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An Undersampled Phase Retrieval Algorithm via

Gradient Iteration
Qiang Li, Wei Liu, Senior Member, IEEE, Lei Huang, Senior Member, IEEE, Weize Sun, Peichang Zhang

Abstract—This work addresses the issue of undersampled
phase retrieval using the gradient framework and proximal regu-
larization theorem. It is formulated as an optimization problem in
terms of least absolute shrinkage and selection operator (LASSO)
form with (ℓ2+ℓ1) norms minimization in the case of sparse inci-
dent signals. Then, inspired by the compressive phase retrieval via
majorization-minimization technique (C-PRIME) algorithm, a
gradient-based PRIME algorithm is proposed to solve a quadratic
approximation of the original problem. Moreover, we also proved
that the C-PRIME method can be regarded as a special case of
the proposed algorithm. As demonstrated by simulation results,
both the magnitude and phase recovery abilities of the proposed
algorithm are excellent. Furthermore, the experimental results
also show the mean square error (MSE) performance of the
proposed algorithm versus iterative step.

Index Terms—Undersampled phase retrieval, gradient itera-
tion, sparse signal, majorization-minimization

I. INTRODUCTION

Algorithmically, most of the popular techniques for phase

retrieval can be divided into two main categories [1]. The first

one is based on the scheme of alternating minimization [2]

to recover the original signal. One classic approach is to use

the Gerchberg-Saxton algorithm [3], which introduces a phase

information variable of linear measurements. The second and

more recent class is based on the semidefinite programming

(SDP) technique and the rank-1 matrix recovery framework

[4], [5]. However, in the presence of high dimensional signals,

the “matrix-lifting” problem will be suffered [6]. Furthermore,

a Wirtinger Flow algorithm was proposed to solve the phase

retrieval problem by using steepest descent method with a

heuristic step [7]. More recently, a solution following similar

updating rule but with a specified step size was introduced in

[8].

Phase retrieval is an inherently non-convex ill-posed inverse

problem. Normally, the objective of phase retrieval is to

recover an original signal with relatively large probability,

where the number of measurements M needs to be greater

than the dimensions of incident signal N . Theoretically, it
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has been established that M ≥ 2N − 1 or M ≥ 4N − 4
generic measurements suffice for uniquely determining an N -

dimensional real-valued or complex-valued signal, respectively

[9]. In practice, however, the undersampled phase retrieval

problem is often encountered, which refers to the case of M <
N . Existing approaches attempt to solve the underdetermined

problem by introducing a sparsity assumption on incident

signals [10]–[12]. According to [10], a P -sparse complex

signal can be recovered successfully with M ≥ 8P − 2
in the case of Gaussian measurement vectors. A GESPAR

algorithm is proposed associating the damped Gauss-Newton

method with the 2-opt local search approach [11], which only

needs rough prior information on the sparsity level of incident

signals. However, the matrix-lifting technique is required,

leading to higher computational complexity. Using the convex

ℓ1 norm penalty term encouraging a sparse solution, the phase

retrieval problem is formulated into the LASSO form [12],

[13]. However, it requires information about the exact sparsity

level P [12] and the convergence rate of compressive phase

retrieval via majorization-minimization technique (C-PRIME)

is usually slow or not convergent at all [13].

On the basis of the C-PRIME algorithm, a simple and

efficient undersampled phase retrieval algorithm is proposed

in this paper, which is called gradient-PRIME algorithm (G-

PRIME for short) based on the gradient framework and the

proximal regularization theorem. It is interesting that the

proposed G-PRIME algorithm turns out to have a similar

closed-form solution as that of the C-PRIME approach, but

our G-PRIME algorithm is based on the derivation of the

gradient framework. The simulation results prove the phase

recovery ability and mean square error (MSE) performance of

the proposed G-PRIME algorithm.

II. PROBLEM FORMULATION

The problem of estimating an N -dimensional complex

signal x from M magnitude-only linear measurements y is

called phase retrieval. A basic phase retrieval model with

intensity measurements is

yi = |(Ax)i|2 + ni, i = 1, · · · ,M (1)

where |·| is the element-wise magnitude, yi and complex

measurement matrix A ∈ C
M×N are known beforehand and

n = [n1, · · · , nM ]T denotes noise.

It is easy to observe that the intensity measurements are non-

convex and not linear with regard to x due to the magnitude

operator. We consider undersampled phase retrieval in this

paper, which is an ill-posed inverse problem. Without loss of
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generality, we assume that the incident signal is sparse, which

can be found in various areas, such as optical imaging [5] and

astronomy [1].

