
Discovery and Optimization of a Selective Ligand for the Switch/
Sucrose Nonfermenting-Related Bromodomains of Polybromo
Protein‑1 by the Use of Virtual Screening and Hydration Analysis
Vassilios Myrianthopoulos,† Nicolas Gaboriaud-Kolar,† Cynthia Tallant,‡,§ Michelle-Lynn Hall,∥

Stylianos Grigoriou,† Peter Moore Brownlee,⊥ Oleg Fedorov,‡,§ Catherine Rogers,‡,§ David Heidenreich,#

Marek Wanior,# Nikolaos Drosos,† Nikitia Mexia,† Pavel Savitsky,‡,§ Tina Bagratuni,∇ Efstathios Kastritis,∇

Evangelos Terpos,∇ Panagis Filippakopoulos,‡,§ Susanne Müller,‡,§,# Alexios-Leandros Skaltsounis,†

Jessica Ann Downs,⊥ Stefan Knapp,*,‡,§,# and Emmanuel Mikros*,†

†Department of Pharmacy, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece
‡Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research
Building, Roosevelt Drive, Oxford OX3 7DQ, U.K.
§Nuffield Department of Clinical Medicine, Target Discovery Institute (TDI), University of Oxford, Roosevelt Drive, Oxford OX3
7BN, U.K.
∥Schrödinger Inc., 222 Third Street, Cambridge, Massachusetts 02139, United States
⊥Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, U.K.
#Institute for Pharmaceutical Chemistry and Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University,
Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
∇Department of Clinical Therapeutics, School of Medicine, University of Athens, Mikras Asias 75, GR-11527 Athens, Greece

*S Supporting Information

ABSTRACT: Bromodomains (BRDs) are epigenetic inter-
action domains currently recognized as emerging drug targets
for development of anticancer or anti-inflammatory agents. In
this study, development of a selective ligand of the fifth BRD
of polybromo protein-1 (PB1(5)) related to switch/sucrose
nonfermenting (SWI/SNF) chromatin remodeling complexes
is presented. A compound collection was evaluated by
consensus virtual screening and a hit was identified. The
biophysical study of protein−ligand interactions was per-
formed using X-ray crystallography and isothermal titration
calorimetry. Collective data supported the hypothesis that affinity improvement could be achieved by enhancing interactions of
the complex with the solvent. The derived SAR along with free energy calculations and a consensus hydration analysis using
WaterMap and SZmap algorithms guided rational design of a set of novel analogues. The most potent analogue demonstrated
high affinity of 3.3 μM and an excellent selectivity profile, thus comprising a promising lead for the development of chemical
probes targeting PB1(5).

■ INTRODUCTION

Medical interventions directly targeting epigenetic function-
alities are among the most promising novel approaches for
treatment of serious pathological states such as cancer, metabolic
and neurological diseases, inflammation, and viral infections.1−5

The first marketed epigenetic drug (Vorinostat) provided in
2006 the “proof-of-concept” for targeting epigenetic machinery
by small molecules in a therapeutic manner. Since then, a
multitude of epigenetic proteins have been suggested as potential
targets for pharmacotherapy, including families of enzymes like
the histone acetyltransferases (HATs), the DNA methyltrans-
ferases (DNMTs), and the histone deacetylases and sirtuins
(HDACs and SIRTs). Bromodomains (BRDs) comprise a family

of 61 epigenetic modules implicated in recognition of acetylated
lysine (Kac) residues mainly on histones.6 The BRDs can be
found as components of at least 46 multidomain proteins of the
human genome.7,8 The discovery of a small molecule selectively
inhibiting BRDs in bromo- and extra-terminal (BET) proteins
(BRD2, BRD3, BRD4, BRDT) has provided solid evidence for
BRD druggability.9 The fused triazole-thienodiazepine scaffold-
based 1 ((+)-JQ1) has shown antiproliferative effects in BRD4-
dependent human NUT midline carcinoma (NMC) cells in
vivo.10 An increasing number of studies provides a compelling
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rationale for using 1 as well as a structurally related
triazolobenzodiazepine-based BET inhibitor (I-BET762, see
Figure 1A), mainly as antiproliferative or immunomodulatory
agents.11−15 The first BRD inhibitors have already entered
clinical trials as chemotherapeutic agents.16

The establishment of the BET group of BRDs as valid
therapeutic targets for the aforementioned aggressive form of
cancer, along with the increasing amount of data showing that
BRD modules critically affect several cellular functions, have led
to the emergence of BRDs as appealing targets for development
of highly specific inhibitors. As all BRD are not equally druggable,
the family can be subdivided into nine subfamilies (I to IX)
according to structural features that define druggability of each
member.17 At present, an increasing number of compounds
selectively inhibiting BRDs outside the BET group (subfamily II)
are described. Among the available molecules are I-CBP112 and
CBP30 that target subfamily III c-AMP response element-
binding protein binding protein (CREBBP) and E1A binding
protein p300 (EP300), compounds LP99, I-BRD9, and BI9564
inhibiting subfamily IV BRD7 and BRD9, compounds NI57, OF-
1, and PFI-4 targeting subfamily IV bromodomain and PHD
finger containing-1, -2, and -3 (BRPF1, BRPF2, and BRPF3),
compounds GSK2801 and BAZ2ICR targeting subfamily V
bromodomain adjacent to zinc finger containing-domain 2A and
2B (BAZ2B/A), and 2 (PFI-3) targeting subfamily VIII SWI/
SNF related, matrix associated, actin dependent regulator of
chromatin subfamily A, member 2 and 4 (SMARCA2/4) and

PB1(5), while a number of molecules targeting sets of BRDs have
been developed as well (compound structures are shown in
Figure 1A,B; for a more complete overview please see review refs
29, 30).18−30 Such compounds with single or group-wise BRD-
selective inhibitory properties can significantly advance the
elucidation of biological roles of targeted BRDs and may thus
serve as invaluable chemical biology probes for mechanistic
studies or as possible drug candidates.31

The BRDs of subfamily VIII have been characterized as
proteins of intermediate or difficult druggability, in contrast to
highly druggable subfamilies such as I or II (the BETs) or
individual members of subfamilies III, IV, and VII.17 Subfamily
VIII is comprised by BRDs that are mostly components of the
chromatin remodeling complexes of SWI/SNF family. Indeed,
all SWI/SNF complexes contain a central helicase with a
bromodomain (SMARCA2/4) while the polybromo-associated
BRG1 or hBRM-associated factor (PBAF) complex, a subtype of
the SWI/SNF complex (or SWI/SNF-B), contains also the
polybromo protein PB1 (or BAF180) which comprises six
individual BRD modules.32 Remodeling complexes of the SWI/
SNF family play a central role in development, particularly of the
cardiac cells.33−35 Mutations in components of these chromatin
modulators have been tightly linked to development of
numerous cancer types including epithelioid sarcoma and
malignant rhabdoid tumors.36,37 Especially in the case of renal
cell carcinoma and pancreatic cancer, normal expression of the
PBRM1 gene encoding for PB1 protein is considered as a critical

Figure 1. (A) Structures of known BRD inhibitors along with their specificity profile within the various BRD subfamilies. (B) Chemical structures for
selected compounds evaluated as BRD inhibitors in this study.
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factor of tumor progression.38−41 Moreover, truncating muta-
tions of PB1 which have been found in breast cancer cells suggest
a possible role for PB1 as a tumor suppressor. Although the
precise mechanism for its tumor repressor activity is not yet
clearly understood, it is thought that this functionality might be
partially mediated through the ability of PB1 to regulate p21
induction.42−44 Moreover, the tumor-suppressing role of PB1
has been shown to be related to promotion of centromere
cohesion and thus preservation of genomic stability in a manner
independent from its involvement in transcriptional regulation.45

An additional aspect of its tumor suppressing role is highlighted
by its activity as a repressor of transcription in response to
double-strand breaks of DNA.46,47 Finally, the occurrence of six
distinct BRDs on PB1 has raised a number of questions regarding
their concerted or complementary function or even their
redundancy.32 Two of PB1 BRDs lack the canonical asparagine
that coordinates the Kac carbonyl (or equivalent moieties in
inhibitors).6 It is likely that these BRDs bind therefore much
weaker to inhibitors that typically hydrogen bond directly with
this asparagine residue. As PB1(5) showed strongest interaction
to acetyl-lysine containing histone peptide arrays, it is therefore
likely the most relevant BRD anchoring PB1 (and the SWI/SNF
complex) to chromatin in an acetyl-lysine dependent way. As a
result, discovery of highly specific chemotypes with inhibitory
properties toward BRDs of subfamily VIII such as PB1 and more
specifically PB1(5) can be regarded as a challenging project,
which would advance the existing knowledge concerning their
underlying biological roles of these domains in health and
disease. This notion is further highlighted by the finding that,
while the ATPase module seemingly surpasses SMARCA2/4 as a
drug target for synthetic-lethal interventions in a number of
SWI/SNF-related cancer types, targeting PB1(5) and SMAR-
CA2/4 does not result in toxicity but in differentiation
phenotypes and thus simultaneous inhibition of several SWI/
SNF BRDs can possibly provide alternative routes for
therapeutically modulating chromatin remodeling.28,29,48

In this study, the utilization of three virtual screening (VS)
methodologies of high orthogonality and their combination in a
simple consensus scheme is presented. The National Cancer
Institute/Developmental Therapeutics Program (NCI/DTP)
Repository was systematically evaluated against a group of
underexplored BRDs with moderate druggability and a
pyrazoloisocoumarin hit showing low micromolar affinity, and
a promising selectivity profile toward the fifth BRD of PB1 was
identified. The attempt to optimize this ligand was based on the
integration of thermodynamic and structural data obtained by X-
ray crystallography and isothermal titration calorimetry (ITC)
analysis with theoretical calculations. Hydration mapping was
performed by implementation of the twomost robust algorithms,
namely SZmap and WaterMap, which afforded a high degree of
convergence. Subsequent synthesis of rationally designed
analogues where specific water molecules would be targeted by
gradual expansion of the exocyclic methyl group resulted in
derivatives demonstrating improved binding affinity and high
selectivity for PB1(5) over related BRDs, displacing the protein
from chromatin in cells and reducing viability of human
fibroblasts.

