GWs have limited capacity relative to the number of EDs

to be covered and therefore, such capacity need to be

respected while assigning EDs to GWs. In this category,

we present an ILP formulation and implementation

• Phase IV, the resulting network configuration is evaluated

with respect to select metrics.

A. Phase I: GW Position Optimization Heuristics:

In general, we assume that at the beginning of the planning

process, network engineers have at hand K GWs that are to be

used to cover the terrain. We examine the following methods

to compute the locations of K gateways.
1) K-means method (network-aware): In this approach,

we perform clustering to compute the GW locations as K
cluster centroids. This is meant to find a solution set that

is appropriate to EDs with already known locations. The

purpose of this approach is to optimize GW positioning to

be geometrically closest to as many EDs as possible by

optimizing centroid locations such that Euclidian geometric

distances among EDs and cluster centroids is minimized.

More specifically, it processes latitude and longitude arrays to

produce geometric clusters in Lat/Long domain. As discussed

in sec. I-B, the details of the algorithm can be found in [27].

2) NST-Agnostic Grid method (NAG) : We construct this

method to compute the K-highest points in a terrain based on

the intuition that higher altitudes for GWs placement creates

better coverage and QoS. This is because of the positive

correlation between elevation of GWs and their LoS coverage

range as in the LoS formula [32]:

d ≈ 3.57
(

√

α.h1 +
√

α.h2

)

(1)

where d is distance to horizon of a GW placed with h1 antenna

height towards an ED placed at h2 antenna height and α is a

constant representing earth’s bulge. While we fix the physical

antenna height for the sake of simulations, the terrain relative

altitude of GWs with respect to EDs acts as an additional

parameter contributing to the final antenna altitude in relation

to EDs. In contrast to network-aware approach, this method

is strictly dependent on the terrain altitude profile and not the

EDs locations. Therefore, it can be useful in cases where EDs

locations bear significant level of uncertainty in either scale

or scope. The method is organized as follows:

1) Target area is split into a grid of n x n resolution. Grid

resolution n should be estimated relative to the variation

in terrestrial elevation such that no significant change of

variation can occur within any given cell in the grid. A

concrete example is given in subsection IV-A.

2) The coordinates of the geometric centroid Cij of each

grid Cellij are computed. This results in two dimen-

sional matrix Cn2
×2. Those centroids are the candidate

GW locations. Then compute and append the elevation

of each centroid to its sub-array, producing matrix

C n2
×3.

3) Sort matrix C in descending order by elevation.

4) The highest K points in elevation (regardless of their

inter-distances) are selected as deployment sites.

3) NST-Agnostic Spatial method (NAS): Following the

heuristics of the Grid method, we develop the Spatial method

to compute the K-highest points while enforcing a minimal

separation threshold σ relative to the area of the covered

terrain such that GWs locations are separated by a minimal

distance threshold. By definition, we compute σ in terms of

the standard deviation in the set of all possible distances in

the Grid. Therefore, it is constant and representative for any

given grid. This is to avoid over-concentration of results on a

high altitude area. This method used the four steps in the Grid

method, and in addition we proceed as follows:

1) Compute the euclidean distances between each pair of

centroids in a new vector
−→
d = [(n2 − 1)2], let

s = size (
−→
d ) = (n2 − 1)2 (2)

1) Compute mean distance,µ in vector d as:

µ =
sum(

−→
d)

s
(3)

2) Compute standard deviation σ in d as

σ =

√

∑s

i=1
(di − µ)2

s2
(4)

3) At last, we apply the pseudo code in Algorithm 1 to
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compute GW locations:

Algorithm 1 Spatial Method (ASM)

Algorithm II.1: SPATIALMETHOD(Centroids[S][3],K)

{

Centroids has S Nr of centroids with lat, long, elevation

Kis solution size

GWs← new array

CSorted← Centroids.Sort(desc,3)

comment: Sorted centroids by elevation in desc order

GWs.Push(CSorted.Pop())

comment: add highest point to solution

Sigma← StDev in centroids distance matrix

while GWs.Size() < K






























CandidateC [3]← CSorted.pop()

comment: pop next highest point

DistanceVector← COMPDISTVECT(GWs,CandidateC)

if DistanceVector.Min() > Sigma
then GWs.push(CandidateC)

procedure COMPDISTVECT(GWs[][], C[])














DistanceVector[GWs.Size()]

for i← 1 to GWs.Size()

do DistanceVector[i]← EuclidianDistance (C,GWs[i])
return (DistanceV ector)

