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Improving collective decision accuracy via time-varying cross-inhibition

Mohamed S. Talamali, James A. R. Marshall, Thomas Bose, Andreagiovanni Reina

Abstract— We investigate decentralised decision-making, in
which a robot swarm is tasked with selecting the best-quality
option among a set of alternatives. Individual robots are sim-
plistic as they only perform diffusive search, make local noisy
estimates of the options’ quality, and exchange information
with near neighbours. We propose a decentralised algorithm,
inspired by house-hunting honeybees, to efficiently aggregate
noisy estimations. Individual robots, by varying over time a
single decentralised parameter that modulates the interaction
strength, balance exploration and agreement. In this way, the
swarm first identifies the options under consideration, then
rapidly converges on the best available option, even when
outnumbered by lower quality options. We present stochastic
analyses and swarm robotics simulations to compare the novel
strategy with previous methods and to quantify the performance
improvement. The proposed strategy limits the spreading of
errors within the population and allows swarms of simple noisy
units with minimal communication capabilities to make highly
accurate collective decisions in predictable time.

I. INTRODUCTION

Decision making is a key ability for any living organism

or artificial system. Robot swarms are systems composed of

a large number of simple and autonomous robots, and such

systems are frequently required to make collective decisions

in which all robots agree on one option among several

available alternatives. Agreeing on a unique option allows

the swarm to operate in unison and to express a coordinated

response to external stimuli. For example, when the swarm

needs to allocate all its resources to a single task which is

localised in space, the swarm has first to decide at which

location to perform the task, among the candidate spots.

Consensus would guarantee an effective usage of the swarm’s

resources, while splitting would dilute the swarm’s power

and may hinder success.

While certain applications only require to reach a consen-

sus for any option [1], [2], [3], in this study we ask the swarm

to decide for the best quality option among n alternatives.

This problem is known in the literature as the best-of-n

decision problem [4], [5], [6], [7], [8], [9], [10]. In this

work, we solve the best-of-n problem through a decentralised

strategy inspired by house-hunting honeybees [11] and later

adapted to artificial swarm systems [6], [12]. This study

employs multi-scale modelling [13] to predict the system

dynamics and tests the predictions through physics-based
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simulations. Previous swarm robotics studies relied on multi-

scale modelling [14], [15], [16], [17], [18] and we believe

that it is a powerful tool to engineer robot swarms. Most

collective decision studies in swarm robotics limited their

analysis to the binary case of n = 2 options [10], however

it has been shown that decision models may qualitatively

change their dynamics for n > 2, [19]. For this reason, here

we investigate collective decisions with larger n.

The proposed strategy shows a considerable improvement

of the decision accuracy and a constant decision speed for

any tested number of options and problem difficulty. While

this study focuses on the speed-accuracy analysis, previous

research has shown that the investigated model can also be

a mechanism for value-sensitive decisions [20], [21], [19].

The most relevant advantages of value-sensitive approaches

are, in cases of equal-quality options, the ability to break or

maintain decision deadlocks as a function of their quality,

otherwise to select the uniquely best option when quality

differences become large enough [20], [22].

In this study, n options are deployed in the environment

and the robot swarm has no prior knowledge of the number,

qualities, and locations of the available options. The swarm

is tasked with searching for the options and selecting the

highest-quality one (see problem description in Sec. II).

While other methods may focus only on the exploration or

the decision aspect, the investigated strategy includes both

activities (see the robot behaviour in Sec. III). At the same

time, it keeps the individual behaviour simple and limited

to four probabilistic transitions (Sec. V). The proposed

strategy is compared with other methods (Sec. IV) through

stochastic analysis of the macroscopic model (Sec. V-C) and

robot swarm simulations (Sec. VI). Limitations and possible

extensions of the study are discussed in Sec. VII.

II. DECISION PROBLEM FORMALISATION

In this work, a swarm of S robots is required to solve

the best-of-n decision problem, i.e. to reach consensus on

the best-quality option out of n options available in the

environment. Each option i (with i ∈ {1, ...,n}) is located

in space at position χi and has a quality vi ∈ [vmin,vmax]
(vmin/vmax are the min/max quality that the robot can sense).

The decision problem is to choose the option with highest

value. The robots have no prior knowledge about the number

of options, their location, or their qualities; robots can

perceive an option only when they are in its proximity. The

robots explore the environment to find the options, estimate

their qualities, and collectively select the best-quality option.