■ RESULTS AND DISCUSSION
In Silico Screening Protocol and Consensus Ranking. A

screening initiative was undertaken as a means to discover
compounds that selectively bind BRDs of subfamily VIII, thus
providing novel and tractable scaffolds for sustaining an inhibitor

development project. The NCI/DTP compound repository
comprising approximately 260000 entries was selected due to its
open-access policy. It was reasoned that an in silico computa-
tional evaluation of the collection prior to experimental screening
would increase the anticipated hit recovery rate and additionally
enhance the overall rational character of the study by providing
structural insight from the initial steps of the process. Therefore,
three distinct yet complementary VS methodologies were
implemented in a stepwise protocol aiming at the optimal
exploitation of sampling efficacy in a time-efficient manner.
These methods would directly account for binding to the protein
cavity (docking and scoring calculations featuring protein−
ligand energy terms and implicit solvent contributions to
binding) as well as conformational likeliness of the screened
compounds to a known active compound (three-dimensional
similarity involving pharmacophoric sites and shape in real
space) or for the existence of hidden or nonobvious molecular
motifs (two-dimensional similarity of topological fingerprints
representing structural features and chemical functionality)
commonly occurring between the screened collection entries
and a known active template.
The overall workflow of the implemented integrated VS

protocol is depicted in Figure 2. In the first step, a ligand-based
approach would be used to evaluate the total NCI/DTP
collection and find compounds that were similar to 1. For this
purpose, two-dimensional similarity screening was performed
using Canvas (Schrödinger Inc.).49−51 Canvas was additionally
used in this step to create a potentially enriched subset of the
initial library containing 5000 diverse compounds (∼2% of the
total). In the second step, results of the ligand-based diversity
evaluation would be redirected as input to a structure-based
screening approach by implementing docking-scoring calcu-
lations of the enriched subset toward the bromodomain Kac-
binding pocket using Glide SP (Schrödinger Inc.).52−55 In
parallel, a separate ligand-based three-dimensional similarity
screening of the global library would be performed using the
ROCS algorithm (OpenEye Inc.).56,57 Finally, results of the
different approaches were combined by a consensus scoring
scheme and the top-ranked compounds would be selected for in
vitro assays. The high degree of orthogonality between the two
different screening pathways was thought as a means to
effectively enhance sampling robustness and thus accuracy of
the VS protocol, while their combination in a mixed serial-
parallel manner was expected to optimize screening speed with
the most time-consuming structure-based method being
preceded by a ligand-based, fast prescreening of 2D similarity.
The NCI/DTP repository was independently prepared in

terms of correct protonation state, tautomerization, and
stereoisomerization for docking calculations and 3D similarity
searches using LigPrep (Schrödinger, Inc.) and Quacpac
(OpenEye, Inc.), respectively. In the case of 3D similarity
screening, Filter and Omega (OpenEye Inc.) were additionally
utilized for drug-likeness filtering and conformer ensemble
generation. No special preparation was needed for 2D similarity
searches. The query molecule used in both ligand-based
approaches was 1, the only high-potency BRD inhibitor known
at the time of the study. The compound does not show strong
binding to any BET group BRD. However, on the basis of the
highly conserved fold and high homology between BRD4 and
PB1 (sequence similarity 61.6%) as well as in the absence of any
other template, it was thought that the overall molecular
geometry of 1 would adequately outline the fundamental
structural requisites for competing Kac binding needed for hit
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recovery. It should also be noted that all NCI repository entries
containing the benzodiazepine (BZD) core were filtered out and
excluded from the screening study as a means to aid the discovery
of novel scaffolds with BRD binding properties.
In the 2D screening approach, the structures of all NCI/DTP

compounds were converted to fingerprint (FP) strings by
utilizing a variety of different algorithms for FP derivation. Then,
the structural similarity of each NCI/DTP compound with
respect to the query molecule was determined by comparing the
Tanimoto distance of its FPs with the corresponding FPs
calculated for 1. Setup of the 2D screening calculations was not
straightforward, as the selection of the most appropriate
combination among the wide array of FP derivation methods
and similarity measuring metrics available in Canvas is not always
trivial.51 For this reason, a minimal training set was prepared with
20 fragments of known binding affinities for BRD4, CREBBP,
and BAZ2B (SGC unpublished data) seeded into a set of 6000
randomly chosen entries from the NCI/DTP repository
regarded as inactive decoys. Then, a total of 60 screens were
performed using several recommended combinations of the
Canvas 2D-screening parameters and the efficiency of each

screen to top-rank the 20 active fragments among the 6000
decoys was quantified.50 Of these 60 screens, 11 afforded high
recovery rates of the known actives, with enrichment factor at
20% of screened library (EF20%) reaching 2.2−2.5 for the 11
selected FP combinations while it was 0−1.2 for the remaining
(EFmax20% is 5). These FP combinations were further selected
for screening the global NCI/DTP repository (concerning FP
derivation, scaling, and atom-typing methods; see Supporting
Information, Table S1).
In the structure-based approach, the 5000 molecules of the

enriched NCI/DTP subset derived from 2D-prescreening were
sequentially docked to the BRD Kac-binding pocket and their
theoretical affinity for the protein was evaluated using the
GlideScore empirical scoring function as implemented in Glide.
Concerning the 3D-sceening methodology, similarity searches
were performed for 200-conformer ensembles of each NCI/
DTP entry against 1 at its bioactive conformation. The 3D
similarity was determined in terms of overall molecular shape
overlap (shape similarity) as well as spatial similarity of
pharmacophoric sites such as positive and negative atoms,
hydrogen bond donors and acceptors, hydrophobes, and rings
(color similarity).
Each of the implemented screening approaches (2D similarity-

assisted docking and scoring screen, independent 2D and 3D
similarity screens) afforded a distinct list of compounds ranked
according to their potential to bind the BRD pocket and compete
with acetylated histone binding. The lists were combined by a
simple consensus scoring approach accounting for the frequency
of appearance of each compound within a given percentage
threshold of the top of the individual lists. By using this
consensus scoring scheme, the 40 top-ranked compounds were
selected for assessing their BRD binding properties in vitro using
a differential scanning fluorimetry (DSF) assay.

In Vitro Affinity Assessment of Top-Ranked Com-
pounds.The 40 compounds that scored higher in the consensus
scheme were assayed in vitro using the thermal shift DSF
screening assay (Supporting Information, Table S2). This
method is based on measurement of the thermal stabilization
of a protein in the presence of a small-molecule binder, as
determined by the increase of the protein−ligand complex
melting temperature (Tm) compared to that of the apoprotein.

