
This is a repository copy of Land-sparing agriculture sustains higher levels of avian 
functional diversity than land sharing.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/143206/

Version: Accepted Version

Article:

Cannon, P.G., Gilroy, J.J., Tobias, J.A. et al. (3 more authors) (2019) Land-sparing 
agriculture sustains higher levels of avian functional diversity than land sharing. Global 
Change Biology, 25 (5). pp. 1576-1590. ISSN 1354-1013 

https://doi.org/10.1111/gcb.14601

This is the peer reviewed version of the following article: Cannon, P. G., Gilroy, J. J., 
Tobias, J. A., Anderson, A. , Haugaasen, T. and Edwards, D. P. (2019), Land‐sparing 
agriculture sustains higher levels of avian functional diversity than land sharing. Glob 
Change Biol., which has been published in final form at https://doi.org/10.1111/gcb.14601. 
This article may be used for non-commercial purposes in accordance with Wiley Terms 
and Conditions for Use of Self-Archived Versions.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article has been accepted for publication and undergone full peer review but has not 

been through the copyediting, typesetting, pagination and proofreading process, which may 

lead to differences between this version and the Version of Record. Please cite this article as 

doi: 10.1111/gcb.14601 

This article is protected by copyright. All rights reserved. 

MR. PATRICK GEORGE CANNON (Orcid ID : 0000-0001-5273-2519) 

 

Article type      : Primary Research Articles 

 

Land-sparing agriculture sustains higher levels of avian 

functional diversity than land sharing 

 

Running head: Functional diversity of forest and farmland 

 

Patrick G. Cannon
1*

, James J. Gilroy
2
, Joseph A. Tobias

3
, Alex Anderson

4
, Torbjørn 

Haugaasen
4
, David P. Edwards

1
 

1Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield 

S10 2TN, UK. 

2School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, NR4 7TJ, 

UK. 

3Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, 

Ascot, SL5 7PY, UK. 

4Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian 

University of Life Sciences (NMBU), 1430 Ås, Norway. 

 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

*Corresponding author: pcannon1@sheffield.ac.uk, +44(0)7774313773 (P.G. Cannon) 

ORCID iDs: orcid.org/ 0000-0001-5273-2519 (P.G. Cannon) 

 

Keywords: agroecosystems; defaunation; ecosystem function; conversion; habitat loss; land-

use planning. 

 

Type of paper: Primary Research Article   

 

Abstract  

The ecological impacts of meeting rising demands for food production can potentially be 

mitigated by two competing land-use strategies: off-setting natural habitats through 

intensification of existing farmland (land sparing), or elevating biodiversity within the 

agricultural matrix via the integration of ‘wildlife-friendly’ habitat features (land sharing). 

However, a key unanswered question is whether sparing or sharing farming would best 

conserve functional diversity, which can promote ecosystem stability and resilience to future 

land-use change. Focusing on bird communities in tropical cloud forests of the Colombian 

Andes, we test the performance of each strategy in conserving functional diversity. We show 

that multiple components of avian functional diversity in farmland are positively related to 

the proximity and extent of natural forest. Using landscape and community simulations, we 

also show that land-sparing agriculture conserves greater functional diversity and predicts 

higher abundance of species supplying key ecological functions than land sharing, with 

sharing becoming progressively inferior with increasing isolation from remnant forest. These 

results suggest low-intensity agriculture is likely to conserve little functional diversity unless 
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large blocks of adjacent natural habitat are protected, consistent with land sparing. To ensure 

the retention of functionally diverse ecosystems, we urgently need to implement mechanisms 

for increasing farmland productivity whilst protecting spared land. 

 

Introduction  

Conversion of complex natural environments to increasingly homogenised agricultural 

systems poses the greatest threat to tropical biodiversity (Dobrovolski et al., 2011; Laurance 

et al., 2014). Occupying over 14 million km
2
 of cropland and 33 million km

2
 of pasture 

globally, agriculture now represents the single greatest land use (FAOSTAT, Foley et al., 

2011).  Recent expansion of farmlands has continued to exert wide-ranging negative impacts 

on global carbon emissions, natural environments and ecosystem function (Fitzherbert et al., 

2008; Flynn et al., 2009; Kotowaska et al., 2015). Two contrasting strategies have been 

proposed to meet growing agricultural demand, whilst alleviating their impacts on nature 

(Green et al., 2005). First, intensification of farming on existing lands to maximise per 

hectare yields, thereby ‘sparing’ land elsewhere for nature (land sparing). Second, the 

integration of ‘wildlife-friendly’ habitat features, such as riparian strips, hedgerows, patches 

of remnant forest and organic practices throughout farmland, elevating biodiversity within the 

agricultural landscape (land sharing).  

The relative success of either land-use strategy varies considerably with contextual 

environment, depending on spatial scale and configuration of agricultural lands, institutional 

governance and existing social setting (Tscharntke et al., 2012; Sayer et al., 2013; Chaplin-

Kramer et al., 2015; Law & Wilson, 2015; Phalan 2018). Additionally, conclusions also 

appear dependent on study context, including the methodology used and researchers’ focus. 

Whilst the majority of empirical studies support species conservation via land sparing, the 
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evidence from modelling approaches is more evenly balanced, and the majority of reviews 

support land sharing (Luskin et al., 2017).  

Across tropical regions, low-intensity agriculture integrating ‘wildlife-friendly’ 

features can harbour substantial biodiversity (Steffan-Dewenter, 2007; Fischer et al., 2008; 

Ranganathan et al., 2010; Clough et al., 2011), particularly when adjacent to blocks of 

contiguous forest (Gilroy et al., 2014a; Edwards et al., 2015). In addition, such features can 

promote dispersal of organisms across agricultural landscapes through greater habitat 

connectivity (Anand et al., 2010). However, despite evidence of elevated biodiversity 

benefiting agricultural production through enhanced ecosystem services, such as soil 

formation and pollination (Klien et al., 2007; Perfecto & Vandermeer, 2010; Melo et al., 

2013), low-intensity sharing landscapes always suffer some reduction in per hectare yields. 

