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Component modulated magnetic anisotropy and damping in 

Heusler-like compound Co2+xFe1-xAl 

Zhendong Chen, Bo Liu, Long Yang, Xuezhong Ruan, Cunxu Gao, Yongbing Xu 

Abstract: 

The component dependence of the magnetocrystalline anisotropy and the damping has been 

investigated in epitaxial Heusler-like compound Co2+xFe1-xAl grown by molecular beam epitaxy 

with x=-0.4, -0.2, 0, 0.2, and 0.4. All the samples show a component tunable four-fold 

magnetocrystalline anisotropy with the easy axis along [110] orientation for different samples. 

Furthermore, the component dependence of the damping coefficient has been studied via time 

resolved magneto-optic Kerr effect measurements (TR-MOKE). The measurement results reveal 

that the minimum of damping is obtained for the sample with x=-0.2. This work provides a new 

approach to modulate the magnetic dynamic properties of Heusler alloy Co2FeAl by adjusting the 

proportion of Co and Fe. 

 

Introduction: 

In recent decades, spintronic devices for example magnetic random access memory (MRAM) have 

attracted a lot of interests because of their advantage of high density, low power consumption and 

non-volatile properties[1]. It is believed widely that the spintronic device is an alternative of the new 

generation of electric device. Current induced magnetization switch (CIMS) is studied extensively 

as a key technique for writing message into spintronic devices[2]. It has been reported that the current 

density jC required for CIMS is proportional to Gilbert damping constant 𝛼[3]. Thus the damping 

constant of many spintronic materials has been widely investigated, such as FeNi, FeCo and 

CoFeB[4]-[9]. In variety of spintronic materials, Heusler compound Co2FeAl (CFA) has caught much 

attention because of its half-metallic property and low damping[10][11][12]. In past years, the damping 

of CFA was reported to be as low as 0.001 but had a large scatter varying from 0.001 to 0.04 caused 

by different sample growth techniques and substrates[11]-[15]. In order to optimize the magnetic 

dynamic properties of CFA films, variety of parameters have been modulated such as annealing 

temperature, thickness and doping components[16]-[20]. There is a well-known theory which link 

internal damping constant to the density of state (DOS) near the Fermi level. The theory demonstrate 

that the damping constant is proportional to the DOS, which can be described as 𝛼 ∝ 𝜉2𝐷𝐹 , where 𝛼 is the damping constant, 𝜉 is the spin-orbit coupling coefficient and 𝐷𝐹  is the DOS near the Fermi 

level[21][11]. It provides an theoretical support to modify the damping constant of CFA by adjusting 

the components. While modifying the components in CFA films, people usually use quaternary 

systems, such as, Co2Fe1-xMnxAl, Co2Fe1-xCrxAl, Co2FeAl1-xSix, and Co2FeAl1-xGex to contrast with 

CFA because these systems have the same full-Heusler-like crystalline texture[19][20]. In this work 



we report the modulation of magnetic dynamic properties in a new system Co2+xFe1-xAl by adjusting 

x from -0.4 to 0.4, in which no new element is brought in. 

It is known that the magnetization dynamics can be well described phenomenologically by the 

Landau-Lifshitz-Gilbert (LLG) equation: 
d𝑚d𝑡 = −𝛾𝑚 × 𝐻𝑒𝑓𝑓 + 𝛼𝑚 × d𝑚d𝑡 , where m, Heff, 𝛾 and 𝛼 

are the unit vector of magnetization, the effective magnetic field, the gyromagnetic ratio and the 

Gilbert damping constant, respectively. There are two measurement methods used for investigating 

the magnetic dynamics of spintronic materials: ferromagnetic resonance (FMR) and time resolved 

magneto-optic Kerr effect (TR-MOKE)[9][15]. FMR is a traditional measurement for characterizing 

the magnetic anisotropy and damping of ferromagnetic materials. However, this measurement is 

limited by the modulation range of the microwave frequency and external fields. In comparison, 

TR-MOKE, which can observe the procession of magnetization directly, is an effective method to 

measure the damping constant. In this work we use FMR to measure the magnetic anisotropy of the 

epitaxial Co2+xFe1-xAl films grown on MgO (001) substrates. And then TR-MOKE method is used 

to characterize the damping of each sample. The dependence of the anisotropy and the damping on 

the adjusting component ratio x is obtained. This work could provide a new approach to modulate 

the magnetic dynamics of CFA. 