58

A screening panel of six BRDs was utilized for obtaining insight
into the specificity profile of the potential hits. The DSF assay
was implemented with high protein and ligand concentrations
and resulted in the identification of seven compounds (3−9,
Figure 1B) with detectable temperature shifts (Supporting
Information, Table S3 for Tm curves and screening method of
selection). Out of those, five failed to bind PB1(5) but showed
very weak binding toward BRD4(2), with corresponding Tm
values ranging between 0.8 and 2.0 °C. These results were in
accordance with the well-established, favorable druggability of
this BRD (and the BET group in general).17 Only two
compounds afforded a Tm value larger than 3 °C. Compound
8 (NSC76484)59 resulted in a 3.2 °C stabilization toward
BRD4(2). This particular scaffold demonstrated a rather obvious
structural similarity with known BRD4 inhibitors, as its tricyclic
ring system contained a triazole moiety reminiscent of the
corresponding pharmacophore of 1. However, the most
interesting finding was compound 9 (NSC356476),59 which
showed a marked stabilization of 4.1 °C toward PB1(5) and at
the same time only weak binding to BRD4(2) (Tm of 1.9 °C) at
100 μM compound concentration. The results of the thermal
shift assay were considered as a good indication that 9, a

Figure 2. Virtual screening protocol utilized for the evaluation of the
NCI/DTP Repository. Compounds were subjected to three different in
silico screening methodologies. Two-dimensional similarity (toward 1,
Canvas software, left-side funnel) was performed after discarding
benzodiazepine-containing structures (BZDs). The top 2% diverse
NCI/DTP molecules were additionally docked to the BRD (Glide
software, middle funnel). In parallel, three-dimensional similarity was
undertaken for the total collection (toward 1, ROCS software, right-side
funnel). Finally, rank-ordered results originating from each of the three
distinct filters were combined by a consensus ranking approach and the
top 40 compounds were assayed experimentally for their BRD-binding
affinity.
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pyrazoloisocoumarin derivative of relatively low molecular
weight (200 Da), could constitute a novel BRD-binding scaffold
and at the same time a promising hit with a highly preferable
specificity profile toward BRD related to the SWI/SNF
chromatin remodeling complexes.
X-ray Crystallography of Ligand−BRD Complex. To

better understand the interaction between 9 and PB1(5), the
cocrystal structure of the protein−ligand complex was
determined at a resolution of 2.02 Å and the binding mode of
9was elucidated (Supporting Information, Table S4). The ligand
bound with the benzopyrone system buried deeply in the Kac
pocket, while the N3 of the pyrazole ring accepted a hydrogen
bond from the amide nitrogen of the conserved N739 (Figure
3B−D). With the exception of this hydrogen bond, the ligand
was stabilized mainly through hydrophobic interactions. The
most important contacts of 9 with the bromodomain are
accommodated by L687 and L693 of the ZA loop, by I745 of αC-
helix as well as by I683 and F684, two residues that constitute
along with A682 the WPF shelf of the Kac cavity in PB1(5). A
weak edge-to-face π−π stacking interaction could be observed
between the aromatic system of the ligand and Y738. Notably,
the overall conformation of the ZA loop in the complex of 7 and
PB1(5) did not induce structural changes when compared to the
apoprotein, suggesting that the unusual loop conformation
observed for PB1(5) in a previously released structure (PDB
code: 3G0J) is not induced as a result of ligand binding.
Interestingly, compound 9 displaced four of the five of the

conserved buried water molecules that are observed in the
majority of the available BRD−ligand complexes (Figure 3A−
D). These waters form an extensive hydrogen bond network in
the Kac-binding cavity which is usually retained in most of the
released bromodomain−inhibitor cocrystal structures (B-values
of waters between 28 and 40, similar to main chain Calpha
positions in the protein backbone). In the case of 9, however,
the only water molecule that was not displaced seems to be stably

bound through a multidirectional system of four hydrogen bonds
to the side chain hydroxyl of Y696, the side chain amide of N734,
and the backbone carbonyls of M704 and M731 (Supporting
Information, Figure S1). This water was the most deeply buried
of the aforementioned network of conserved waters, and it was
located within hydrogen-bonding distance to both the exocyclic
carbonyl of 9 and the side chain of the conserved Y696 of ZA
loop. This water molecule is highly conserved and forms a
hydrogen bond with the hydroxyl group of Y696 in acetyl-lysine
containing peptides and acetyl-lysine mimetic inhibitor com-
plexes. An additional water that participates in ligand binding was
found in the first hydration shell on the solvent-accessible side of
the Kac cavity, forming a hydrogen bond bridge between N2 of 9
and the side chain carbonyl of N739. Finally, the good
complementarity of the ligand to the acetyl-lysine binding cavity
was indicated by the solvent-accessible surface area that was
buried upon binding which was 172 Å2 for the ligand (135 Å2

apolar) and 188 Å2 for the protein (177 Å2 apolar).
A binding mode displacing four of the five structural water

molecules similar to 9 has also been described for 2 and salicylic
acid-containing fragments.27 It was therefore explored whether
compounds containing phenolic moieties similar to 2 and
salicylic acid or pyrone-related structures similar to the
isocoumarin system of 9 could induce the same water
displacement motif with 9 and hence demonstrate binding
affinity for PB1(5). Moreover, due to increased stability of
compounds bearing closed rings, such as 9, against hydrolysis
when compared to 2, identifying new scaffolds interacting with
SWI/SNF bromodomains using this unique water displacing
binding mode was of high interest to us. Screening of a small in-
house library of natural products identified 5,3′,4′-trihydroxy-
flavone (14) and luteolin (15) as binders of BRDs with strongest
temperature shifts observed for PB1(5) (Figure 4A,B).
Subsequent cocrystallization studies indeed confirmed the
hypothesized water displacing acetyl-lysine binding modes for

Figure 3. Binding of 9 to PB1(5) leads to displacement of water molecules. (A) Apo-structure of PB1(5) (PDB code: 3G0J) with the canonical water
network. Water molecules are shown as transparent spheres and are labeled W1−W5. The main secondary structure elements as well as acetyl-lysine
binding site residues are shown in stick representation. (B) Co-crystal structure of 9 with PB1(5). The inset shows a 2FoFc electron density map
contoured at 2σ around the ligand. (C) Overlay of 9 with the apo-structure. The main residues and water molecules present in the apo-structure are
shown. (D) Surface representation showing that 9 displaces four of five structural waters present in the acetyl-lysine binding site.
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both flavones, maintaining only water W5 in the binding pocket
(Figure 4C−F). The critical role this buried solvent molecule
seems to have in complex stabilization should certainly be
considered when planning chemical modifications targeting hit
optimization. Yet, its net energetic contribution to binding
should be carefully assessed because there might be a
considerable penalty component due to its restrained position-
ing. The affinity of 15 was determined using isothermal titration
calorimetry, resulting in a Kd of 12.9 μM.
Isothermal Titration Calorimetry Analysis. To accurately

determine the binding affinity of pyrazoloisocoumarin 9 for
PB1(5), we measured the dissociation constant (Kd) in solution
using ITC. This analysis revealed a Kd value of 11.5 μM, single
site binding stoichiometry and a favorable binding enthalpy
change (ΔH of −5.6 kcal/mol) were measured at 288 K,
affording a fairly high ligand efficiency (LE) index of 0.46 for this
hit (Table 1). The low micromolar affinity of 9 in combination
with its high LE showed that the compound could indeed be
considered as a promising starting point for rational development
of analogues with improved binding affinity. The estimated
ΔGbinding indicated that binding is dominated by enthalpic

interactions, in accordance with the structural analysis, showing
the formation of polar interactions. As mentioned before, the
flavonoid hit 15 had a similar affinity (Kd of 12.9 μM) (Figure
4B). However, by considering the less pronounced originality
and chemical tractability of the flavone system and, most

Figure 4. Flavonoids 14 and 15 interact with the acetyl-lysine binding site of PB1(5) in a water displacing binding mode. (A) Temperature shift assays of
14 and 15 measured on diverse bromodomains at 10 μM and 100 μM inhibitor concentration. (B) Isothermal titration calorimetry revealed a
dissociation constant of 12.9 μM for 15. Shown are raw titration heats as well as normalized binding heats (inset). (C) Binding mode of 14 shown in ball
and stick representation with yellow carbon atoms in PB1(5) (inset: 2FoFc map). (D) Binding mode of 15 shown in ball and stick representation with
yellow carbon atoms in PB1(5) (inset: 2FoFcmap). (E)Overlay of apo-PB1(5) with the 15 complex.Water molecules present in apo-PB1(5) are shown
as transparent spheres. Water molecules that are displaced in the 14 complex are highlighted by a red cross. (F) Overlay of apo-PB1(5) with the 15
complex. Water molecules present in apo-PB1(5) are shown as transparent spheres. Water molecules that are displaced in the 15 complex are
highlighted by a red cross.

Table 1. ITC Data along with the Predicted ΔΔG Values of
the Novel Analogues 8, 9, and 10 Relative to 7 As Obtained by
the FEP-REST Calculations (N-Values: 7, 1.0; 8, 1.2; 9, 0.8;
10, 1.1)a

FEP-REST ITC

compd
ΔΔGpredicted
(kcal/mol)

Kd
(μM)

ΔG
(kcal/mol)

−TΔS
(kcal/mol)

ΔH
(kcal/mol)

7 0.0 11.5 −6.5 −0.9 −5.6
8 −0.5 ± 0.1 3.4 −7.2 −0.6 −6.7
9 −0.9 ± 0.1 3.3 −7.2 −4.3 −2.9
10 −1.1 ± 0.1 5.1 −7.0 −0.6 −6.4

aThe ΔΔG values predicted by FEP-REST for each mutation along
with corresponding errors are calculated using the Bennett method as
implemented in Desmond software, while the maximum error between
predicted and experimental binding affinities is within 0.6 kcal/mol.
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importantly, the poor selectivity of 15 (Figure 4A) over other
BRDs and other target families (e.g., kinases), the aforemen-
tioned scaffold was not prioritized at that stage and 9was selected
for further activity optimization.
In an effort to devise a rational optimization strategy for the

newly characterized pyrazoloisocoumarin hit to a possible lead
compound, structural and thermodynamic data were combined
and considered collectively. Inspection of the binding mode of 9
indicated three major extension vectors that could be utilized for
hit optimization (shown in Figure 5A,B). Nevertheless, no
obvious hydrogen bonding or electrostatic interaction partner
was located within a reasonable radius around the bound ligand.
Moreover, the apparent optimal fit of 9 and PB1(5) in
combination with the known overall relative rigidity of the
BRD fold set skepticism with respect to its capacity to explore
more extensive models for hit expansion. It was hypothesized
that affinity of 9 could be potentially enhanced through
manipulation and fine-tuning of solvent effects that may affect
the binding interaction. To explore this, the computational
analysis of the protein hydration pattern was undertaken using
the two currently available algorithms, SZmap (OpenEye Inc.)
and WaterMap (Schrödinger, Inc.).60−63