Achieving necessary production can, therefore, come at the expense of remaining natural 

habitat (Ewers et al. 2009; Edwards et al. 2010). Thus, the intensification of agriculture, and 

protection of associated spared blocks of natural habitat, is increasingly advocated as the 

better strategy.  

To date, empirical studies spanning regions and taxa have shown that more species 

are conserved at higher abundance within land-sparing than land-sharing farming (Edwards et 

al., 2010; Phalan et al., 2011; Chandler et al., 2013; Dotta et al., 2013; Hulme et al., 2013; 

Gilroy et al., 2014a; Williams et al., 2017). Land sparing also appears to support ecological 

communities with higher phylogenetic diversity and more specialist species, potentially of 

greater conservation value (Edwards et al., 2015; Socolar et al., 2016). Additionally, land-

sparing landscapes can hold greater capacity for carbon storage (Gilroy et al., 2014b; 

Williams et al., 2017). However, whether intensive agriculture does actively spare land for 

nature is still contentious (Ewers et al., 2009; Carrasco et al., 2014; Hertel et al., 2014) and 

land sparing can have negative ecological consequences arising from inappropriate 
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application and unsustainable intensification (Angleson & Kaimowitz, 2001; Tilman et al., 

2002). However, many of the criticisms of land sparing are based on misconceptions of the 

sparing-sharing model and ignore its original purpose – to explain how wild species respond 

to agriculture, and how best to conserve their populations in the future without compromising 

food security (Phalan 2018). 

Previous studies have focused on quantifying the species richness and structure of 

communities conserved within extensive low-intensity agro-landscapes versus areas of high-

yield farming which permit the retention of relatively large blocks of natural habitat (Phalan 

et al., 2011; Gilroy et al., 2014a; Edwards et al., 2015; Williams et al., 2017). A key gap in 

current knowledge is whether land-sparing or land-sharing strategies best conserve the 

functional structure of species’ assemblages. Here, functional diversity quantifies the range of 

functionally important traits and ecological roles present within a community that are at least 

partially responsible for sustaining various ecological processes (Tilman, 2001; Petchey & 

Gaston, 2002; Villéger et al., 2008; Leitão et al., 2016). Alongside phylogenetic diversity, 

functional diversity has been proposed to be a key metric of human impacts on biodiversity 

and ecosystem functioning (Flynn et al., 2011, Chapman et al., 2018), with demonstrated 

links to the productivity of multiple wild ecosystems (Duffy et al., 2017). Evidence also 

suggests land-use change can have greater effects on functional diversity than taxonomic 

diversity (Tinoco et al., 2018). Changes in environmental conditions following habitat 

disturbance and conversion consistent with a sparing or sharing strategy will likely drive 

environmental filtering, narrowing the range of ecological traits persisting within these 

altered landscapes (Cardinale et al., 2012; Fauset et al., 2012). In theory, this loss of 

functionally important species and their associated ecological roles can severely degrade the 

resilience and stability of communities to future conversion (Elmqvist et al., 2003; Bregman 
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et al., 2016), and reduce the provision ecosystem services (Hooper et al., 2005; Flynn et al., 

2009; Cardinale et al., 2012). 

Previous work has shown that simplification of natural systems, such as conversion to 

agriculture, corresponds to varying declines in functional diversity (Tscharntke et al., 2008; 

Luck et al., 2013). For example, wholesale conversion of tropical forest to oil palm 

plantations in Borneo greatly reduced functional diversity of both dung beetles (Edwards et 

al., 2013a) and birds (Edwards et al., 2013b). Similarly, within the Neotropics, avian 

functional diversity in groups of species involved in key ecological processes, including seed 

dispersal, undergoes catastrophic erosion when forest is converted to cropland or pasture 

(Bregman et al. 2016). Conversely, the retention of remnant forest patches is associated with 

the retention of higher functional diversity in agricultural landscapes (Prescott et al., 2016), 

likely because natural forests enable ‘spill-over’ of rare and functionally important species 

into farmland (Gilroy et al., 2014a). However, functional diversity has not been empirically 

tested within land-sparing and land-sharing theory, limiting our understanding of how 

functional diversity of communities is impacted in natural and agricultural landscape 

mosaics.  

Here, we examine the relative performance of land-sparing and land-sharing 

agriculture in conserving functional diversity of birds in the Chocó-Andes of Colombia, a 

threatened biodiversity hotspot (Jenkins, Pimm & Joppa, 2013). To assess how agricultural 

landscapes shape avian communities, we use field survey data collected across forest and 

farmland habitats and along gradients of increasing distance from contiguous forest and 

increasing proportions of within-farm wooded habitat cover. These habitat variables were 

then used to model species responses to varying natural and agricultural environments.  
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Birds are a useful system for assessing impacts of land-use change on ecosystem 

function because they are relatively easy to survey and have a number of measurable 

traitsincluding wing and beak shapeclosely linked to key ecological or trophic processes 

(Bregman et al. 2016). In addition, they are widely acknowledged to play a vital role in key 

ecological processes, including seed dispersal, pollination, pest control, nutrient cycling, and 

soil formation (see Lundberg and Moberg 2003; Şekercioğlu 2006; Şekercioğlu et al., 2016). 