B. Phase II: Propagation Loss Computation:

We rely on the Langley-Rice path loss prediction model,

commonly known as Irregular Terrain Model [29]. The model,

which is approved by the United States Federal Communica-

tions Commission (FCC) and implemented by ITU, offers the-

oretical foundations for classifying terrains into five different

profiles as in table I [29]. It has been proven recently in [33] to

maintain general stability and competitive accuracy for com-

mon applications. The average terrain profile according to ITM

is “hills” and we rely on that to perform our experiments in a

location matching this profile. This is to establish theoretical

belief that our observed patterns are expected to be replicable

in an average type terrain, especially since ITM is based on

statistical models that are founded on empirical prediction

curves. It offers estimation of propagation loss depending on

empirically obtained path loss curves in different terrestrial

environments. It is implemented in ITS algorithm [34] and it

is also valid for a large variety of engineering problems within

frequency range 20 MHz- 20 GHz including TV broadcast

and mobile networks. ITM incorporates terrestrial features

of the specific locations of network deployment, including

terrain elevation profile, climate, land surface refractivity, and

Terrain Category △h (meters)

Flat (or smooth water) 0

Plains 30

Hills 90

Mountains 200

Rugged Mountains 500

For average △h use value 90

TABLE I: Terrain categories according to ITM (source: [29])

it has also been deployed for various military and land-

mobile systems applications [29]. It offers two propagation

loss prediction modes that are both important to our analysis:

• Point-to-point prediction mode: In this mode, the model

considers the specific physical land elevation profile be-

tween the sending and the receiving radio nodes. There-

fore, it is useful for more accurate point to point link

budget prediction.

• Area prediction mode: This mode is based on compu-

tational categorization of terrestrial features into a set of

profiles. Profiling considers factors such as variability of

surface elevations, climate, and ground surface refractiv-

ity. However, according to [29], most of these parameters

can be set to nominal values. For example, for a distance

less than fifty kilometers, the climate parameter impact is

insignificant and can be simply set to the average value

of “Continental Temperate Climate”. The only significant

variable is the Terrain Irregularity Parameter:△h, which

is used to categorize terrain elevation profiles according

to intervals of △h as in table I.

From the Langley Rice model, we obtain an n x m matrix P

where n is the number of EDs and m is the number of GWs

in the network. Pnmis the relative RSSI between EDn and

GWm. For convenience, we follow the reporting scheme of

Radio Mobile of path loss estimation: we normalize relative

RSSI with respect to receiver’s threshold by adding a value of

fifty to the result as in equation 5

RSSInorm = RSSIRx − Rxthreshold + 50 (5)

In this way, any results above ninety-nine, is too strong and

would be counted as ninety-nine anyway and any result below

one is too weak and would be counted as one anyway. This

allows to fix the range of the report (and normalize it) to values

in [1, 99] interval. For example: If the receiver (Rx) threshold

is set to −130 dB and computed RSSI is −110 dB, relativeRx
is: −110− (−130) = 20 dB and "normalized" value would be

20+50 = 70. Similarly, if RSSI is −60 dB, the "normalized"

value would be −60 − (−130) + 50 = 120 dB which would

be approximated as ninety-nine.

C. Phase III: Link Assignment Procedures:

At this point, there is still room for decision making

regarding how EDs are assigned to GWs. In Global System for

Mobile communications (GSM) networks, choice of mobile

devices to base stations, especially during handovers, is mainly
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governed by RSSIs of base stations at EDs. However, LPWAN

enabling modulations enjoy a different capacity where their

modulations allow robust long range communication with re-

laxed latency constraint (such as Ultra Narrow Band frequency

hopping for NB-IoT and CSS modulation for LoRa). On the

other hand, it is restricted by duty cycle limitations, such as

1% duty cycle in EU regulations in 868 MHz band. Therefore,

it is necessary to control the allocation of EDs access to

GWs for sustainable network performance. For this phase,

we experiment with three different approaches.In addition to

matrix P, we define n × m matrix D where Dnm is Euclidian

distance between EDnand GWm.

1) Maximum RSSI approach: In this approach, we assign

each EDi to GWj with highest RSSI measurement. That

is, where RSSIij = max
(−→
Pi

)

.

2) Minimal distance approach: In this approach we assign

each each EDi to GWj that is geographically closest

in location. That is, where geometric distance Dij =

min(
−→
Di) in the Latitude/Longitude domain.