When a robot finds an option i, it can make an individual

noisy estimate of its quality v̂i. We simulate noisy estimations



Fig. 1. Sample initial distribution of S = 200 simulated Kilobots in a
scenario with n = 6 options and decision difficulty κ = 0.5. The red circles
represent the areas (radius 25 cm) in which the options can be perceived
by the robots via ARK. The colour intensity represents the option’s quality
vi ∈ [0,10]. The swarm is tasked to select the best-quality option.

as samples from a normal distribution N (vi,σ
2) with mean

vi, variance σ2, and reassignment to boundary values for

samples out of range [vmin,vmax].
Each robot has limited memory and can only store the

location and quality of a single preferred option, which

represents its commitment. In collective decision making,

the decision is made when a quorum in favour of one option

is reached [23], [24], [25], [26]. In our study, consensus is

reached for option i when the number of robots committed

to i reaches the quorum threshold Q = 80%.

A. Experimental setup

Most studies focused on binary decision problems (n = 2)

[20], [22], [8]; here we investigate the best-of-n problem with

n ≥ 2. We consider the scenario of one superior-quality op-

tion and n−1 inferior-quality distractors. This experimental

scenario has been adopted in several empirical and theoretical

studies in various domains as it allows to systematically vary

the difficulty of the decision problem without increasing the

number of experimental parameters [27], [28], [29], [30],

[19]. The superior option has quality v
H

while the other

(n− 1) inferior equal-quality options have quality v
L

(with

v
H
,v

L
∈ [vmin,vmax] = [0,10]). The decision difficulty can be

expressed as the ratio between inferior and superior qualities

κ = v
L
/v

H
∈ [0,1].

In this study, we simulate a robot swarm composed of

S = 200 Kilobots [31] which are low-cost robots designed

specifically to conduct large-scale swarm robotics experi-

ments. Kilobots operate at a clock frequency of about 32 Hz

which corresponds to a clock period δc ≃ 31ms. Kilobots

are equipped with few sensors and actuators. They have

differential-drive vibration motors to move on a flat surface

at a speed of about 1 cm/s in straight motion and about 40 ◦/s

in rotation. Kilobots are equipped with an IR transceiver to

transmit 9-bytes messages to neighbours in a local range

of ∼10cm, Finally, Kilobots are equipped with an ambient

light sensor, and an RGB LED to display their internal

state. Despite their limited capabilities, Kilobots have been

successfully employed in several swarm robotics studies, e.g.

[32], [22], [33], [8], [34], [35]. Furthermore, Kilobot abilities

can be enhanced via ARK, a form of ‘augmented reality for

Kilobots’ [36], [37].

ARK allows Kilobots to use virtual sensors and actuators.

In this work, we employ ARK to allow Kilobots to perceive

an option i, estimate its quality v̂i, and geolocalise the option

(i.e. compute χi). Robots within the option’s sensing range

(25 cm) receive via IR an ARK message which includes the

option’s location and its quality. Similarly, upon request to

ARK, Kilobots can access to their GPS information (e.g. to

navigate to the option’s location). When a Kilobot lights up

its red LED, ARK replies with its GPS information.

The S = 200 robots are initially uniformly distributed in

a square environment 2m×2m, as illustrated in Fig. 1. The

n options are located at equal distance between each other

on the vertex of a regular polygon with n edges and radius

50 cm (see an example with n = 6 options in Fig. 1). The

superior-quality option is placed at a random vertex in each

simulation run.

III. ROBOT BEHAVIOUR

We simulated the Kilobot swarm behaviour with the

physics-based simulator ARGoS [38], which allows quick

simulation of large-scale swarms through its multi-threaded

architecture. ARGoS supports the simulation of Kilobots

through a dedicated plugin which is particularly convenient

as it offers the possibility to run the same identical control

code in simulation and on the real robots [39]. ARGoS also

supports experiments with a simulated ARK infrastructure

which allows quick conversion of ARK experiments between

simulation and reality.

We implemented a generic Kilobot behaviour to plug in

different decision strategies and test their performance. The

behaviour is composed of three concurrent actions:

1) Environment exploration: Robots have no prior knowl-

edge about the decision problem (number, location, and

quality of the options), hence robots need to explore the

environment in order to find the available options and esti-

mate their qualities. A simple and effective way to search for

options in an unknown environment is to perform a diffusive

isotropic random walk [34]. In this study, the Kilobots

alternate straight motion for approximately 10 s and rotations

in a random direction for a random number of seconds

chosen from a uniform distribution U(0,5)s. Beside allowing

environment exploration, the random walk allows robots to

encounter new peers and sample different information within

the swarm. When a Kilobot perceives an option i, it stores

the option’s location χi and estimates its quality v̂i which is

used to update the internal commitment state.

It is important to note that the robots do not resample

the same options multiple times to average qualities over

time because we are not interested in individual strategies to

attenuate the noise on individual estimates. We assume that

in any real application scenario, the robot would conduct the

necessary sampling operations to obtain the most accurate

possible quality estimate. This estimate would anyway be

subject to a certain level of noise, here modelled through a

normal distribution N (vi,σ
2). This study investigates col-

lective strategies to efficiently aggregate noisy estimations.