Previous research has shown that avian species and functional diversity can significantly 

improve agricultural yields, particularly in the tropics (Karp et al., 2013; Maas et al., 2013), 

through services such as insect pest control and pollination (Classen et al., 2014; Martínez-

Salinas et al., 2016; Milligan et al., 2016). However, previous work has focused on 

agroforestry systems and current literature lacks empirical work demonstrating ecosystem 

service provision by birds specifically within open pasture systems. Despite the lack of 

current evidence, birds may provide important services within pasture via both provisioning 

services, including soil formation and nutrient cycling resulting from greater input of faeces 

and movement of nesting materials, and regulating services through the control of 

phytophagous (herbivorous) and parasitic pests.  

We compiled a comprehensive dataset of functional traits for all bird species sampled 

and used this to calculate functional diversity indices and abundance of key functional groups 

for observed and modelled communities. We then used these estimates to predict how 

functional diversity varied across a range of land-sparing and land-sharing scenarios, varying 

in level of agricultural production and distance from adjacent forest. Our goal is to provide 

information critical to land-use planning exercises designed to optimise functional diversity, 

with positive effects on the stability and resilience of natural systems, and potentially also of 

future agricultural production (Elmqvist et al., 2003; Karp et al., 2013). 
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Methods and materials 

Study sites 

We sampled three sites within the Colombian departments of Risaralda, Chocó and Antioquia 

(see Gilroy et al., 2014a; Fig. S1, Supporting information). Ranging from 1290-2680 m above 

sea level and characterised by sub-montane and sub-tropical cloud forest (Armenteras, Gast 

& Villareal., 2003), each study site spanned both farmland and contiguous blocks of 

predominantly primary forest, with some secondary forest (aged 6-30 years). Extensive cattle 

pasture represented the dominant agricultural form, covering around 10 million ha of the 

region and comprising > 95% of agricultural lands within each study site (Etter et al., 2006, 

Giraldo et al., 2010). 

Bird communities were sampled at 174 points distributed within 400 × 400 m squares 

apportioned to the relative cover of each of the three habitat types. A total of 58 squares were 

sampled, spanning farmland and contiguous blocks of forest, 23 in primary, 15 in secondary 

(6 mature secondary, aged 15-30 and 9 younger secondary, aged 6-15) and 20 in agriculture 

(see Fig. S1, Supporting information). Following previous studies, no distinction was made 

between forested habitats (Gilroy et al., 2014a). Squares were distributed randomly within 

habitats, with a minimum distance of 400 m between squares in the same habitat and 300 m 

between squares within different habitats. Within individual squares, sampling points were 

located at each corner of triangular transects, placed randomly within habitats to account for 

variation in microhabitat and spaced at least 200 m apart from one another to ensure 

community independence (Pearman, 2002; Hill & Hamer, 2004). Sampling was conducted 

during regional ‘dry seasons’, January-March and June-July 2012. 
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Habitat variables 

Squares located within cattle pasture spanned gradients of two habitat variables, the 

proportion of ‘wildlife-friendly’ habitat cover, comprised of patches of remnant forest, 

isolated trees, riparian strips and hedgerows (<27 ha), and varying distance from contiguous 

blocks of forests (ranging from 50-1550 m). We visually mapped the distribution of all 

‘wildlife-friendly’ features (F), within a 100 m radius of each sampling point (r), in addition 

to the extent of grazed pasture (P) and areas of non-pasture habitat, using site walkovers 

where required. Maps were digitised and used to calculate an index of ‘wildlife-friendly’ 

habitat within each sampling point relative to other land-uses, termed W (equation 1) (see 

Gilroy et al., 2014a). As to compare the proportion of habitat cover beneficial to biodiversity 

to that directly producing yield, we removed all other non-pasture habitats (farmland 

infrastructure, buildings and roads), before calculation of the index. Sampling points entirely 

composed of pasture (i.e. no ‘wildlife-friendly’ habitat cover) and forest sampling points (i.e. 

no pasture cover) were assigned values of W = 0 and W = 1, respectively.  

(eqn 1)                 
To reduce inaccuracies, distances of each pasture sampling point from the nearest 

contiguous block of forest were measured via remote-sensed data (ALOS/PALSAR) 

(Shimada, Tadono & Rosenqvist, 2010) and hand-held GPS devices. Additionally, where 

study sites remained largely inaccessible, visual mapping of forest edges was also used. 

Relative cover of each habitat from observations, excluding remnant forest fragments, were 

mapped by Gilroy et al., (2014a) (see Fig S1, Supporting information). Sampling points 

located entirely in either primary or secondary forest were assigned a distance of 0 m.  
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Avifaunal sampling 

Repeat visit point counts were used to sample bird communities (Gilroy et al., 2014a). Inside 

each square, three sampling points were positioned 200 m apart at each corner of triangular 

transects, totalling 174 points across all habitats. Sampling occurred between 6:00 am and 

12:00 pm on four successive mornings, except in inclement conditions. Sampling order of 

points varied to ensure all points were sampled at different times throughout the morning. 

Point counts lasted 10 minutes, with all birds within a 100 m radius recorded, excluding 

transitory or highly mobile species. We selected a point count radius of 100 m (r), based on 

previous evidence outlining spatial scales of community turnover in tropical forest birds 

(Pearman, 2002; Hill & Hamer, 2004). We identified species from unknown vocalisations by 

comparing field recordings (taken using Sennheiser ME66 microphones and Olympus LS11) 

with an online archive of pre-identified calls (www.xeno-canto.org).  

 

Constructing a functional trait matrix 

We assessed avian functional diversity by compiling a matrix of individual species’ life 

history traits for every observed species (n = 318) with respect to three broad categories, 

following previous studies highlighting functionally important traits (Flynn et al., 2009; Luck 

et al., 2012; Edwards et al., 2013b). First, dietary traits, comprised of differing foraging 

guilds (nectarivore, insectivore, granivore, frugivore, and carnivore). Second, behavioural 

traits, split into foraging strata (canopy, mid-strata, understorey and terrestrial) and foraging 

mode (trunk/branch, aerial and foliage). Third, following previous studies (Bregman et al. 