3) Integer Linear Programming approach: We propose

an ILP model to be applied on the link budget matrix

computed in phase II. In the formalization in equation

7, we minimize the cost of the network as expressed in

link budget. We impose a linear constraint on number

of EDs per GW ≤ N such that no GW will be assigned

more than N EDs. N can be simply defined as the ratio

of total number of EDs to the total number of GWs.

In practice N can be lesser than such a ratio based

on several factors such as GW RF capacity in terms of

number of available receive paths and expected packet

rates from connecting devices. We define

f (E,G,C) =

E
∑

i=1

G
∑

j=1

Xij .Cij (6)

where Cij is assignment cost of GWj at the EDi,

expressed as −(RelativeRSSIij ∈ [1, 99]), E is the

number of EDs, G is the number of GWs, and Nj

is the maximum EDs capacity for GWj. With such

formalization, we find global optimal solution for each

given network arrangement as follows.

min f (E,G,C) , (7)

subject to

∑E

i=1
xij ≤ Nj for each GWj

∑G

j=1
xij = 1 for each EDi

.

where Xij =

{

1 EDi is assigned to GWj

0 otherwise
.

The general cost expression Cij can be extended to include

more complex cost metrics such as Energy per bit or device

battery change cost. Since different link budget may stipulate

different levels of transmission power which lead to various

levels of energy consumption and, hence, expected daily

battery life times. At this fundamental stage, we experiment

with basic definition of Cij in terms of RSSIij .

Fig. 2: Leeds Elevation Map

D. Phase IV: Evaluation Metrics:

In this phase, we benchmark our computed configuration as

follows:

• Cumulative Distribution Function (CDF) of path loss l in

the network as:

P (L) =
´ l

−∞
p(t) dt

= l
100

for 0 ≤ l ≤ 100
(8)

Where p(t) is the probability density function for a pathloss

value less than l and p(t) = 1/100.

• Statistical features of path loss measurements in the final

network configuration: mean, median, standard deviation.

Moreover, as a nominal indicator of network quality, we

calculate the percentage of EDs with relative RSSI P ≥
50 (i.e. above Rx threshold). We use this as a practical

benchmark for EDs with bare minimum signal quality.

CDF computation is useful to compare the saturation of RSSIs

in each resulting network architecture with the knowledge that

all RSSIs below fifty indicate devices out of service.

III. EXPERIMENTAL SETUP

We choose as a case study an application of monitoring

operational status of lamp-posts across city of Leeds in the

United Kingdom. We obtained a full listing of lamp-posts

locations across Leeds from the City Council’s data repository

[35]. The total number of lamp-posts exceeds 106, 000. For the

sake of analysis, we will perform our approaches on a random

sample of almost two thousand lamp-posts. We consider the

topographic nature of Leeds which has relatively high variance

in altitudes as shown in figure 2. We use Radio Mobile wireless

propagation simulator which incorporates ITS implementation

of ITM.

For the purpose of the exploration, we fix several parame-

ters, especially those of the ITS simulation algorithm across

all experiments. For Tx/Rx devices, we fix PHY configurations

as shown in table II and we fix ITS simulation parameters

as in table III. For the network architecture, we assume that

ten gateways are to be deployed to cover the entire city

(i.e.K = 10). While it is of interest to load balance EDs
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Parameter Value

Frequency 868.1 MHz

Antenna gain 6 dBd

Antenna type omnidirectional

Line Loss 0.5 dB

Antenna Height 8 m

Transmit Power 14dBm

Receiver Threshold -130 dBm

TABLE II: PHY Configurations

Parameter Value

Minimum frequency 868.1 MHz

Maximum frequency 868.2 MHz

Antenna polarization vertical

Mode of variability Spot at 70% of situations

Surface refractivity 301 N-Units

Ground conductivity 0.005 S/m

Relative ground

permittivity

15

Climate continental temperate

TABLE III: Experimental Setup

across GWs, we configure our ILP model with Nj = 300
EDs per GWj . However, Nj can be configured variably for

each GW capacity. And finally, for our RSSI normalization

as in equation 5, any RSSI > −81 dB will be approximated

as ninety-nine and any RSSI< −179 will be approximated as

one.

IV. RESULTS

A. Gateway Computation Results:

In this section we will show the results of phase I of the

engineering methodology which is computing GW locations

using all the four methods outlined previously.

Using K-means clustering method with longitude/latitude

data of EDs locations, we compute cluster centroids as GW

locations. The visualization in figure 3 illustrates computed

gateway coordinates. We can see in figure 3 that the GW

locations are concentrated near the city center where EDs

are more concentrated. This is an expected outcome of K-

means clustering since it computes centroids with reference

to training data sample.