Because using modulus information {√yi}Mi=1 has a smaller

variance value of additive noise than that of intensity informa-

tion {yi}Mi=1 in the case of |(Ax)i| > 0.5 [13], we formulate

the undersampled phase retrieval problem as the following

optimization model

min
x

M
∑

i=1

(
√
yi − |(Ax)i|)2 + λ ∥x∥1 (2)

where the parameter λ > 0 is a regularization penalty factor

and ∥x∥1 denotes ℓ1 norm of vector x, which is used to

regularize the ill-posed phase retrieval problem and promote

sparsity in x.

Due to the magnitude operator, (2) is not a convex prob-

lem either, which can not be directly solved by CVX and

other standard convex optimization approaches. Employing

the majorization-minimization (MM) technique, in [13], an

efficient C-PRIME method was proposed to solve a convex

surrogate problem instead. The surrogate optimization problem

is convex with regard to x and equivalent to the following

problem

x = argmin
x

[

C ∥x− c∥22 + λ ∥x∥1
]

(3)

where C is a constant satisfying C ≥ λmax(A
HA) and

λmax(·) denotes the largest eigenvalue of a matrix.

The optimization problem (3) has a simple closed-form

solution at the k iteration using the soft thresholding method,

i.e.,

xk = ej ang(c) ⊙max

{

|c| − λ

2C
, 0

}

(4)

where ang(·) denotes the phase angle and ⊙ denotes the

Hadamard (element-wise) product of two vectors. The vector

c is a constant independent of the variable x:

c = xk−1 − 1

C
AH

(

Axk−1 −√y ⊙ ej ang(Ax
k−1)

)

(5)

The C-PRIME method solves the surrogate optimization

problem in (3) with a simple closed-form solution at every

iteration.

III. PROPOSED ALGORITHM BASED ON THE GRADIENT

FRAMEWORK

A. The G-PRIME Algorithm

The optimisation in (3) can be cast as a second order cone

programming problem. We first consider the following general

formulation

x = argmin
x

[F (x) = f (x) + g (x)] (6)

where f is a smooth convex function and g is a continuous

convex function which is possibly nonsmooth.

Specifically, for the optimization problem (3), let f (x) =
C ∥x− c∥22 and g (x) = λ ∥x∥1. One of the most popular

methods for solving the problem is the iterative shrinkage-

thresholding algorithm (ISTA) [15]. The iterative procedure

of ISTA is

xk =
a

|a| ⊙max {|a| − λµ, 0} (7)

where µ denotes an appropriate step size and the vector a is

a = xk−1 − 2µC (xk−1 − c) (8)

Analyzing the above equation, we can find that the ISTA

algorithm has the same solution with the C-PRIME algorithm

in the case of µ = 1
2C .

Similar to the C-PRIME algorithm, the update of xk in the

ISTA method is employed at the previous value xk−1. In the

following section, we will consider another given quantity η

which may or may not be equal to xk−1. According to Taylor

series expansion and the proximal regularization theorem [14],

for a given point η, a quadratic approximation of F (x) =
f (x) + g (x) can be written as

QL (x,η) = f (η) + ⟨x− η,∇f (η)⟩+ L

2
∥x− η∥2 + g (x)

(9)

where L plays the role of a step and ∇f (·) is the complex

gradient vector. Then, we have

xk = argmin
x
{QL (x,η)} (10)

Discarding the constant term about η, the optimization

function (10) is simplified as

xk = argmin

{

g (x) +
L

2

∥

∥

∥

∥

x−
(

η − 1

L
∇f (η)

)
∥

∥

∥

∥

2
}

(11)

As mentioned above, we know that f (x) = C ∥x− c∥22
and then can get

∇f (η) = 2C (η − c) (12)

After that, xk can be represented as

xk = argmin

{

λ ∥x∥1 +
L

2

∥

∥

∥

∥

x−
[

η − 2C

L
(η − c)

]
∥

∥

∥

∥

2
}

(13)

Furthermore, according to the soft thresholding method

[16], we have

xk = ej ang(b) ⊙max

{

|b| − λ

L
, 0

}

(14)

where

b = η − 2C

L
(η − c) (15)

Then, if η = xk−1, substituting (5) into (15) and simplify-

ing it, we have

b = xk−1 − 2

L
AH

(

Axk−1 −√y ⊙ ej ang(Ax
k−1)

)

(16)

In this case, the solution x depends on step L rather than

parameter C. Here, we call the algorithm as G-PRIME. It is

interesting that we obtain the same solution of the problem (3)

as the C-PRIME algorithm in the case of L = 2C but from
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a totally different gradient theorem. Moreover, the C-PRIME

method can be regarded as a special case of the proposed G-

PRIME in the case of η = xk−1. It can be seen from the above

analysis that the update of xk is only employed on xk−1 in

the case of η = xk−1, which is the same as the C-PRIME

method. The G-PRIME is tabulated in Algorithm 1.