2016; Chapman et al. 2018), we compiled a suite of twelve morphological traits: body mass 

and length, tarsus length, tail length, wing length, Kipp’s distance, hand-wing index, and bill 

width, depth, shape and length (both nares to tip and exposed culmen). Measurements of 

http://www.xeno-canto.org/
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wing length and Kipp’s distance – the distance from wing tip to the first (outermost) 

secondary feather – were not included directly in the matrix but used to calculate hand-wing 

index (Kipp's ×100 ⁄ wing length), a measure of wing aspect ratio correlated with flight 

efficiency (Pigot et al., 2016b). Hand-wing index reflects the pointedness of a bird’s wing, 

providing a widely used index of avian dispersal ability and ranging behaviour, with 

relevance to seed dispersal, pollination, gap-crossing ability and sensitivity to habitat 

fragmentation (Bregman et al., 2016, Pigot et al., 2016a). Additionally, information on basic 

life history traits, degree of territoriality and predominant habitat type, were also included 

(see Table S1 for full trait list and functional significance of each trait). 

Information on individual species’ traits was derived from both online sources and 

measurements from museum specimens. Dietary information, foraging strata, foraging mode, 

and morphological traits (bill shape, body length and body mass) were obtained from an 

online source, Handbook of Birds of the World Alive (del Hoyo et al., 2014). Measurements 

of body length and mass represent averages across males and females. For all other 

morphological traits, we measured specimens from museum collections taking measurements 

from at least two female and two male specimens when possible. For further details of 

morphometric methods and sources of specimens, see Data S1 and Methods S1, Supporting 

information. 

As many generalist species feed on multiple prey items or at multiple strata, we split 

trait categories – diet, foraging strata and foraging mode – into multiple independent binary 

traits, allowing species to possess multiple traits within the same category (e.g. to be 

frugivorous and insectivorous), following methods by Petchey et al. (2007). Additionally, we 

checked that species traits had minimal correlation before inclusion in the final matrix from 

which measures of functional diversity were calculated (see Fig S2, Supporting information 

for correlation plot, and Table S1 for correlated traits).  
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Measures of functional diversity 

Having compiled information of individual species traits, we used the FD (Laliberté et al., 

2014) and picante packages (Kembel et al., 2010) to calculate five indices of functional 

diversity. These included the complementary indices; functional richness (FRic), functional 

evenness (FEve), functional divergence (FDiv) (Villéger et al., 2008), and functional 

dispersion (FDis) (Laliberté & Legendre, 2010), in addition to the standalone measure of 

functional diversity, FD (Petchey & Gaston, 2002).  

FRic, FEve, FDiv and FDis are measures of species ordination within multidimensional 

‘trait space’, with axes representing sets of correlated traits and species positioned in space by 

their individual traits, identifying each species ecological niche (Villéger et al., 2008). Each 

index gives specific information on the functional diversity of communities based upon their 

ordination within trait space: 

1. Functional richness (FRic) represents the total volume of space occupied by a set of 

species. Communities with greater FRic likely contain a greater range of functional 

traits potentially corresponding to greater utilisation of resources. Loss of species at 

the edges of trait space, as a result of land-use change, will cause a reduction in 

functional richness potentially corresponding to a loss of specific functional roles. 

2.  Functional evenness (FEve) describes how evenly a community’s species are 

distributed within trait space relative to their abundance. Communities with greater 

FEve have more efficient resource use, as species abundances are more evenly 

distributed within trait space. Communities whose constituent species occupy a 

similar region of trait space, and thus carry out similar functional roles, will be less 

evenly distributed, having lower FEve and higher functional redundancy. 
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3. Functional divergence (FDiv) measures the relative abundance of species with the 

most extreme functional traits (those furthest from the centre of trait space), indicating 

levels of niche differentiation. Thus, communities with greater FDiv likely have 

greater niche differentiation, correlating to reduced competition. Declining FDiv can, 

therefore translate to declining abundances of species with unique functional traits. 

4. Functional dispersion (FDis) measures the distribution of species traits, measuring the 

mean distance of species from the centre of trait space and weighted by abundance 

(Laliberté & Legendre, 2010). Increases in FDis represent a greater representation of 

species with more unique functional traits. 

Species were weighted by their abundance, with all traits weighted equally. Before 

calculation, we converted the trait matrix to a distance matrix using the Gower distance 

measure (Pondanni, 1999). Principle coordinate analysis (PCoA) was then used to calculate a 

transformed trait matrix, from which functional diversity indices were calculated. Species 

were positioned within ‘trait space’ via a multidimensional convex hull (Villéger et al., 

2008).  

To calculate the functional diversity index, FD, we used dendrogram based methods 

following Petchey and Gaston (2002). Unweighted Pair Group Method with Arithmetic Mean 

(UPGMA) was used to calculate a functional dendogram for all species within the regional 

species pool (Swenson, 2014), before calculating FD values by summing the total connecting 

branch lengths of all species within a community (Petchey & Gaston, 2002). Due to forested 

habitats having far greater species richness than pasture (Gilroy et al., 2014a) and a known 

correlation between species richness and FD, we also calculated the standardised effect size 

of FD (sesFD) for observed communities (see Text S2, Supporting information). 