2) Social interactions: While exploring the environment,

robots interact with neighbours within a local range of



about 10 cm. Each robot broadcasts a message every second

with information on its commitment state and, if committed

to an option, the option’s location χi and (possibly) the

estimated option quality v̂i. The receiving robots use this

information to update their commitment state.

3) Commitment updates: Each robot r has two possible

individual commitment states {U,C}; either committed (C)

to an option i, or uncommitted (U). When committed, the

Kilobots keep record of the option’s location χi and the

estimated quality v̂i. All robots start without any prior knowl-

edge, therefore in the uncommitted state. Upon discovery

of an option or incoming messages from other robots, each

Kilobot updates its individual commitment state either by

changing state or by remaining committed and only modi-

fying the option i. We implemented and compared various

update strategies which we describe in Sec. IV and V.

IV. DIRECT COMPARISON STRATEGY

A simple and naive strategy to collectively reach con-

sensus on the best-quality option is the direct comparison

strategy (DC) [40]. The DC strategy requires the Kilobots

to share their estimated quality v̂i with each other, and

to update their commitment state as follows. An uncom-

mitted robot exposed to information of an option i (either

via independent discovery or via another robot’s message)

changes its commitment state to C and stores location χi

and estimated quality v̂i. Instead, committed robots update

their commitment to option i only when the new option j,

received from another robot, is different (i.e. i 6= j) and has

a better quality v̂ j > v̂i. If v̂ j is higher, the robot forgets

the previous option and stores the new received information

χ j and v̂ j. When the two options have equal estimated

quality v̂i = v̂ j, the robot randomly selects option i or j. This

random selection may allow the swarm to break the decision

deadlock in case of equal-quality options.

As discussed in Sec. III, robots do not perform multiple

sampling of the same option, instead performing an indi-

vidual estimate of an option and let the information spread

within the swarm. This simple strategy has the advantage

to quickly reach consensus for one option. Although, at

the same high speed, errors spread. In fact, an individual

overestimation of an option is quickly accepted by other

robots which, in turn, use it in their messages. In other

words, robots use second-hand quality estimates (received

from a neighbour) to recruit themselves other robots. The

effect of noise on this decision strategy can be appreciated

in Fig. 2(a) which shows ARGoS simulations results for a

scenario with six options. We varied the problem difficulty

κ = vL/vH ∈ [0.5,1.0] and the noise strength σ2 ∈ [0,5].
Decision accuracy quickly decreases as the problem difficulty

or noise strength increases.

V. COLLECTIVE DECISIONS THROUGH

CROSS-INHIBITION

To overcome the poor performance of DC (Fig. 2(a)), we

propose an extension of the Collective Decisions through

Fig. 2. (a) 200-Kilobot swarm results (100 simulations each condition)
showing the effect of noise strength σ2 ∈ [0,5] on the decision accuracy
in the best-of-6 problem with difficulty κ = vL/vH ∈ [0.5,1] (v

H
= 10).

We compare the accuracy of the DC strategy of Sec. IV (bottom-left
triangles) with the accuracy of the time-varying strategy rstep (t) (with
τ0 = 50) of Sec. V-C (top-right triangles). While DC is highly sensitive to
noise, the proposed strategy shows remarkably high performance (≥ 93%)
for any tested noise level and difficulty κ up to 0.9. In case of equal-
quality options (κ = 1), the quick dynamics of DC allows to break the
symmetry within 2 hours more often than the proposed strategy with a
suboptimal parameterisation of τ0 (see more details in Fig. 5(b)). (b) The
PFSM controlling the robot’s individual decision state. Robots update their
commitment state using the probabilities Pγi

and Pαi
of Eq. (1) or upon

receiving a message Mi from a robot committed to i. The symbol | on
the arrow for the discovery transition indicates conditional probability on
the occurrence of the event Ei of encountering option i. The transmission
symbols indicate that a robot in state Ci sends an interaction message (for
recruitment and cross-inhibition) with probability Phi

.

Cross-Inhibition strategy (CDCI) proposed in [6]. This strat-

egy has been inspired by the house-hunting process of

European honeybees [11] and been applied in a variety of

swarm robotics experiments [41], [22]. This work extends

the previous CDCI strategy by removing any need to share

quality estimates between the agents and by introducing time

varying interactions. We show through various comparisons

an improvement in both decision speed and accuracy.

A. The basic CDCI strategy

Each robot’s commitment state is controlled by the prob-

abilistic finite state machine (PFSM) shown in Fig. 2(b).