 

Experiment:The epitaxial growth of Co2+xFe1-xAl films were implemented in a custom-built 

MBE system equipped with solid-source effusion cells for Co, Fe and Al. Nucleation and growth 

were monitored in situ by reflection high-energy electron diffraction (RHEED). Prior to growth, the 

MgO(001) substrate was chemically cleaned, desorbed water, and then transferred into the 

deposition chamber. The substrate was further thermally cleaned to remove the surface oxide, and 

9 nm thick Co2+xFe1-xAl films were then deposited at a substrate temperature of 200 oC with x=-0.4, 

-0.2, 0, 0.2, and 0.4. Quartz microbalance was employed in situ to obtain the chemical composition 

and thickness of the films. Static magnetic properties of the samples including the remnant 

magnetization curves (RMC) and hysteresis loops were recorded at room temperature by vibrating 

sample magnetometry (VSM). For these RMC measurements, remnant magnetization was measured 

with the films rotated around their normal axis in a step of 5o. In every step, the CFA films were 

first magnetized in-plane at a saturate field of 3000 Oe followed by removing the field and then 

recording data. Then the hysteresis loops were measured along the easy axis where the maximum 

remnant magnetization occur and the hard axis where the minimum remnant magnetization occur 

for each sample, respectively. The magnetic anisotropy was investigated by in-plane rotating FMR 

with the microwave frequency of 9.78 GHz. Before the measurements began, the films had been set 

as the external field along the [100] orientation of the MgO substrates. And then the measurements 

were implemented at every 15o as the samples were rotated. Finally, the damping constant were 

obtained by polar TR-MOKE. The femtosecond pulse train generated by a regenerative amplifier 

Ti: sapphire laser with a pulse duration of 50 fs and a repetition of 1kHz was divided into pump and 

probe pulse beam. The fluence, wavelength and spot diameter of the pump pulse beam are 5.10 



mJ/cm2, 800 nm and 500 μm, respectively. And correspondingly, these parameters of the probe 

pulse beam are 40.82 μJ/cm2, 400 nm and 250 μm, respectively. The external field was applied in 

the [001]/[110] plane and with 30o deviating from the in-plane [110] orientation, and with the 

intensity of 1330 Oe, 2592 Oe, 3865 Oe, 5122 Oe, 6351 Oe, 7534 Oe and 8830 Oe. 

 

Results and discussion: 

Fig. 1(a) shows the stationary RHEED patterns of the MgO(001) and Co2+xFe1-xAl surface along 

MgO[001] orientation with the x=-0.4, 0, and 0.4. The patterns evidence a well epitaxial films. It is 

obviously exhibited that the crystalline structures of all the Co2+xFe1-xAl samples are in a same type 

with x varying from -0.4 to 0.4. It has been reported wildly that the structure of Co2FeAl follows 

the Fm3̅m space group as all the full-Heusler compounds[12][16][17]. Thus it is suggested that all the 

samples with x varying from -0.4 to 0.4 have the same Heusler-like cubic crystalline structure. The 

RHEED patterns also display that the growth orientation are as Co2+xFe1-

xAl(001)[110]//MgO(001)[100] for each x (Fig. 1(b)), which is the same as the status of Co2FeAl 

grown on MgO(001) substrates. 