Communities with positive values of sesFD hold greater functional diversity than expected by 

chance, and relative to their species richness, whilst communities with negative sesFD hold 
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lower levels of functional diversity than expected by chance, and relative of their species 

richness. Communities with greater sesFD may be more susceptible to declining functional 

diversity in response to species loss, as each constituent species contributes more to overall 

functional diversity than those of a community with lower sesFD. Analysis of sesFD requires 

an abundance matrix (each species’ abundance at each sample point). However, for model 

communities, a single abundance for each species is predicted for the entire hypothetical 

landscape, and not at the individual point scale. As a result, analysis of this index was limited 

to raw data (see Fig S3). 

 

Impacts of ‘wildlife-friendly’ habitat and proximity to forest on functional 

diversity in farmland 

To examine variation in each functional diversity metric in response the two habitat variables, 

we controlled for the effects of imperfect detection on estimates of site level species 

occurrence using a Bayesian hierarchical occupancy model (Dorazio & Royle, 2005). For all 

318 species detected, we modelled species occurrence probabilities in response to the 

proximity of contiguous forest, and the proportion of ‘wildlife-friendly’ habitat cover, at each 

sampling site (following Gilroy et al. 2014a). The model accounts for large-scale spatial 

variation in occupancy via site-level random effects, as well as temporal and between-species 

variation in detection probabilities, including, for example, reduced detectability within dense 

forested or ‘wildlife-friendly’ habitats relative to open farmland, and reduced vocal activity 

later in the day (Gilroy et al. 2014a). Prior to modelling, species were divided into those 

species detected in forested habitats (288 forest species) and species exclusively detected in 

cattle pasture (30 non-forest species), modelling each community separately. Parameters were 
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estimated using WinBUGS version 1.4 (Spiegelhalter et al. 2003; see Gilroy et al., 2014a for 

full details). 

We used posterior-predictive samples of species occurrence probabilities to estimate 

the abundance of each species at each farmland sampling point, fully accounting for 

imperfect detection and model uncertainty (Dorazio & Royle, 2005). To calculate an 

abundance metric for each species at each site (necessary for some functional diversity 

metrics), we took the sum of 30 Bernoulli trials with probability given by each of the 1000 

posterior-predictive samples of site-level species occurrence probability. Estimated 

communities are therefore equivalent to the relative prevalence (predicted occurrence and 

abundance) of each species in a hypothetical landscape composed of 30 sites (circles of 100m 

radii) with identical habitat conditions to the sampled site in question. We then calculated 

each of the mean functional diversity metrics for these 1000 samples for each site.  

 

Simulating land-sparing and land-sharing scenarios 

To assess the relative performance of land-sparing and land-sharing farming in conserving 

functional diversity, a landscape simulation process was used to estimate species abundances 

under hypothetical land-sparing and land-sharing landscapes (see Fig 1. in Gilroy et al., 

2014a). Each hypothetical landscape consisted of management units, each made up of 30 

‘sites’ with a set of habitat characteristics dictated by the scenario in question. For land-

sharing scenarios, all units within a landscape consist of farmland sites, each containing a 

fixed proportion of ‘wildlife-friendly’ habitat cover and located at a given distance from the 

nearest contiguous forest (with scenarios spanning 250-1500 m, in increments of 250 m). To 

simulate land-sparing, landscapes are divided into farmland sites and ‘spared’ sites, with 

farmland sites consisting entirely of pasture (i.e. no ‘wildlife-friendly’ habitat), again located 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

at a given distance from contiguous forest, and ‘spared’ sites that are located within the 

contiguous forest block (i.e. the spared portion of the landscape is permitted to be ‘off-farm’). 

Each scenario was simulated at two production levels of cattle pasture, consistent with 

upper and lower limits of pasture cover observed across sample sites: high production = 80% 

grazed land; low production = 20% grazed land. For instance, in a high-production simulation 

of land-sharing, 80% of each individual site was grazed and 20% designated as ‘wildlife-

friendly’ habitat, whereas in a high-production simulation of land-sparing, 80% of the sites 

were designated as fully-grazed and 20% of sites designated as contiguous forest. Land-

sparing and land-sharing scenarios, at a given production level, support the same aggregate 

level of cattle production, and thus examine the performance of each scenario in conserving 

functional diversity, independent of production. 

We then calculated our five measures of functional diversity for 10,000 replicates for 

each simulated landscape scenario, again converting species occurrence probabilities to 

landscape-level abundance metrics via summed Bernoulli trials. Mean values of each 

functional diversity measure were then produced from these 10,000 replicates under each 

land-sparing and land-sharing scenario. For each iteration, new parameter values were 

randomly drawn from their respective posterior distributions, thus fully exploring the 

uncertainty in model parameters. 

 

Estimating impacts of land-sparing and land-sharing agriculture on avian 

functional traits 

Although functional indices provide important information about the functional structure of 

communities, they are insensitive to changes in the abundance of constituent species. In 

particular, functional diversity (FD) and functional richness (FRic) are unaffected by changes 
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in species abundance. To evaluate how the prevalence of key functional traits might be 

influenced by agricultural expansion under either land-use strategy, we estimated ‘trait 

abundances’ for communities under land sparing and land sharing by summing the model-

predicted abundances of species possessing each functional trait within 30-site simulated 

landscapes, derived using the method described above. We then calculated the change in the 

abundance of each trait relative to an all-forest baseline (i.e. a simulated landscape 

comprising 30 ‘sites’ within forest) and repeat this for 1,000 replicates under each scenario. 

We compare changes in trait abundances for twelve categorial traits, spanning three trait 

categories (Dietary: frugivore, nectivore, carnivore, granivore and insectivore, Foraging 

mode: aerial, trunk/branch, and foliage, and Foraging strata: terrestrial, understorey, 

midstrata, and canopy).  

 

Results 

Impacts of farming on functional diversity 

All functional diversity indices, other than FDiv (Fig S4. a), were affected by habitat type. 