Algorithm 1: G-PRIME algorithm

Input: A,y, λ,K
Step 1. Initial x0 ← random complex vector

Choose L = 2 ∗ λmax(A
HA)

for k = 1, · · · ,K do

Step 2. Determine b by (15)

Step 3. Update xk by

xk = ej ang(b) ⊙max
{

|b| − λ
L
, 0
}

end for

Output: xK .

IV. SIMULATION RESULTS

In this section, we investigate the performance of the

proposed algorithm and compare it with the existing ones

including C-PRIME [13] and ISTA [15]. It should be noted

that the original ISTA algorithm in [15] is used to tackle the

general linear inverse problem. In this paper, combining the

model of the C-PRIME algorithm, the ISTA technique can

solve the phase retrieval problem, which is abbreviated as the

ISTA-PRIME algorithm.

In the following experiments, we assume that the mea-

surement matrix A is standard complex Gaussian distributed,

corrupted with real-valued additive white Gaussian noise and

the original complex signal is generated randomly. The length

N of the original complex signal is set as 128 with sparsity

level P = 8 and the number of measurements is 120. In

following simulations, the signal-to-noise ratio is SNR=25dB.

The parameter C and regularization penalty factor λ in all

tested methods are set as C = λmax(A
HA) and λ = 0.1,

respectively. We assign step size L = 2C for our proposed G-

PRIME algorithm unless specified otherwise. For the ISTA-

PRIME algorithm, the iterative step size µ should satisfy

µ ∈ (0, 1/||AHA||] [15]. The other parameters are initialized

as in Algorithm 1.

Firstly, for the proposed G-PRIME algorithm, in order to

compare the magnitudes of the recovered signal and the orig-

inal signal intuitively, the magnitude curves are shown in Fig.

1 at the 200th iteration. It is observed that the nonzero values

in the recovered signal are almost the same as those in the

original signal, which proves that the G-PRIME algorithm can

recover the magnitude information successfully. Furthermore,

to verify the recovering ability of phase information, Fig. 2

plots the recovered signal and the original signal at iteration

numbers k = 1, 20, 200, in which we can observe the iteration

process of the proposed G-PRIME algorithm. It can be seen

that the recovered signal is a random complex vector at the first

iteration and the position of recovered signal is already close to

that of the original signal after 200 iterations, which confirms
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that the phase recovery ability of the G-PRIME algorithm is

also excellent.

Now we compare the MSE performance of the proposed al-

gorithm with those of the ISTA-PRIME (µ = 0.1, 1/||AHA||)
and C-PRIME algorithms and the MSE results are shown

in Fig. 3, where all the MSE curves decrease gradually. As

mentioned in Section III, the G-PRIME algorithm has the same

solution as the C-PRIME algorithm in the case of L = 2C.

So the MSE curve of C-PRIME is not shown in Fig. 3.

It is obvious that the G-PRIME (L = 2C), C-PRIME and

ISTA-PRIME algorithms have the same steady-state value
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2×10−4. Furthermore, the G-PRIME (L = 2C) and C-PRIME

algorithms converge when the iteration number is close to 150

and the ISTA-PRIME algorithm approach convergence when

the iteration number reaches 170-190. Fig. 3 also depicts that

the G-PRIME algorithm has the slower convergence rate in

the cases of (L = 2C and L = 3C).
Then, we consider the MSE performance of the G-PRIME

algorithm under different steps. The MSE values of G-PRIME

versus parameter L from 1C to 5C are shown in Fig. 4, where

the MSE values are almost the same in the interval [1C, 2.5C].
Specifically, the MSE values close to 2×10−4. Moreover, we

observe that as the L increases, the MSE values become higher

rapidly when the step is in the interval [3C, 5C].

V. CONCLUTION

A undersampled phase retrieval algorithm based on the

gradient framework have been proposed. To solve the non-

convex ill-posed phase retrieval problem, the G-PRIME tech-

nique is employed to solve a quadratic approximation of the

original problem. In this work, we have proved the ISTA

algorithm has the same solution with the C-PRIME algorithm

when a suitable step is choosed. Also, the C-PRIME method

can be regarded as a special case of the proposed G-PRIME

algorithm. Numerical results have confirmed that the proposed

algorithm has excellent phase recovery ability.
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