In order to investigate the static magnetic properties of the samples, VSM measurements have been 

performed to obtain the RMC and hysteresis loops. In Fig. 1(c) and 1(d) it is clearly revealed that 

all the Co2+xFe1-xAl films show an obvious four-fold magnetic anisotropy superimposed with a 

subordinate uniaxial anisotropy. The easy axis of the four-fold magnetic symmetry is along 

Co2+xFe1-xAl[110] orientation. The four-fold symmetry is believed to originate from the intrinsic 

magnetocrystalline anisotropy of the cubic Co2+xFe1-xAl lattice. While the weak uniaxial symmetry 

is induced by the lattice stress derived from the mismatch between the substrate and the films. It is 

suggested that the component modulation does not influence the magnetic symmetry of the samples 

on account of the consistent lattice symmetry. In addition, the relationship between saturation 

magnetization and component ratio x is exhibited in Fig. 1(e). it is revealed that the saturated 

magnetization reduces with the increase of Co component. This trend is not coincident with the 

Slater-Pauling principle, which predicts that the saturated magnetization is positive linear with the 

valence electron number per formula in Heusler compounds[22]. It may be caused by the disorder of 

the lattice configuration driven by component modulation.  

For quantifying the magnetic anisotropy with varying component ratio x, in-plane rotatable FMR 

was used to measure the resonance spectra at different orientation of the samples. Fig. 2(a) contains 

a sketch of the FMR coordinate system where 𝜑 and 𝜑𝐻 are the azimuthal angle, and 𝜃 and 𝜃𝐻 are 

the polar angles of the magnetization M and the external field H, respectively. The measurement 

results given in Fig. 2(b) also shows a distinct four-fold spatial symmetry superimposed with a 

subordinate uniaxial symmetry for the resonant peak in all the samples with different component. It 

reveals an identical conclusion with the static measurements on the magnetic symmetry. The spatial 

symmetry of resonant peak can be described by the Smit-Beljers equation[23], 



 (𝜔𝛾 )2 = (𝐹𝜃𝜃𝐹𝜑𝜑 − 𝐹𝜃𝜑2 )𝑀𝑠2sin2𝜃 , (1) 

where ω, γ, Ms are the microwave circular frequency, the gyromagnetic ratio and the saturated 

magnetization, respectively. F is the free energy density which is formulated as following for films 

with four-fold symmetry[23]: 

 𝐹 = −𝑀𝑠𝐻𝑟[sin𝜃sin𝜃𝐻cos(𝜑 − 𝜑𝐻) + cos𝜃cos𝜃𝐻] − (2𝜋𝑀𝑠2 − 𝐾2⊥)sin2𝜃+ 𝐾2∥sin2𝜃cos2(𝜑 − 𝜑𝑢) − 12 𝐾4⊥cos4𝜃 − 18 𝐾4∥(3 + cos4𝜑)sin4𝜃, (2) 

where Hr is the resonance field, 𝐾2⊥ and 𝐾2∥ are the out-of-plane and in-plane uniaxial anisotropy 

constant, 𝐾4⊥ and 𝐾4∥ are the out-of-plane and in-plane four-fold anisotropy constant, and φu is the 

azimuthal angle between the easy axis of the uniaxial anisotropy and the CFA[100]. From Eqs. (1) 

and Eqs. (2) the relationship for 𝜔, 𝐻𝑟  and 𝜑 can be obtained as following: 

 (𝜔𝛾 )2 = [𝐻𝑟cos(𝜃 − 𝜃𝐻) + (𝐾4⊥𝑀𝑠 + 𝐾4∥2𝑀𝑠) cos4𝜃
+ (−4𝜋𝑀𝑠 + 2𝐾2⊥𝑀𝑠 + 2𝐾2∥𝑀𝑠 + 𝐾4⊥𝑀𝑠 − 𝐾4∥2𝑀𝑠) cos2𝜃]
× [𝐻𝑟cos(𝜃 − 𝜃𝐻) − 2𝐾2∥𝑀𝑠 − 2𝐾4∥𝑀𝑠 + (2𝐾4⊥𝑀𝑠 + 𝐾4∥𝑀𝑠 ) cos4𝜃

+ (−4𝜋𝑀𝑠 + 2𝐾2⊥𝑀𝑠 + 2𝐾2∥𝑀𝑠 + 𝐾4∥𝑀𝑠 ) cos2𝜃], 

(3) 