Computational Hydration Analysis. Computational sol-
vation mapping of a binding site (e.g., as performed by SZmap or
WaterMap) can identify hydration sites that may confer ligand
potency should that ligand for example efficiently displace or
replace water molecules of appropriate energetics. As such,
solvation mapping can suggest possible lead optimization
modifications to optimize enthalpic protein−ligand interactions
while simultaneously decreasing unfavorable entropy that results
from localization of bulk water. The aforementioned approach
can be of particular importance in the case of BRDs. Indeed, it has
been shown that BRDs accommodate solvent-mediated
interactions with their ligands that involve buried, conserved
water molecules and are regarded as critical for binding. This
highlights the considerable impact that the equilibrium between
solvent dynamics and ligand binding can have to the druggability
of each BRD.17

The hydration analysis performed for PB1(5) was focused to
three separate regions of interest corresponding to the most
promising extension vectors of the pyrazoloisocoumarin scaffold
(Figure 5A,B). Those three regions were (i) the inner side of the
Kac cavity, (ii) the entrance of the binding cavity, and (iii) the

periphery of the ZA channel, a narrow saddle-shaped surface
created by the ZA loop in the boundary of the BRD cavity in
direct contact to the bound ligand. Those regions were
extensively mapped utilizing the two above-mentioned computa-
tional approaches and inspected visually. Concerning the first
region, SZmap predicted a hydration site partially overlapping
with the buried water of the Kac cavity, a site thus needed to be
efficiently replaced by a ligand polar group capable of forming
equally extensive stabilizing interactions with the protein. For the
second region, SZmap predicted a hydration site also
corresponding to a highly stable water molecule that would
consequently favor binding if merely being replaced by a polar
group of the ligand. However, concerning the third region,
SZmap predicted a cluster of unstable waters residing at the outer
boundary of this hydration site. Those waters were seemingly
trapped in a relatively hydrophobic environment yet in close
proximity to the bulk solvent, thus they could be possibly
targeted by nonpolar ligand groups (Figure 5A).
The utilization of WaterMap was also successful in identifying

the aforementioned regions of interest concerning the protein
hydration landscape (Figure 5B). Results obtained using
WaterMap showed high convergence with the corresponding
SZmap data with respect to the role of the buried water molecule
(Supporting Information, Figure S1). Both approaches predicted
that this was a highly stable water that would be rather difficult to
increase binding affinity by replacing it by the ligand. However,
WaterMap predicted that the hydration site located at the
entrance of the binding site harbors a relatively unstable water,
but these results were not confirmed by SZmap. This slight
discrepancy was likely due to the actual position of these waters
close to the first hydration shell of the protein and also to
algorithmic differences implemented by each methodology.
However, the prediction concerning the third region of interest
was in good agreement between bothmethods. More specifically,
at least two sites of unstable waters were predicted in the
periphery of the ZA channel, in good overlap with the cluster of
unstable waters predicted by SZmap. Moreover, another
conserved water site was identified in fair proximity at the
inner side of the ZA channel. Interestingly, prediction of the
latter as well as one of the former sites was well supported by the
actual presence of crystallographic water molecules in the
protein−ligand complex, as the unstable water was visible only in
one BRD molecule present in the asymmetric unit, while a water

Figure 5. Comparison of the 9−PB1(5) complex hydration analysis results obtained using SZmap and Watermap. (A) Hydration sites predicted using
SZmap algorithm are shown as yellow (negative ΔG, stable) and magenta (positive ΔG, unstable) spheres. (B) Water molecules predicted for 9−
PB1(5) complex using Watermap algorithm are depicted as spheres colored according to their ΔG (green, low; red, high). The three most feasible
extension vectors of the pyrazoloisocoumarin scaffold are depicted as red dashed arrows, and the related protein solvation sites are marked with their
corresponding energy values in kcal/mol. The two methods afforded fairly comparable results showing highest convergence toward predicting unstable
solvent molecules of ZA channel as the most promising hydration site that was therefore targeted by structural modifications of the hit.
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molecules predicted to be stable was present in both binding sites
and interacted with three hydrogen bonds to the backbone
carbonyls or amide nitrogens of residues A682, F684, L685, and
R686.
In a consensus point of view, this third site at the periphery of

the ZA channel was the most promising region in terms of
structural interventions targeting affinity optimization through
manipulation of the solvent component. Both approaches used
for hydration analysis suggested that this site, as occupied by
unstable waters, can be regarded as moderately exposed to the
solvent environment and, therefore, it is possibly suitable to be
targeted by nonpolar ligand groups in a manner that could favor
affinity by replacing those waters.
Design of Analogues and FEP-REST Calculations. In

light of the structural, thermodynamic, and hydration analysis
performed so far, inspection of the available extension vectors of
9 led to the selection of the 1-methyl group of the pyrazole ring as
the most suitable for chemical elaborations. Most substitutions
on the phenyl ring of 9 would possibly lead to steric clashes with
the protein as was suggested by the optimal fit observed for 9 in
the X-ray structure of the complex. Efficacious replacement of the
buried structural water was deemed highly challenging given the
enthalpic penalty predicted for the elimination of this water, a
notion in agreement with several lead optimization studies
available for BRDs (Figure 5 and Supporting Information, Figure
S1). Likewise, efficient replacement of the stable water at the
inner side of the ZA channel seemed unlike due to the
pronounced high free energy penalty estimated by SZmap
(−12.55 kcal/mol) and WaterMap (1.97 kcal/mol) for this
particular water. Moreover, any possible modifications targeting
the nitrogens of the pyrazole ring were avoided, as this part of the
scaffold constitutes an essential element of the pharmacophore
that anchors 9 to the protein, as shown in Figures 3B−D.
Combined with the insufficient convergence between the two
hydration mapping methodologies concerning the region
corresponding to the binding site entrance, the unstable waters
of the ZA channel were finally selected to be targeted. A
conservative, proof-of-concept strategy was devised wherein the
1-methyl would be gradually extended to an alkyl chain of up to
four carbon atoms (i.e., from 1-methyl to 1-n-butyl).
Indeed, in accordance with the predictions, the microenviron-

ment at the outer boundary of the ZA channel toward where the
introduced alkyl chain was anticipated to be directed and reside is
highly hydrophobic and consists of residues I683, F684, L685,
and P688. Moreover, the limited concavity and the overall shape

of the region suggested that the unavoidable conformational
entropy penalty expected by restriction of the alkyl chain upon
binding could be kept minimal, thus outbalancing any
unfavorable impact on ligand affinity. Yet, to check the
appropriateness of the designed modifications, free energy
perturbation-replica exchange solute tempering (FEP-REST)
calculations were undertaken and the predicted changes in free
energy of binding were determined. The ligand mutation module
as implemented in programDesmond (D.E. Shaw Research) was
used, and 5 ns simulations were performed for each trans-
formation of the ligand either inside the protein environment or
in pure water using an explicit solvent representation. The
simulation results showed that the designed analogues
demonstrated moderately higher predicted affinities compared
to the original methyl analogue. Interestingly, the most
promising modification was shown to be the introduction of
the long butyl chain. While there is no accurate methodology
based on FEP calculations for distinguishing between the
enthalpic and entropic components of the predicted free energy
release, visual inspection of the structures indicated that the
displacement of the unstable waters by the ZA channel periphery
by the extruding alkyl chain was realistic. Moreover, because of
the limited nature of the designed structural modifications, FEP
simulations were considered as reliable. Thus, the encouraging
predictions of FEP prompted us to proceed with synthesis of the
novel analogues.