Using Grid method we run our computation with 45 × 45
resolution and with K = 10. Accordingly, the resulting GWs

coordinates are visualized in figure 4. However, we can see

that this approach has introduced overly concentrated solution

set. Since the resolution is too fine, the algorithm returned

several centroids located on top of one of the highest hills in

the city.

Since this result has most solution set in adjacent grid cells,

we attempt a second run with significantly less resolution of

15 × 15 to achieve more separation in the solution set. The

resulting GW coordinates are visualized in figure 5 and we can

clearly see in the figure that results are much more distributed

Fig. 3: Calculated gateway locations using k-means algorithms

for k =10

Fig. 4: Calculated gateway locations using Grid method

with45× 45 resolution

across the area which can offer a significant variance in the

final topology.

Using the Spatial method, we define 45 x 45 grid over

Leeds terrain. This fine grid resolution is convenient as the

dimensions of the covered area is approximately 31 x 26 km

and therefore the surface area of a grid cell is approximately

0.4 km2. This figure seems appropriate as the elevation heat

map of Leeds does not show very sharp shifts in elevation and

it is rather smooth. The resulting gateway location coordinates

are visualized in figure 6. We can observe that the GW results

are almost uniformly displaced away from each other in a

manner proportional to the covered area, as expected.
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Fig. 5: Calculated gateway locations using Grid method

with15× 15 resolution

Fig. 6: Calculated gateway locations using spatial method

B. Link Assignment Computation Results:

In this section, we show the results of applying the three

methods of link assignment on each of the four network

configurations resulting from GW computation phase. This

leaves us with a total of twelve combinations of experiments

and their corresponding architectures. In table V, in the

Appendix, we visualize the GWs load distribution in each

architecture. For each architecture, we show the histogram

of GW loads expressed as the number of assigned EDs and

a scatter plot showing a geographical visualization of EDs

colored according to their GWs assignment. Moreover, in

table VI, in the Appendix, we visualize RSSI distribution in

each network architecture. For each architecture, we show an

RSSI histogram in the network and a scatter plot showing a

geographical visualization of EDs colored by RSSI strength.

Moreover, we present detailed quantitative statistical de-

scription of the RSSI data for each network architecture in

table IV. For each experiment, we show the traditional statis-

tical parameters of RSSI data in a addition to the percentage

of EDs with RSSI ≥ 50.

C. Comparative Analysis:

To compare the statistical behavior of network quality for

the twelve architectures explored in this research, we plot the

statistical box-chart for all experiments in figure 7. Moreover,

we plot the CDF for the RSSI probability distribution in each

network architecture in figure 8. We can deduce from the

plot significant differences between the various architecture

performances:

• Grid method shows comparatively the least reliable re-

sults, especially with the run of the 45×45 fine resolution.

This is evidence that simply choosing the highest altitudes

locations for GW deployment, regardless of their dis-

tributiveness, does not guarantee reliable architecture and

may even lead to very deteriorated network performance.

This is critical to note in a complex urban setting with a

geographically pervasive and dense network. Therefore,

the intuition that engineers commonly use to place GWs

at highest points in a city may lead to deteriorated QoS.

• We can observe significant closeness in overall network

quality between network-aware method (K-means) and

our proposed network-agnostic Spatial method (bold lines

in CDF plot). We can also observe that introduction of

ILP method barely undermined network quality in terms

of RSSI saturation while achieving critical load balancing

on GWs. This highlights the significance of the Spatial

method as a promising approach for network-agnostic

planning and promotes it for future efforts of research

and enhancements. It also highlights the significance of

the ILP formalization for load balancing and introduces it

as a promising approach worthy of further investigation.

• Given the distinctively efficient results of K-means and

Spatial method we propose that network planning process

must respect at least network EDs locations or minimal

distance threshold among GWs to ensure reasonable

acceptable network architecture quality. This is to say

that it may not be the wisest practice to simply pick the

highest buildings in the city as locations for GWs without

performing the aforementioned calculations.

Moreover, we plot the distribution for GWs load in all

assessed architectures in figure 9. We can observe significant

patterns as follows:

• In overall, using ILP based link assignment proves quite

significant in streamlining gaps in load distribution cre-

ated by any GWs locations computation method. This is

particularly useful given the highly non-uniform distribu-

tion of EDs leading to non-uniform GW load distribution.