Predicted values of FD and FRic were substantially lower within pasture than forest (Fig. 1a, 

d). In contrast, FEve was predicted to peak within cattle pasture in comparison to forested 

habitat (Fig. 1g). A similar effect of habitat was observed for FDis (Fig S4. d). Within pasture 

sites, predicted responses of functional indices to the two habitat variables indicate strong 

effects of proximity to forest and proportion of ‘wildlife-friendly’ habitat on FRic and FD 

(Fig. 1). FRic and FD were predicted to peak in pasture containing a greater proportion of 

‘wildlife-friendly’ features and located closer to contiguous blocks of forest (Fig. 1b and c, e 

and f). Contrastingly, functional evenness of pasture sites remained largely unaffected by 
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either distance from forest or relative cover of ‘wildlife-friendly’ habitat (Fig. 1h and i), 

mirroring predicted responses of FDiv and FDis (Fig S4.). 

In addition to simulated communities, all functional indices and sesFD were 

calculated for observed communities, at the sample point and whole habitat level (see Table 

S2, Supporting information). In contrast to FD values of observed and simulated 

communities, sesFD was greater in cattle pasture than forest and was unaffected by both 

proportion of ‘wildlife-friendly’ habitat cover and distance from contiguous forest (Fig S3, 

Supporting information). 

 

Impacts of land-sparing and land-sharing agriculture on functional diversity  

Predicted levels of functional diversity conserved under simulated land-sparing and land-

sharing scenarios varied considerably depending on production level, distance from 

contiguous forest and functional indices. FRic and FD showed the most pronounced trends, 

with sparing scenarios conserving greater functional diversity and richness than sharing at all 

distances and at both low and high production levels (Fig. 2a, b, and c, d).  

Under low and high production land-sparing scenarios, predicted FD and FRic 

remained stable across all distances from contiguous forest (Fig. 2a, b). In contrast, predicted 

FD and FRic under land-sharing scenarios progressively decreased with increasing distance 

from contiguous forest, with mean FD and FRic 26% and 30% lower, respectively, under 

high production sharing than sparing at the greatest distance from contiguous forest (1500 m) 

(Fig. 2d). Predicted values of FD and FRic were also affected by production level, with 

slightly lower FD and FRic occurring at high production for both strategies. Similar trends of 

land-use strategy and production, but not distance, were also predicted for functional 
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divergence, with greater FDiv consistently predicted to occur under sparing than sharing, and 

at low rather than high production (see Fig S2, Supporting information). 

High production land-sparing scenarios were predicted to conserve consistently 

higher FEve than land sharing, with minimal effect of distance to contiguous forest (Fig. 2f). 

By contrast, low production land-sharing scenarios were predicted to conserve slightly 

greater FEve than land sparing at close proximity to forest edge but to conserve less FEve 

furthest from forest edge (1500 m; Fig. 2e). Contrasting FD and FRic, greater FEve was 

predicted under land-sparing and land-sharing scenarios at high rather than low production. 

In contrast to all other indices, functional dispersion (FDis) was consistently predicted to be 

greater under land-sharing than land-sparing scenarios at all distances and at both production 

levels. Additionally, FDis was greater at high than low production (see Fig S5, Supporting 

information). 

 

Impacts of Land-sparing and Land-sharing agriculture on avian functional traits 

As with overall functional diversity, predicted trait abundances also varied considerably with 

level of production, land-use strategy and distance from contiguous forest. Of all twelve 

functional traits assessed, we predicted trait abundances of eleven to decline with agricultural 

expansion, irrespective of production level, distance from contiguous forest or whether 

farming via land-sparing or land-sharing strategy. The abundance of granivores was the only 

trait to increase under agricultural expansion, and only when farming under high production 

sharing scenarios.  
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Under low production, we predicted greater abundances of eleven traits (all but 

canopy) under land sparing than land sharing, including the abundances of all dietary traits 

(Fig 3). The greatest disparity in abundance between the two strategies was predicted for 

insectivores, with predicted declines in insectivore abundances over four times greater under 

land sharing than land sparing, across all distances from continuous forest. Under high 

production scenarios, differences in trait abundances between land-sparing and land-sharing 

landscapes were much less prominent. Abundances of insectivores, foliage, trunk/branch and 

midstrata feeding species were slightly greater under sparing, whilst the abundances of 

granivores, frugivores, nectivores, and aerial and terrestrial feeding species were slightly 

greater under land-sharing scenarios.  Abundances of carnivores, and canopy and understorey 

feeding species differed minimally between strategies (Fig 3, S6 and S7).  

Trait abundances within land-sparing habitats were considerably more sensitive to 

production level than land sharing. Abundances of eleven functional traits (all other than 

granivores) were substantially lower under high production scenarios than low production. 

Contrastingly, trait abundances predicted to occur under land-sharing scenarios remained 

relatively unaffected by production level, with similar abundances conserved under sharing 

landscapes with a relatively small area of ‘wildlife-friendly’ habitat as that of landscapes 

retaining much greater areas of forest amongst farmland. 

 

Discussion 

How best to limit the ecological impacts of expanding tropical agriculture is a key 

conservation question, and we uniquely investigate whether land-sparing or land-sharing 

farming would maximise the retention of functional diversity. Functional indices represent 

variation in a wide range of biometric traits related to dietary guild, microhabitat niche, 
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foraging strategy and locomotion. Functional indices thus reflect various dimensions of the 

ecological niche and provide information about the functioning of important ecological 

processes, such as seed dispersal and pollination (Pigot et al., 2016a). Our results indicate that 

high-yielding farming paired with blocks of protected natural habitat, consistent with land 

sparing, conserved greater overall functional diversity than did land sharing, especially at 

increasing distance from contiguous forest. To ensure the retention of functionally diverse 

communities, we urgently need to better exploit mechanisms for increasing farmland 

productivity whilst protecting spared land.  