Chemistry. Compound 9 was synthesized along with a series
of new analogues as depicted in Scheme 1. Yoon et al.
synthesized 4-acetyl-1,3-isochromandione from homophthalic
acid and acetic anhydride.64 Ozcan et al. later achieved the
synthesis of the nor-pyrazoloisocoumarin 13 (Scheme 1) from
homophthalic anhydride using a one-pot reaction consisting of
Vilsmeier/1,3-cyclization.65 Taking advantage of the reactive
methylene group in benzylic position (C4) of homophthalic
anhydride, a combined strategy of the two above-mentioned
literature data was developed for the generation of a first set of
analogues. Introduction of carbonyl moieties with different
carbon chains lengths in the C4-position of homophthalic acid is
rendered possible by nucleophilic substitution in alkaline media.
The reaction of homophthalic acid with thionyl chloride afforded
homophthalic anhydride in excellent yields, in accordance with
literature data. C4-deprotonation of homophthalic anhydride in
mild conditions using anhydrous pyridine and followed by
nucleophilic substitution of acetic, propionic, butyric, and valeric
anhydride afforded the corresponding intermediates 9a−12a in

Scheme 1. Synthesis of Isochromeno[3,4-c]pyrazol-5(2H)-one Derivatives
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low to moderate yields despite numbers of efforts to optimize the
conditions (time, base, temperature), slightly improved only by
the addition of anhydrous THF as solvent in the reaction media.
The 4-acyl-isochroman-1,3-diones 9a−12a were subjected to
pyrazole formation in the presence of hydrazine monohydrate in
refluxing DMF. The corresponding isochromeno[3,4-c]pyrazol-
5(2H)-ones 9−12 were obtained in low to moderate yields.
Structural Basis of Affinity Improvement and Selectiv-

ity Assessment of New Analogues. The affinity of the novel
analogues for PB1(5) was determined by ITC, which
demonstrated that the synthesized derivatives were indeed
stronger binders than the original methyl hit (Figure 6B). TheKd

values of 10 (ethyl), 11 (propyl), and 12 (butyl) derivatives were
3.4, 3.3, and 5.1 μM, respectively thus affording a 3.5-fold affinity
improvement (Table 1). Moreover, the conservative structural
modifications had a minor effect on LE, as the corresponding
index was 0.48 for 10 and 0.45 for 11, while 12 afforded a slightly
lower LE of 0.41. Notably, good agreement was obtained
between ΔGbinding determined by ITC and the corresponding
values predicted by FEP-REST calculations for the three novel
analogues with errors within 0.6 kcal/mol (Table 1). To address
the structural basis of the improved affinity, the crystallographic
determination of the complexes of 10, 11, and 12 with PB1(5)
was undertaken (Supporting Information, Table S4). As
expected, the overall binding mode of the analogues carrying
the extended alkyl chain on position 1 was highly similar to the
corresponding mode of the original methyl hit, thus sustaining
the basic protein−ligand interactions such as the hydrogen bond
of the pyrazole to N739 and the overall hydrophobic packing of
the ligand aromatic system inside the BRD cavity (Figure 7A,B).
The alkyl chain of the novel analogues was positioned toward the
periphery of the ZA channel where it resided, most notably the

butyl moiety, in fully extended conformation stabilized by
extensive contacts with P688 and the side chains of I683, L693,
and I745. These crystallographic data were in good agreement
with the computational hydration analysis, in terms of the
anticipated effect on binding affinity of solvent reorganization
and increase of buried nonpolar surface area of the ligand.
Indeed, superposition of the alkyl chain binding geometries with
the hydration sites predicted by WaterMap and SZmap showed
that the alkyl groups overlapped with water molecules
characterized by high free energy and thus predicted as unstable
(Figure 5). Because of the lack of specific stabilizing interactions
between those molecules and the BRD, their anticipated release
to bulk solvent would offer a fair gain in binding affinity without
serious perturbations on the overall enthalpy/entropy compen-
sation landscape, as the ligand groups would substitute the
solvent by forming comparable contacts with the protein.
Furthermore, a binding geometry comparison between 12, 15,
and 2 additionally showed that the butyl chain of 12matches the
interactions of the aromatic decorations of both 2 and the
flavonoid 15 (Figure 7C,D). It is thus possible that ring B of
flavonoids contributes to binding affinity by displacing unstable
waters in a similar manner to that of the butyl chain of 12. In
addition, another common SAR element between the new
analogues and 15 was the presence of a pair of H-bond acceptors
anchoring each ligand to N739 and water W5, respectively
(Figure 7C,D).
Notably, systematic thermodynamic and structural studies of

similar systems have shown that in many cases, increasing the
length of an alkyl chain leads to gain in enthalpy that is, hence,
fully offset by an unfavorable entropy change, thus affording a
negative net effect on binding affinity.66 In this study, we
demonstrated the use of designing constructive interactions with
the water environment of a protein/ligand system on the basis of
utilizing available solvation mapping algorithms. In a theoretical
druggability assessment of BRDs based on the available X-ray
crystallographic data, the degree by which different members of
the family constitute tractable drug targets was determined. In
this partition, BRDs of PB1 were clustered along with 57% of
total studied BRDs that were classified as of either intermediate
(PB1 BD2 and 5) or difficult (PB1 BD1, 3, 4, and 6) druggability.
However, in that study, structural water molecules of the
included BRDs were left intact and thus druggability
determination was based on the assumption that those waters
are not displaceable. The results presented herein show that such
an approach could be challenged by the notion that the net
contribution of solvent thermodynamics in binding cannot
always be straightforwardly generalized across a whole family of
proteins solely on the basis of structural similarity of related
proteins.
To address the issue of selectivity and check whether the

applied structural modifications and the observed affinity
improvement had any unfavorable impact to the specificity
profile of the scaffold, the affinity of 12 was determined toward a
panel of 15 BRDs (Figure 6A and Supporting Information, Table
S5) extended with a representative group of subfamily VIII
members. Compound 12 showed selectivity toward PB1(5) over
the closely related BRDs, with low binding (Tm not exceeding 2
°C) observed only toward PB1(3) (Supporting Information,
Table S5). Notably, no binding was observed toward either
BRD4 or, most importantly, the closely related SMARCA2, thus
highlighting the possibility of designing a high affinity chemical
probe targeting exclusively PB1(5). To further confirm these

Figure 6. Potency and selectivity of synthesized analogues to compound
9. (A) Temperature shift assays of compounds 9−12 on subfamily VIII
BRDs as well as selected other bromodomains. The inhibitors 1 and 2
were added for comparison. The heat map is color coded as described in
the figure. (B) Isothermal titration calorimetry data for compounds 9−
12 as well as 2. Shown are raw binding heats after baseline subtraction as
well as normalized binding heats (lower panel). The solid lines represent
nonlinear least-squares fits to the experimental data, and experimental
binding heats are color coded as indicated in the figure. The Kd values
determined for each experiments are also shown. All fitted and
calculated thermodynamic data are shown in Supporting Information,
Table S6.
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data, ITC was used, confirming that 12 did not interact with
SMARCA BRDs (Supporting Information, Table S6).
Cell-Based Assays. To test the ability of 12 to bind to the

bromodomain of PB1 and displace binding of PB1 from

chromatin, a fluorescence recovery after photobleaching
(FRAP) assay was performed. Chromatin was hyperacetylated
using the histone deacetylase inhibitor suberoylanilide hydroxa-
mic acid (SAHA) to increase the assay window.67 Cells were

Figure 7. Binding mode comparison. (A) Binding mode of compound 10 in PB1(5). (B) Superimposition of the binding modes of inhibitors 10−12
showing a high degree of similarity. The remaining conserved water molecule (W5) is highlighted. Hydrogen bonds are indicated by dotted lines. The
surface of the acetyl-lysine binding pocket is shown as a transparent sphere. (C) Comparison of bindingmodes of 12 and 14. (D)Comparison of binding
modes of 12 and the PB1/SMARCA inhibitor 2.

Figure 8. Compound 12 reduces PB1 association with chromatin in cells. (A) FRAP half recovery times of GFP-PB1 are significantly decreased when
treated with compound 12 at 20 μM as indicated. Cells expressing mutants of the bromodomain PB1(2) (N263A) or PB1(5) (N754Y) reducing the
binding to chromatin were analyzed as comparison as was the compound 2. Significant differences to cells treated with SAHA of p < 0.05 are shown by *.
(B) Time dependence of fluorescence recovery in the bleached area of cells expressing wt or mutant GFP-PB1 with the corresponding treatment as in
(A).
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transfected with a plasmid encoding GFP fused to either full
length PB1 or to mutant PB1(2) and PB1(5), showing reduced
ability to bind to chromatin. Cells were bleached with a laser and
recovery time measured with or without compound treatment.
Despite the fairly low potency in vitro 12 was able to displace
PB1 from chromatin to levels of the control 2 and the mutant
protein and showed similar half recovery times of ∼2 s (Figure
8).28 The Kd of 2 is 48 nM for PB1(5) measured by ITC as
compared to 5.1 μM for 12. This is therefore in line with the
effects observed in FRAP, where an effect on PB1(5) is seen for 2
at 1 μM and for 12 at 20 μM. FRAP experiments suggest that, at
least in part, the complex can be displaced. Yet, as this experiment
has been performed using overexpressed proteins, it cannot be
excluded that the endogenous SWI/SNF complex remains
bound to chromatin in the presence of PB1(5) inhibitors.
Analogue 12 was additionally subjected to a viability assay in

1BR-hTERT human fibroblast cells. The drug very slightly
reduced viability of the cells above 5 μM (Supporting
Information, Figure S2A), while 2 also reduced viability to a
similar level (Supporting Information, Figure S2B). It was next
determined whether 12 reduces the ability of BAF180 to bind to
chromatin using chromatin fractionation and Western blotting.
Consistent with the FRAP results, treatment of 1BR-hTERT
cells with 12 slightly reduced the levels of chromatin-bound PB1
(Supporting Information, Figure S2C). Loss of PB1 sensitizes
cells to DNA damaging agents including mitomycin C
(MMC).45 While U2OS PB1 knockout cells were more sensitive
to MMC than control cells, 12 did not result in any significant
sensitization to this drug and this was true for experiments using
2 as well (Supporting Information, Figure S2D). This suggests
that the remaining level of chromatin-bound PB1 is sufficient to
perform the function of PB1 in MMC-induced DNA repair.
Finally, the effect of 12 on cell proliferation was studied using
WST-1 and the multiple myeloma (MM) lines L363, H929, and
JJN3. In agreement with earlier reports, exposure of cells to 12
did not lead to significant inhibition of proliferation on JJN3 cells.