• The general class of K-means based clustering and

Grid methods (applied with lower resolutions) offer quite

stable load distribution regardless of link assignment

method.
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Mean Median Min Max StDev P (RSSI ≥ 50)

K-means with minimum distance 78.7 90 1 99 16.1 97%

K-means with maximum RSSI 87.7 82 42 99 10.6 99.8%

K-means with ILP 87.2 90 42 99 10.7 99.8%

Grid (45) with minimum distance 68.5 55 2. 99 15.1 90.6%

Grid (45) method with maximum RSSI 68.1 65 35 99 14.5 91.6%

Grid (45) with ILP 67.3 64 32 99 14.9 89.6%

Grid (15) with minimum distance 66.1 60 1 99 19.0 79.3%

Grid (15) method with maximum RSSI 73.1 73 44 99 13.8 97.4%

Grid (15) with ILP 69.7 73 41 99 14.9 91.2%

Spatial method with minimum distance 66.4 68 21 99 15.1 85.9%

Spatial method with with maximum RSSI 81.7 84 47 99 10.9 99.3%

Spatial method with ILP 79.9 81 41 99 11.3 98.2%

TABLE IV: Statistical description of EDs RSSI in resulting architectures

Fig. 7: Statistical overview of all results

• Spatial method offers highly variant load distribution

however ILP link assignment streamlines the load dis-

tribution balance, thus offering quite competitive load

distribution compared to rest of architectures.

• We can observe that unconstrained methods run the risk

of leading to excessive stress on more GWs which can

jeopardize overall network sustainability and quality. For

instance, as in figure 9, Grid45_min run introduces

massive load on GW8 which is the nearest GW to Leeds

city center, where most nodes are concentrated. However,

general class of K-means method has self contained load-

distribution feature thanks to clustering approach used in

determining GW locations.

• To further highlight those patterns, we plot detailed geo-

graphical visualization of GW distributions and GW as-

signment histograms of all network plans in the Appendix

in table V. In table VI, we plot geographical visualization

and histograms for resulting RSSI distribution in all

network plans.

V. GENERALIZATION SCOPE: LEEDS TERRAIN PROFILING:

As described in section II-B, the terrain irregularity param-

eter △h was calculated for Leeds terrain. The results of the

computation proved that Leeds falls under the "hills" category

which sets △h = 90m which is otherwise the default value if

the terrain △h profile is unknown, as per the original guide

to the ITS algorithm implementation. This sets a theoretical

basis for generalization of the models patterns observed in this

use case for any terrain within similar terrain profile. In this

section, we show briefly the steps for △h approximation for

Leeds Terrain as in the following steps:

1) We compute a grid of reasonable resolution that captures

the terrain elevation profile with satisfactory inclusive-

ness. For our case, we use 11× 14 grid.

2) We retrieve the elevation profile (in meters) for each

grid line cross section. Samples of the elevation profile
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Fig. 8: Cumulative Density Function curves for network RSSI in all experiments.

Fig. 9: GWs load distributions across all experiments

for the central vertical and horizontal cross sections (in

bold) are in figure 10.

3) For each elevation profile, we compute the interdecile

range (as specified by the ITS model [29]). This is to

exclude occasional anomalies of exceptionally high or

low altitude points.

4) The final △h value would be approximated as the the

median value for the all interdecile ranges computed in

the previous step. For our application, △h ≈ 99 .

VI. CONCLUSIONS

In conclusion, our analysis examined various techniques for

LPWAN wireless planning pipeline. We examined a network-

aware approach using K-means clustering and a network-

agnostic approach using Grid method. We also proposed an

approach for network-agnostic wireless planning, the Spatial

Algorithm, which showed competitive results compared to K-

means method. Therefore, it is worth to continue investigation

in the generalization scope of the Spatial Algorithm for various
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Fig. 10: Cross-sectional elevation profiles of Leeds

technologies and topographies such as indoor planning and

industrial sensor networks. We show that following a principle

of highest altitude for GW may undermine network perfor-

mance severely and therefore may pressure network engineers

to request more GWs to compensate for deteriorated QoS.

However, using a computational method for GW placement

like K-means or Spatial Method, has a potential of creating

competitive network performance using just the same number

of GWs, thus cutting down the financial costs of the network

and increasing its sustainability.
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APPENDIX

In this appendix, we show full visualization set of EDs

GW assignment and EDs simulated RSSI for each of resulting

network plan.

Min Distance Max RSSI Constrained ILP Model

K-Means Clustering

Grid 45

Grid 15

Spatial Method

TABLE V: Visualization of gateways load distribution

Min Distance Max RSSI Constrained ILP Model

K-Means Clustering

Grid 45

Grid 15

Spatial Method

TABLE VI: Network RSSI distribution
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