Functional diversity under land-sharing scenarios was negatively affected by 

increasing distance from contiguous forest, with more isolated areas having lower FD and 

FRic. This trend mirrors those for species richness (Gilroy et al., 2014a) and phylogenetic 

diversity (Edwards et al., 2015), supporting suggestions that natural forests play important 

roles as population sources and provide resources necessary for species persisting in both 

forest and farmland (Pereira & Daily 2006; Sekercioglu et al. 2007; Gilroy & Edwards 2017). 

Beyond the intrinsic value of species, justification of low-intensity systems frequently 

highlights the benefits of enhanced ecosystem services from elevated biodiversity in 

offsetting potential yield losses caused by reduced crop cover (Tscharntke et al., 2008; 

Schroth & McNeely 2011; Melo et al., 2013). However, we found that functional diversity of 

land-sharing farming was tightly linked to proximity of contiguous forest, irrespective of 

‘wildlife-friendly’ habitat cover. Thus, as species fail to persist in increasingly isolated 

farmland, the loss of associated functional roles may also lead to declines in the provision of 

ecosystem services within agricultural systems. The greatest potential to protect functional 

diversity within pasture landscapes therefore exists under land-sparing scenarios, where large 

blocks of natural habitat provide unparalleled conservation value (Gibson et al., 2011; Barlow 

et al. 2016). However, in tropical agroforestry, where biodiversity is high relative to pasture, 
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ecosystem service provision can be more substantial (Karp et al., 2013) and may outweigh 

lost production from lower intensity practices. 

Both FD and FRic are positively related to species richness (Petchey & Gaston 2002; 

Villéger et al., 2008). Accounting for this confounding influence, we found lower sesFD 

within forested habitats than cattle pasture; communities with low sesFD and high species 

richness can occur when multiple constituent species perform similar functional roles, and 

thus appear functionally redundant. Greater functional redundancy can be beneficial for long-

term ecosystem functioning, as loss of functionally important species does not necessarily 

translate to degradation of ecosystem processes when other functionally similar species 

continue to persist (Pavoine & Bonsall, 2011). These results are consistent with studies of 

avian functional diversity in an oil palm-forest matrix in the Colombian Llanos (Prescott et 

al. 2016), and that of avian dispersal traits between forest and pasture in Amazonia (Bregman 

et al. 2016). Furthermore, we predict lower FEve under land sharing than land sparing, 

particularly at greater distances from forest. Declines in FEve and overall species richness 

indicate greater overlap in specific functional groups, suggesting declines or potential loss of 

species in specific functional groups in extensive low-intensity farmlands. Additionally, 

under land sharing, we predict declines in the abundance of the vast majority of traits, further 

supporting suggestions that the ecological functions provided by birds are degraded within 

sharing relative to sparing landscapes.  

Predicted values of Functional dispersion (FDis) contrast those of all other functional 

indices, with greatest FDis predicted to occur under land-sharing scenarios at the greatest 

distances from contiguous forest. Our results suggest land-sharing communities contain a 

greater proportion of species that possess functionally unique traits, and therefore appear 

further from the centre of trait space. This response is likely a result of how FDis is 

calculated. Functional dispersion measures the mean distance of constituent species within 
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trait space from an abundance-weighted centroid (Laliberté & Legendre 2010). In this way, 

loss of species at the centre of trait space can result in greater values of FDis. Given predicted 

declines in the majority of trait abundances under land sharing, this further demonstrates a 

lack of functional redundancy within these landscapes, with functional diversity supported by 

a few functionally unique species. 

We predict lower abundances of nearly all functional traits under low-production land 

sharing, than land sparing, including significant declines in the abundances of frugivores and 

nectivores. Given the importance of frugivorous and nectivorous birds in seed dispersal and 

pollination, particularly in the tropics (Şekercioğlu 2006), their reduced abundances may lead 

to reductions in the provision of these important ecological processes. This could impact the 

long-term stability of natural habitats dispersed within agriculture, as well as the potential for 

restoration of abandoned pasture to secondary forests (Martínez-Garza et al., 2014; Carlo & 

Morales 2016).  

In terms of ecosystem service provision, the impacts of declining trait abundances are 

unlikely to be confined to natural landscapes. Both the abundances of carnivores and 

insectivores are also predicted to be lowest under land-sharing scenarios, suggesting limited 

benefits of avian pest control services within sharing landscapes. However, empirical studies 

demonstrating yield or production benefits from increases in ecological processes are greatly 

needed. In particular, evidence of enhanced soil formation, nutrient cycling and insect 

predation within pasture are currently lacking. In addition, the link between increased 

functional diversity and greater provision of ecosystem services requires further attention, 

particularly in pasture given that it represents the most prominent anthropogenic land-use 

throughout much of the tropics (FAOSTAT). However, our simulations of sparing landscapes 

constitute ‘off-farm’ sparing, where protected lands exist in separation from intensive 

pasture. Thus, in our sparing systems, the flow of potential services from ‘spared’ land to 
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pasture may be severely impeded due to lack of forest directly adjacent to farmland (Mitchell 

et al., 2015). Furthermore, trait abundances conserved under land sparing declined markedly 

under high production scenarios, where spared lands represent only a small proportion of the 

landscape. This result supports findings of other studies, emphasising the importance of 

sparing large blocks of natural habitat for effective biodiversity conservation via land sparing 

(Gilroy et al., 2014; Edwards et al., 2015; Lamb et al. 2016).   