■ CONCLUSION
Precise estimation of the energetics accompanying solvent
dynamics and reorganization upon ligand binding is an aspect of
structure-based drug design that demands attention, as it
concerns one of the less comprehensible events addressed by
currently available theoretical approaches in response to the
increasing demand for high-quality free energy predictions.
Especially with BRDs, the available structural data seem to
converge toward identifying an ensemble of four to five buried
water molecules that are considered as an almost integral part of
the Kac binding cavity. However, whether those waters should
(or could) be effectively displaced upon compound binding,
aiming at an affinity gain in a selective fashion over the various
BRDmembers is still debatable. Discovery of the lowmicromolar
pyrazoloisocoumarin ligand of PB1(5) through a consensus
virtual screening approach provided a valuable starting point for
probing the importance of solvent effects in BRD hit
optimization. Although relatively low (1 molecule active toward
PB1(5) out of 40 top-ranked compounds assayed in vitro), the
hit rate achieved in this virtual screen was considered satisfactory,
given the serendipitous fact that the discovered hit demonstrated
a highly original binding mode involving displacement of waters
in a manner not seen in most BRD−ligand binding events
including the interaction of the template JQ1 with its target
BRD4. Rational elaboration of the scaffold was pursued by
combining experimental results obtained by ITC and X-ray

crystallography with theoretical data derived by predictive
algorithms modeling hydration of the target protein. The effort
was not focused on structural waters occupying the BRD Kac
cavity but rather on solvent trapped on the macromolecule
surface. By doing so, it successfully indicated a means to affinity
gain by chemical modifications targeting secondary contributors
as an indirect and alternative route to binding affinity
optimization.
Naiv̈ely, it would seem that growing an alkyl chain into solvent

where it cannot sustain considerable hydrophobic interactions
with the protein, would not contribute favorably to ligand
binding potency in any system.66 However, in this study, it was
shown that by considering the impact of solvent dynamics in
binding, one can achieve optimization of a hit through alternative
and possibly more efficient routes than those solely based on
inspection of protein−ligand interactions. To facilitate this, one
should go beyond utilization of structure-based techniques like
protein X-ray crystallography or docking and also look to solvent
mapping or other methods which take into consideration solvent
dynamics. The combination of different approaches demonstrat-
ing considerable orthogonality with each other but with the
potential to be reasonably integrated affords a highly reliable and
constructive representation of complex systems such as those of
protein/ligand/solvent regularly studied in drug discovery. More
specifically, by using innovative computational tools for solvation
mapping such as SZmap and Watermap, independently and in a
consensus fashion, one can distinguish between stable
(structural) and unstable (trapped) waters and thus devise
modifications targeting each category appropriately. This work
shows that by releasing unstable waters into bulk solvent, one
may achieve a favorable, although small, improvement in Kd, in
contrast to the expected view that growing an alkyl chain toward
water would result to derivatives of lower affinity.
The advances in the field of epigenetics, and more specifically

the discovery of compounds interfering with BRDs in a medically
relevant manner, underline the necessity for focused screening
efforts targeting proteins of the underexplored BRD subfamilies
and thus enabling elucidation of their functionalities and
involvement in different pathological states. On the other
hand, rational approaches for hit identification or lead
optimization can substantially facilitate the discovery process.
The integral approach presented in this study can enable the
most efficient exploitation of available structural, biophysical, and
biochemical data toward rational development of hit compounds
into promising leads for probe or drug discovery. The
characterization of cell-permeable pyrazoloisocoumarin deriva-
tives showing single-digit micromolar affinity toward the fifth
BRD and high selectivity over other subfamily members such as
SMARCA is anticipated to facilitate development of a chemical
probe for exploring the biological role of this protein interaction
module in the epigenetic mechanisms mediated by SWI/SNF
complexes.

■ EXPERIMENTAL SECTION
Library Preparation and Virtual Screening. Prior to calculations,

the NCI/DTP Repository compounds were enumerated and prepared
in terms of correct protonation states, tautomerism, and stereo-
isomerism using the LigPrep routine (Schrödinger Inc.). TheNCI/DTP
collection was prepared independently for ROCS screening using the
enumeration and conformer generation tools provided by OpenEye Inc.
(Filter, Quacpac, Omega) with default settings. The ligand-based
approach was based on the ROCS algorithm (OpenEye Inc.) with the
Tanimoto-combo scoring scheme and the implicit Mills−Dean force
field, while 1 was utilized as the query molecule. With respect to the
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structure-based approach, rigid docking was performed using the Glide
v. 5.7 SP sampling algorithm and the corresponding GScore SP5 scoring
scheme (Schrödinger Inc.) with the van der Waals atom radii scaling set
to 0.9 for the protein grid and to 0.8 for the screened ligands. Protein
preparation was performed by the corresponding routine as
implemented in Schrödinger 2014 suite. The three screening method-
ologies were combined by a simple consensus statistical scheme on the
basis of frequencies of appearance for each compound at the top of a
given percentage threshold in each of the computationally ranked lists
using Microsoft Excel 2010. For FEP-REST calculations, the ligand
mutation module as implemented in Desmond software (D.E. Shaw
Research) was used with default settings and 5 ns simulations were
performed for each transformation of the ligand either inside the protein
environment or in pure water using an explicit solvent representation.
Synthesis and Characterization of the Compounds. All

chemicals were purchased from Aldrich Chemical Co. Microwave-
assisted reactions were performed in a single mode CEM apparatus.
NMR spectra were recorded on Bruker DRX 400 and Bruker Avance
600 spectrometers (1H 400 and 600MHz); chemical shifts are expressed
in ppm downfield from TMS. HRMS spectra were determined on a
MSQ Orbitrap Thermofinnigan spectrometer. Columns chromatog-
raphy were conducted using flash silica gel 60 (40−63 μm) fromMerck.
Purity of the compounds has been determined by HPLC and was above
95%.
HPLC Conditions. HPLC chromatograms have been recorded on a

Thermo Finnigan chain (pump P4000, controller SN4000, autosampler
AS3000, UV detector UV6000LP) equipped with a Supelco Discovery
HSC18 5 μm column (25 cm× 4.6 mm). All the solvents were degassed
in an ultrasound bath for 15 min and then filtered (nylon membrane,
0.45 μm) prior to use. Samples were diluted inHPLC grade methanol (1
mg/mL) and filtered (nylon membrane, 0.45 μm). Retention times (tR)
are given in minutes. Two methods were used. Method A: H2O + 0.1%
CH3COOH/MeOH, 15/85 for 45 min. Method B: H2O/CH3CN, 10/
90 for 30 min.
Synthesis of Homophthalic Anhydride. Homophthalic acid (3g,

0.01665 mol) was dissolved in anhydrous CH2Cl2. Thionyl chloride was
then added (4.83 mL, 0.067 mol) dropwise. The mixture was then
warmed at reflux for 12 h. After completion of the reaction, solvent was
evaporated and the crude residue dried under high vacuum to remove
remaining traces of thionyl chloride. Homophthalic was obtained with
98% yield and used without purification. 1H NMR (400 MHz, CDCl3, δ
in ppm, J in Hz): 8.25 (d, J = 7.56, 1H, H-1), 7.37 (d, J = 7.6, 1H, H-4),
7.54 (t, J = 7.56, 1H, H-2), 7.72 (t, J = 7.56, 1H, H-3), 4.17 (s, 2H, H-5).
General Procedure for the Synthesis of 4-Acyl-1,3-isochro-

mandione 9a−12a.Homophthalic anhydride (1 equiv) was dissolved
in anhydrous pyridine (2 equiv). After 15 min, the corresponding
anhydride (4 equiv) was added dropwise. The mixture was then stirred
for 5 h at room temperature. Et2O was then added and the precipitate
filtered and washed with an extra amount of Et2O to afford the desired 4-
acyl-1,3-isochromandione as a white solid. The product was then used
for the next step without further purification.
General Procedure for the Synthesis of Isochromeno[3,4-

c]pyrazol-5(2H)-one 9−12. The desired 4-acyl-1,3-isochromandione
9a−12a (1 equiv) was dissolved in anhydrous DMF and stirred for 15
min. Hydrazine monohydrate was then added dropwise (4.2 equiv) and
the mixture warmed to reflux for 12 h. After completion of the reaction,
the mixture was cooled and water was added. The precipitate is then
filtered, washed with water, and dried, affording the corresponding
isochromeno[3,4-c]pyrazol-5(2H)-one 9−12.
Data for 1-Methylisochromeno[3,4-c]pyrazol-5(2H)-one 9. Yield:

40%. 1H NMR (600 MHz, DMSO, δ in ppm, J in Hz): 12.39 (s, 1H, H-
2), 8.20 (d, J = 8.00, 1H, H-6), 7.85 (m, 2H, H-8 and H-9), 7.49 (t, J =
8.00, 1H, H-7), 2.63 (s, 3H, 1′-CH3).