 

In view of 𝜃 = 𝜃𝐻 = 0, and let 𝐾4⊥ ≈ 0, 𝐾2⊥ ≈ 0, the equation can be simplified as: (𝜔𝛾 )2 = [𝐻𝑟 cos(𝜑 − 𝜑𝐻) + 4𝜋𝑀𝑠 − 2𝐾2𝑀𝑠 cos2(𝜑 − 𝜑𝑢) + 𝐾42𝑀𝑠 (3 + cos4𝜑)]
× [𝐻𝑟 cos(𝜑 − 𝜑𝐻) − 2𝐾2𝑀𝑠 cos2(𝜑 − 𝜑𝑢) + 2𝐾4𝑀𝑠 cos4𝜑] 

 

(4) 

When the measurements were started, 0o was set along [110] orientation of Co2+xFe1-xAl films. The 

red dotted lines in Fig. 2(a) shows the fitting results of resonant fields as a function of the 

magnetization orientation under saturated magnetized approximation. The dependence of 

quantitative anisotropic coefficients K2 and K4 on component ratio x is given out in Fig. 2(b). It is 

clearly demonstrated that the four-fold symmetry anisotropic coefficient K4 is of a dominating status 

with changing x, as well as one order of magnitude larger than K2. This result suggests that the 

intrinsic magnetocrystalline anisotropy has already covered up the interface-induced uniaxial 

anisotropy for 9 nm Co2+xFe1-xAl films. The maximum of K4 appears at x=0 and is equal to 0.81×

105 erg/cc, which suggest that Co2FeAl has the largest four-fold anisotropy among the samples with 

different constituent. 

The damping-constituent dependence is observed via polar TR-MOKE measurements. The 

geometrical configuration of the measurement is given in Fig. 3(a). The damped oscillations of 

magnetization excited by the pump laser are clearly recorded for each films. Fig. 3(b) shows the 



TR-MOKE signal of the films with x=0 under the magnetic fields from 1330 Oe to 8830 Oe. By 

solving the LLG equation it can be demonstrated that the oscillation curve can be fitted by a damped-

harmonic function superimposed with an exponential-decaying background[18], 

 𝑦 = 𝑎𝑒−𝜈𝑡 + 𝑏𝑒−𝑡𝜏sin(2𝜋𝑓𝑡 + 𝜑). (5) 

Here, a is the background magnitudes and ν is the decay ratio of the background signal, b, τ, f, and 

φ  are the amplitude, spin relaxation time, frequency and phase of magnetization precession, 

respectively. The red lines are the fit results by the single frequency oscillation function above, 

suggesting that the optically excited magnetization precession is a uniform mode. The same fitting 

method was used to manage the Kerr signal of all the films. Fig. 3(c) shows the data and the fitting 

results of the films with variable x under the external field of 8830 Oe. It is visible that the relaxing 

process of precession is much lower for the films with x ≤ 0 compared with which x > 0. 

By fitting the TR-MOKE signal with Eq. (5), the f-H dispersion dependence and spin relaxation 

time τ with varying H is obtained for every films as Fig. 4(a) and Fig. 4(b) exhibits. The red lines in 

Fig. 4(a) are the fitting results of the f-H relationship obtained by Eqs. (3). The equilibrium position 

of Ms is determined by the minimum of F by using the conditions 
∂𝐹∂𝜃 = 0 and ∂𝐹∂𝜑 = 0. It is obvious 

that the f-H relationship is almost the same with different components, which suggest that the in-

plane anisotropy is not contributing compared with the large external fields and the demagnetizing 

fields. From the LLG equation we can obtain the relationship between spin relaxation time τ and the 

Gilbert damping constant α as the following equation[24], 

 1𝜏 = 𝛼𝛾2𝑀𝑠 (𝐹𝜃𝜃 + 𝐹𝜑𝜑sin2𝜃). (6) 