An important caveat is that our landscape scenarios did not account for fragmentation 

of spared lands, with all sparing management units pairing intensified agriculture with ‘off-

farm’ protected areas in contiguous forest. Greater fragmentation of natural habitats can 

result in dramatic increases in edge, isolation, and area effects (Ferraz et al., 2003; Ewers & 

Didham, 2007; Hagen et al., 2012; Gibson et al., 2013) that will likely diminish the 

conservation value of protected lands (Laurance et al., 2011). Additionally, if agricultural 

intensification is accompanied by unsustainable farming practices, immigration of people, 

and greater land-use due to localised economic growth, then elevated edge and deforestation 

effects will likely degrade biodiversity benefits of adjacent spared forest (Angelsen and 

Kaimowitz 2001; Tilman et al., 2002).  

Lamb et al. (2016) showed that for Ghanaian birds the relative benefits of sparing 

versus sharing is partially influenced by habitat quality, with land sharing marginally 

outperforming land sparing when spared lands constitute severely fragmented landscapes and 

suffer acute edge effects. Because rare and disturbance-sensitive species are most likely to be 

affected by fragmentation (Banks-Leite et al., 2010) and contribute disproportionately to 

functional diversity by possessing unique traits necessary for ecosystem function (Leitão et 

al., 2016), fragmentation effects could be especially important in degrading the value of 

sparing for functional diversity. However, fragmentation will likely also affect the long-term 

persistence of species under land-sharing farming, given that biodiversity values are evidently 
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contingent on spill-over from adjacent forest (see also Gilroy et al. 2014; Edwards et al. 

2015).  

The superiority of land sparing compared to land sharing in conserving functional 

diversity remains, as it does so in similar studies of species richness and phylogenetic 

diversity, partly dependent on the assumption that agricultural production increases in line 

with pasture cover (Gilroy et al., 2014a; Edwards et al., 2015). Realised production of 

intensified agriculture can, however, be substantially lower than expected when practices are 

not tailored to local social dynamics, as is the case for much of the smallholder-dominated 

tropics (Chappell & LaValle, 2011). Furthermore, high-yielding sharing systems can occur 

when aspects of biodiversity are used to improve beneficial ecosystem services, such as pest 

control and pollination (Schroth & McNeely 2011; Tscharntke et al., 2012). Additionally, 

even when intensification results in greater yields, intensification may not necessarily 

translate to increased spared land for nature (Ewers et al., 2009; Ramankutty & Rhemtulla, 

2012). Conversely, fears of further conversion and rising conservation costs as a result of 

stimulated demand, and regional and local leakage remain substantial obstacles to successful 

land sparing (Phelps et al., 2013; Carrasco et al., 2014; Hertel et al., 2014). Nonetheless, the 

apparent necessity for large tracts of natural habitat to sustain maximum levels of biodiversity 

under land sharing lends further support to the integral role that land sparing must play in 

future conservation.   

In conclusion, our results suggest that avian functional diversity will be best protected 

via conserving large blocks of contiguous natural habitat through the intensification of 

agriculture on existing lands. Achieving such optimised landscapes requires steps to 

discourage further expansion and ensure sparing of natural habitats as a direct result of 

intensification. Maximisation of conservation benefits resulting from prioritisation of spared 

lands will likely occur when applied in combination with policies advocating sustainable 
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intensification practises, minimising negative ecological impacts to natural environments 

(Phalan et al., 2016). In addition, directing inevitable future agricultural expansion to areas of 

low biodiversity, especially recently abandoned agricultural land, offers considerable 

opportunity to reduce biodiversity losses while maintaining secure food systems (Chazdon et 

al., 2014; Gilroy et al., 2014b; Prescott et al., 2016). Such opportunities are particularly 

apparent in Central and South America, where phases of land abandonment have already 

yielded substantial expanses of potentially productive lands (Aide et al., 2013). Our results 

provide important inferences about how the functional structure of ecosystems and associated 

ecosystem services are likely to be affected across agricultural and natural landscapes, 

lending further support to biodiversity conservation via land sparing.  
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Figure legends 

Figure 1. Functional diversity indices for sample point-level model communities across 

habitat types (boxplots: F = forest; CP = cattle pasture) and plotted against the proportion of 

‘wildlife-friendly’ habitat and distance from forest blocks.  Indices shown are mean FD (a, b, 

c), mean functional richness (d, e, f) and mean functional evenness (g, h, i). Error bars for 

each point represent 95th percentiles across 1000 simulations (the variation in functional 

indices due to uncertainty in species occurrence probabilities at each sample point). 

Figure 2. (a, b) Functional diversity (FD), (c, d) functional richness (FRic), and (e, f) 

functional evenness (FEve) under simulated land-sparing (red) and land-sharing (purple) 

management units. Indices are generated for scenarios at two production levels: low – 20% 

land cover grazed (a, c, e), and high – 80% land cover grazed (b, d, f), and span increasing 

distance from contiguous forest blocks. Mean values from 10,000 randomisations under each 

scenario indicated by points, with error bars representing 95th percentiles. Surrounding violin 

plots display frequency distributions of indices from 10,000 randomisations of each scenario. 

Figure 3. Changes in dietary trait abundance under simulated land-sparing (red) and land-

sharing (purple) management units; (a, b) abundances of granivores, (c, d) frugivores, (e, f) 

insectivores, (g, h) carnivores, and (i, j) nectivores. Abundance is generated for scenarios at 

two production levels; low – 20% land cover grazed (a, c, e, g and i), and high – 80% land 

cover grazed (b, d, f, h and j), and span increasing distance from contiguous forest blocks. 

Mean values from 1000 randomisations under each scenario indicated by points, with error 

bars representing 95th percentiles. Surrounding violin plots display frequency distributions of 

indices from 1000 randomisations of each scenario. 
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