13C NMR (150MHz, DMSO, δ in
ppm): 161.39 (C-5), 156.97 (C-3a), 135.78 (C-5a), 135.47 (C-8),
133.58 (C-9a), 130.94 (C-6), 126.12 (C-7), 122.01 (C-9), 118.07 (C-1),
96.55 (C-9b), 11.68 (1′-CH3). HRMS (ESI+) m/z = 201.0659 ([M +
H]+) (calculated mass: 200.19). HPLC: method A tR = 3.17 min;
method B tR = 2.83 min.
Data for 1-Ethylisochromeno[3,4-c]pyrazol-5(2H)-one 10. Yield:

30%. 1H NMR (600 MHz, DMSO, δ in ppm, J in Hz): 12.95 (s, 1H, H-

2), 8.21 (d, J = 7.9, 1H, H-6), 7.87 (t, J = 7.5, 1H, H-8), 7.82 (d, J = 7.5,
1H, H-9), 7.49 (t, J = 7.90, 1H, H-7), 3.04 (q, J = 7.55, 2H, H-2′), 1.32 (t,
J = 7.55, 3H, 1′-CH3).

13C NMR (150 MHz, DMSO, δ in ppm) 161.35
(C-5), 156.94 (C-3a), 141.43 (C-5a), 135.59 (C-8), 133.42 (C-9a),
131.02 (C-6), 126.13 (C-7), 122.10 (C-9), 118.16 (C-1), 95.71 (C-9b),
19.24 (C-1′), 12.61 (C-2′). HRMS (ESI-) m/z = 213.0672 ([M −H]+)
(calculated mass: 214.22). HPLC: method A tR = 3.40 min; method B tR
= 2.91 min.

Data for 1-Propylisochromeno[3,4-c]pyrazol-5(2H)-one 11. 1H
NMR (600 MHz, DMSO, δ in ppm, J in Hz): 12.93 (s, 1H, H-2), 8.17
(d, J = 7.91 Hz, 1H, H-6), 7.81 (m, 2H, H-8 and H-9), 7.45 (t, J = 7.91
Hz, 1H, H-7), 2.96 (t, J = 7.41 Hz, 2H, H-1′), 1.7 (h, J = 7.31 Hz, 2H, H-
2′), 0.95 (t, J = 7.31 Hz, 3H, H-3′). 13C NMR (150 MHz, DMSO, δ in
ppm) 161.34 (C-5), 156.89 (C-3a), 140.04 (C-5a), 135.59 (C-8),
133.44 (C-9a), 131.03 (C-6), 126.15 (C-7), 122.09 (C-9), 118.20 (C-1),
96.01 (C-9b), 27.47 (C-1′), 21.30 (C-2′), 13.43 (C-3′). HRMS (ESI−)
m/z = 227.1287 [M−H]+ (calculated mass: 228.25). HPLC: method A
tR = 3.72 min; method B tR = 3.01 min.

Data for 1-Butylisochromeno[3,4-c]pyrazol-5(2H)-one 12. 1H
NMR (600 MHz DMSO, δ in ppm, J in Hz) 12.95 (s, 1H, H-2), 8.21
(d, J = 7.99 Hz, 1H, H-6), 7.87 (t, J = 7.5 Hz, 1H, H-8), 7.81 (d, J = 7.5
Hz, 1H, H-9), 7.48 (t, J = 7.99 Hz, 1H, H-7), 3.01 (t, J = 7.50 Hz, 2H, H-
1′), 1.69 (quintuplet, J = 7.52 Hz, 2H, H-2′) 1.40 (h, J = 7.52 Hz, 2H, H-
3′), 0.94 (t, J = 7.39 Hz, 3H, H-4′). 13C NMR (150 MHz, DMSO, δ in
ppm) 161.33 (C-5), 156.90 (C-3a), 140.21 (C-5a), 135.59 (C-8),
133.44 (C-9a), 131.04 (C-6), 126.13 (C-7), 122.05 (C-9), 118.20 (C-1),
95.94 (C-9b), 30.01 (C-1′), 25.35 (C-2′), 21.65 (C-3′), 13.59 (C-4′).
HRMS (ESI−) m/z = 241.0976 (M − H). HPLC: tR = [M − H]+

(calculated mass: 242.28). HPLC: method A tR = 4.29 min; method B tR
= 3.21 min.

The activity of the compounds was validated by X-ray crystallography
of all protein−compound complexes and by various different binding
affinity measuring methodologies such as ITC and DSF as well as cell-
based assays. All active compounds are therefore considered as not
PAINS.

Protein Expression and Purification. cDNA encoding human the
fifth BRD of PB1 (NCBI Gene ID: 55193) was obtained from the SGC
clone collection and was used as template to amplify the kinase domain
region of the protein, using the polymerase chain reaction (PCR) in the
presence of Platinum Pfx DNA polymerase (Invitrogen, UK). PCR
products were purified (QIAquick PCR Purification Kit, Qiagen Ltd.
UK) and further subcloned into a pMCSG7 derived expression vector
(pNIC28-Bsa4), using ligation independent cloning. This vector
includes sites for ligation-independent cloning and a Tobacco Etch
Virus (TEV)-cleavable N-terminal His6-tag (extension MHHHHH-
HSSGVDLGTENLYFQ*SM−). After digestion with TEV protease,
the protein retains an additional serine and methionine on the N-
terminus. The constructs were transformed into competent Mach1 cells
(Invitrogen, UK) to yield the final plasmid DNA.

Colonies from freshly transformed plasmid DNA in competent
Escherichia coli BL21(DE3)-R3-pRARE2 cells (phage-resistant deriva-
tive of BL21(DE3) cell (Invitrogen), with a pRARE plasmid encoding
rare codon tRNAs) were grown overnight at 37 °C in 30 mL of 2×
Luria−Bertani medium (LB-broth, Amresco) with 50 μg/mL
kanamycin and 34 μg/mL chloramphenicol (startup culture). The
startup culture was diluted 1:100 in terrific broth (TB, Merck), and cell
growth was allowed at 37 °C to an optical density of about 1.5 (OD600)
before the temperature was decreased to 18 °C. When the system
equilibrated at 18 °C, the optical density was about 3.0 (OD600) and
protein expression was induced overnight at 18 °C with 0.1 mM
isopropyl-β-D-thiogalactopyranoside (IPTG). The bacterial cells were
harvested by centrifugation (8700g for 15 min at 4 °C, FIBERLITE F9-
6x1000 LEX rotor, on a Thermo Scientific SORVALL LYNX 6000
centrifuge) and were frozen at −20 °C as pellets for storage. Cells
expressing His6 tagged protein were resuspended in lysis buffer (50 mM
HEPES, pH 7.5 at 25 °C, 500 mMNaCl, 20 mM imidazole, 5% glycerol,
1 mM tris(2-carboxyethyl)phosphine (TCEP)) and lysed using a
SONICS Vibra cell sonicator on ice. The lysate was cleared by
centrifugation (23000 rpm for 30 min at 4 °C, T29-8x50 rotor, on a
Thermo Scientific SORVALL LYNX 6000 centrifuge) and was applied
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to a cobalt-nitrilothiacetic acid agarose column (IMAC Sepharose 6 Fast
Flow, GE Healthcare charged with Co2+, 5 mL, equilibrated with 20 mL
of lysis buffer). The column was washed with 30 mL of lysis buffer at
gravity flow, and the protein was eluted using a step elution of imidazole
in lysis buffer (50, 100, 2× 300mM imidazole in 50mMHEPES, pH 7.5
at 25 °C, 500 mMNaCl, 1 mM TCEP). All fractions were collected and
monitored by SDS-polyacrylamide gel electrophoresis (Bio-Rad
Criterion Precast Gels, 10−20% Tris-HCl 1.0 mm, from Bio-Rad, CA;
gel run conditions, 200 V, 20−30mA, 50 min in SDS buffer). The eluted
protein was further purified with size exclusion chromatography on a
Superdex 75/200 16/60 HiLoad gel filtration column (GE/Amersham
Biosciences) on an ÄktaPrime plus system (GE/Amersham Bio-
sciences). Samples were monitored by SDS-polyacrylamide gel
electrophoresis and concentrated to ∼10 mg/mL in the gel-filtration
buffer, 10 mM Hepes pH 7.5, 150 mM NaCl, 5% glycerol, 0.5 mM
TCEP using a 10 kDa cutoff concentrator and were used for DSF assay
and isothermal titration calorimetry. Protein handling was carried out on
ice or in a cold room in all the above steps.
Protein Crystallization. Aliquots of the purified PB1 domain 5