Thus the effective damping constant can be calculated by Eqs. (6) and (2) under the view of the 

geometric status of 𝜑 = 𝜑𝐻 = 𝜑𝑢 = 45o and eliding perpendicular anisotropy. Fig. 4(c) provides 

the magnetic field dependence of effective damping constant for the samples. It is known that the 

effective damping approximate the intrinsic damping when the external magnetic field is high 

enough[15][25]. So we extract all the τ and 𝛼 under the maximum field of 8830 Oe and plot them as a 

function as component ratio x in Fig. 4(d). It could be pointed out that the maximum τ and the 

minimum α both appear at x=-0.2 rather than 0, which means that Co1.8Fe1.2Al has the longest spin 

relaxation time and the lowest damping. The minimum 𝛼  is 0.0065, which is smaller than 

conventional spintronical materials like FeNi[4][5]. In view of the relationship between the damping 

constant and the DOS in the theory, the lowest damping could suggest lower DOS near the Fermi 

Level. The damping constant of the Co2FeAl sample is measured as 0.0078. It is larger than the 

minimum value obtained by previous work but comparable with the results of other reports[11], [13]-

[15].  

 

Conclusion: 



Epitaxial Heusler-like compound Co2+xFe1-xAl films have been prepared via molecular beam 

epitaxy (MBE) with the x varying from -0.4 to 0.4. In-situ RHEED patterns suggest that the 

crystalline orientation of the samples follows Co2+xFe1-xAl(001)[110]//MgO(001)[100]. The VSM 

and FMR results show a component tunable four-fold magnetocrystalline anisotropy with the easy 

axis along [110] orientation. The maximum crystalline anisotropic constant, which is 0.81×105 

erg/cc, appears at x=0. Furthermore, TR-MOKE has been used to study the component dependence 

of the damping constant. The results reveal that the minimum of damping is obtained as 0.0065 at 

x=-0.2. This work provides a new approach to modulate the magnetic dynamic properties of Heusler 

alloy Co2FeAl by adjusting the proportion of Co and Fe. 
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Fig. 1 

 

Fig. 1. (a) RHEED patterns of MgO substrate and Co2+xFe1-xAl films with x=-0.4, 0, 0.4. The 

orientation of the electron beam is along MgO[100]. (b) Epitaxial crystal orientation relationships 

between Co2+xFe1-xAl and MgO(001) substrate. (c) Polar plot of the in-plane angle dependent 

remanence of CFA films with different thickness. The 0 degree denotes the in-plane Co2+xFe1-xAl 

[110] direction. (d) Hysteresis loops of the Co2+xFe1-xAl films with x=-0.4, x=0, and x=0.4 along 

the easy axis (E.A.) and the hard axis (H.A.), respectively. (e) Saturation magnetization vs 

component ratio x. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. 2 

 

Fig. 2. (a) The sketch of the coordinate system the FMR measurements; (b) FMR spectra of the 

samples along different orientation. ϕ is the angle between in-plane H and crystal direction [110] of 

Co2+xFe1-xAl. The red dotted lines are the fitting results of the resonant field-angle dependence. (c) 

Component dependence of the four-fold anisotropic constant K4 and uniaxial anisotropic constant 

K2. 

 

 

 

 

 

 

 

 



Fig. 3 

 

Fig. 3. (a) Geometry diagram of the TR-MOKE measurements. (b) Damping precession signals of 

Co2FeAl films under the external fields from 1330 Oe to 8830 Oe. The red lines are the fitting results. 

(c) Damping precession signals (circles) and fitting results (red lines) of Co2+xFe1-xAl with x=-0.4, 

-0.2, 0, 0.2, 0.4 under the external fields of 8830 Oe. 

 

 

 

 

 

 

 

 

 

Fig. 4 



 

Fig. 4. (a) The frequency-field dependence (dots) and its fitting results (red lines) for the films. (b) 

spin relaxation time τ as a function of the external field H for Co2+xFe1-xAl films with different x. 

(c) Effective damping constant αeff as a function of the external field H for the films. (d) Component 

dependence of τ (blue square dots and line) and αeff (red circle dots and line) with varying x. 