(Uniprot identifier as PB1_HUMAN Q86U86-1 fragment 645−766)
were set up for crystallization using a mosquito crystallization robot
(TTP Labtech, Royston UK). Coarse screens were typically setup onto
Greiner 3-well plates using three different drop ratios of precipitant to
protein per condition (200 + 100 nL, 150 + 150 nL, and 100 + 200 nL).
Initial hits were optimized further scaling up the drop sizes. All
crystallizations were carried out using the sitting drop vapor diffusion
method at 277.15 K. Crystals with compound 9 were grown by mixing
150 nL of the protein (12.65 mg/mL and 5 mM final ligand
concentration) with an equal volume of reservoir solution containing
18% PEG3350, 0.15 M sodium malonate pH 7.0, 10% ethylene glycol,
and 0.1 M bis-tris-propane pH 8.1. Diffraction quality crystals grew
within a few days. Crystals in complex with the compound 10 (5 mM
final concentration) were obtained by mixing 150 nL of the protein (6.5
mg/mL) and 150 nL crystallization buffer (0.1 M trisodium citrate
dihydrate pH 5.6, 20% 2-propanol, 20% PEG 4K); PB1 bromodomain 5
crystals in complex with the compound 11 (5 mM final concentration)
were grown by mixing 200 nL of the protein (6.45 mg/mL) and 100 nL
of crystallization buffer (0.2 M ammonium sulfate, 0.1 M MES pH 6.5,
30% PEGMME 5K); PB1 bromodomain 5 crystals in complex of the
compound 12 (5mM final concentration) were grown bymixing 200 nL
of the protein (6.45 mg/mL) and 100 nL of crystallization buffer (0.1 M
lithium sulfate monohydrate, 0.1 M Tris pH 8.5, 30% PEG4K).
Complex crystals were cryoprotected using the well solution
supplemented with additional 20% ethylene glycol and was flash frozen
in liquid nitrogen.
Data Collection and Structure Solution. Data for the PB1(5)

complex with 9 were collected in-house on a Rigaku FRE rotating anode
system equipped with a RAXIS-IV detector at 1.52 Å. All other
diffraction data were collected at Diamond Light Source 03 and I04-1
beamlines at a single wavelength of 0.9763 and 0.9207 Å, respectively.
Data for the PB1(5) complex with 9 were indexed and integrated using
MOSFLM, and scaling was performed with SCALA.68,69 Other data sets
were indexed and integrated using XDS,70 and scaling was performed
with AIMLESS.71 Initial phases were calculated by molecular
replacement with PHASER using the apo template structure
3G0J.pdb.72 Unique and initial solutions were improved in a total of
50 cycles of automated protein chain tracing starting from existing
model and computed using ARP/wARP,73 further manual building with
COOT, and refinement against maximum likelihood target using
REFMAC5.74,75 Thermal motions were analyzed using TLSMD, and
hydrogen atoms were included in late refinement cycles.76 All model
validations were carried out using MolProbity.77 Data collection and
refinement statistics are compiled in Supporting Information, Table S2.
The models and structure factors have been deposited with PDB
accession codes: 5II1 (compound 9), 5HRV (compound 10), 5HRW
(compound 11), 5HRX (compound 12), 5IID (compound 14), and
5II2 (compound 15).
DSF Assay and Isothermal Titration Calorimetry. The proteins

at 2.5 μM (20 μM in preliminary high-throughput screening mode)
were mixed with ligands at 100 μM (200 μM in preliminary high-

throughput screening mode), and the assays and data evaluation for
melting temperatures were performed using a RT-PCR Mx3005p
machine (Stratagene) as previously described.58 All calorimetric
titration experiments were carried out in a VP-ITC calorimeter at 15
°C. The buffer condition used was 20 mM HEPES pH 7.5, 150 mM
NaCl, and 0.5 mM TCEP. Titration was performed by injecting the
proteins (200 μM) into a reaction cell containing the inhibitors (15
μM). Data analysis was performed with TA NanoAnalyze. Corrected
data were fitted to a single binding site model using a nonlinear least-
squares minimization algorithm and binding parameters including
reaction enthalpy changes (ΔH), reaction entropy changes (ΔS),
equilibrium dissociation constants (Kd), and stoichiometry were
calculated. In all experiments, the N-value was almost equal to 1.

Fluorescence Recovery After Photobleaching (FRAP). Full
length cDNA for the isoform 8 of human polybromo-1 protein (PB1,
Q86U86-8) was amplified by PCR from an IMAGE clone (IMAGE:
40082629) and cloned into pDONR-221 vector using Gateway BP
reaction producing Gateway entry clones. Mutations which impair
binding to a second (N263A) and fifth (N754Y) BRDs were introduced
into full length PB1Gateway entry clones using 15 cycles QuikChange II
PCR protocol (Agilent Technologies). Mammalian expression con-
structs encoding N-terminal EGFP tag were constructed by Gateway LR
recombination reaction between Vivid Colors pcDNA6.2/N-EmGFP-
DEST (Invitrogen, catalogue no. V356-20) and a wild-type or mutated
PB1 Gateway entry clone.

FRAP studies were performed essentially as described.62 In brief,
U2OS cells were transfected (Fugene HD; Roche) with mammalian
overexpression constructs encoding GFP fused to the N-terminus of full
length wild-type or mutant PB1. The imaging system consisted of a Zeiss
LSM 710 laser-scanning and control system (Zeiss) coupled to an
inverted Zeiss Axio Observer Z1 microscope equipped with a high
numerical aperture (N. A. 1.3) 40× oil immersion objective (Zeiss).
Samples were placed in an incubator chamber in order to maintaining
temperature and humidity. FRAP and GFP fluorescence imaging were
both carried out with an argon-ion laser (488 nm) and with a PMT
detector set to detect fluorescence between 500 and 550 nm. Once an
initial scan had been taken, a region of interest corresponding to
approximately 50% of the entire GFP positive nucleus was empirically
selected for bleaching. A time lapse series was then taken to record GFP
recovery using 1% of the power used for bleaching. The image data sets
and fluorescence recovery data were exported from ZEN 2009, the
microscope control software, into Origin to determine the average half-
time for full recovery for 10−20 cells per treatment point. Data were
analyzed using one-way analysis of variance (ANOVA) with Dunnett’s
multiple comparisons test.

Cell Culture. 1BR-hTERT and U2OS cells were cultured at 37 °C in
a 5% CO2 incubator in DMEM (Gibco) supplemented with 10% FBS,
1% penicillin/streptomycin, and 1% L-glutamine.

Viability Assays. First, 5000 1BR-hTERT cells were seeded into 96-
well plates in triplicate format. Then after 24 h, cells were incubated with
DMSO or 10 μM 12 with or without mitomycin C. Viability was
analyzed 4 days following drug treatment using CellTiter-Glo Reagent
(Promega).

Chromatin Fractionation. First, 6 ×106 1BR-hTERT cells were
plated into 10 cm dishes and grown for 24 h. DMSO or 10 μM 12 was
then added for 48 h, and the cells were harvested, washed in PBS, and
pelleted. Cell pellets were resuspended in low salt lysis buffer (50 mM
Tris pH 8.0, 2 mM EDTA, 2 mM EGTA, 150 mM NaCl, 0.2% Triton-
X100, 0.3% NP40) and incubated on ice for 5 min. Cell lysates were
centrifuged at 3000 rpm for 4 min at 4 °C and the supernatant removed
as the soluble fraction. The chromatin pellet was washed three times in
ice-cold PBS before incubation with Benzonase (Sigma) in nuclease
buffer (50 mM Tris pH 8.0, 20 mMNaCl, 2 mMMgCl2) for 30 min on
ice. An equal volume of twice the high salt/Triton buffer (1.86 M NaCl,
0.4% Triton-X100) was added before sonication in a water bath and
centrifuged at 14000 rpm for 5 min at 4 °C. The supernatant was
retained as the chromatin fraction. Then 50 μg of protein from the
soluble or chromatin fractions were run on polyacrylamide gels using
SDS-PAGE before Western blotting using antibodies against BAF180
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(Bethyl, A301-591A), α-tubulin (Abcam, ab7291), and CENPA
(Abcam, ab13939).
Cell Proliferation Assays. Cell proliferation of MM lines was

measured by the colorimetric WST-1 assay (Clontech, Mountain View,
USA) according to the manufacturer’s instructions. The method
measures the metabolic activity of viable cells based on the enzymatic
cleavage of the tetrazolium salt WST-1 (2-(4-iodophenyl)-3-(4-
nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium) to formazan dye
by cellular mitochondrial dehydrogenases, present in viable cells. As cells
proliferate more WST-1 is converted to the formazan dye product,
which can be quantified by measuring the absorbance at 450 nm in a
multiwell DAS plate reader. A number of 5 × 104 cells (1 × 106 cells/
mL) were seeded into each of 96-well microtiter plates (Corning). The
plates were incubated in a humidified incubator in 5% CO2 at 37 °C for
24 h, and 2−3 h prior to analysis, 10 μL of WST-1 solution was added to
each well.
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