The active state of the PFSM corresponds to the individual

commitment state of the robot: the state U is active when the

robot is uncommitted while the state C is active when the

robot is committed to an option. In Fig. 2(b), the option

commitment is indicated by index i, with i ∈ {1, . . . ,n},

indicating that the robots has stored the option i’s information

(χi and v̂i) and is committed to it. As indicated in the CDCI

design pattern and explained below, changes in commitment

depend upon the local estimate of the distribution of other

agents’ commitments. Therefore, we designed an update time

δu = 50 clock cycles (i.e. ∼ 1.5s) to allow the robot to gather

a local sample of its neighbourhood. Every δu, the robot

updates its commitment state as follows. If an uncommitted

robot satisfies the condition Ei by encountering the option

i during the last δu clock cycles, it may become committed

to i (i.e. the robot discovers option i) with probability Pγi
. A

robot committed to option i may spontaneously abandon its

commitment to i and become uncommitted with probability

Pαi
. If an uncommitted robot satisfies the condition Mi by

receiving a message from a robot committed to option i

during the last δu clock cycles, it gets recruited and commits



to option i. If a robot committed to option i satisfies the con-

dition M j 6=i by receiving a message from a robot committed

to a different option j (with i 6= j) during the last δu clock

cycles, it gets cross-inhibited and reverts to the uncommitted

state. At each broadcast tick, a robot committed to option

i probabilistically decides either to interact with peers and

share the location χi of option i with probability Phi
or to not

interact and appear as uncommitted (with probability 1−Phi
).

Following the CDCI guidelines [6], the robot makes in-

teraction transitions (recruitment and cross-inhibition) with

probability function of the distribution of commitment in

its neighbourhood. These probabilistic transitions can be

reduced to the selection at random of one message M (among

all the received) which is used to conditionally trigger

transitions (see Fig. 2(b) and [6] for more details). In this

study, the robot only keeps the last received message by

overwriting the information each time. This choice allows

the robot to minimise the memory usage and to keep the

most up-to-date information (compared to older messages).

After each commitment update, the last message is deleted.

As robots do not exchange quality estimates, after recruit-

ment, the recruited robot is required to visit the option’s

location in order to self-estimate the option’s quality. This

is similar to the behaviour observed in honeybees [42] and

ants [43] during nest-site selection. Once the robot esti-

mates the quality, it resumes interactions. While individual

estimates by each robot is a (time-consuming) necessary

component of the CDCI strategy, it can also prevent the

spreading of inaccurate estimates. In fact, from the analysis

of the DC method, we understood that the reuse of second-

hand information (i.e. the received quality) can lead to the

spreading of inaccurate estimates. We conducted analyses to

estimate the impact of self-estimates on the DC performance.

A modified DC strategy with robots sampling the quality

after each recruitment increases the performance to values

similar to CDCI for κ ≤ 0.9, although it cannot break

symmetry for κ ≈ 1 even after several hours (results not

shown). In terms of speed, the DC strategy shows quicker

dynamics than CDCI although it is important to consider that

the CDCI requires lower cognitive abilities of the individual

robots who do not need to share qualities in a common range.

To allow the swarm to converge to consensus for the best-

quality option, the individual robots modulate their behaviour

as a function of the option’s quality, exhibiting more frequent

behaviours in support of better quality options. In this study,

the probabilities of the robot’s behaviours follows the pa-

rameterisation introduced in [19] which preserves the value-

sensitive decision-making characteristics when the number

of options is greater than two:

Pγi
= kv̂i∆, Pαi

= kv̂−1
i ∆, Phi

= hv̂i∆ , i∈ {1,2, . . . ,n} (1)

where v̂i is the estimated quality of option i, while h and

k are parameters to control the frequency at which the

robots send interaction messages and perform individual

behaviours, respectively. The ratio r = h/k represents the

relative interaction rate. Following [6], the parameter ∆ is

required to scale probabilities within the valid range [0,1]
and guarantee a match between microscopic and macroscopic

description of the process. ∆ = δuδcδs is determined by three

components: the number of Kilobot clock cycles between

two updates (δu = 50), the Kilobot clock period (δc ≃ 31ms)

and the temporal scaling factor δs = 0.000594 which controls

the process speed. As shown in [19], the key parameter in the

swarm decision dynamics is the relative interaction rate r.

B. Stochastic analysis of the basic CDCI strategy

We investigate the effect of the relative interaction rate

r on the decision outcome through stochastic analysis with

the goal of identifying the best r for our swarm robotics

system. The CDCI strategy can be described in the form of a

master equation [11], [6]. This description form allows us to

investigate the macroscopic system dynamics with random

fluctuations proportional to our system size S = 200. We

approximate the solution of the master equation through

1,000 runs of the stochastic simulation algorithm (SSA) [44].

For values of r ∈ [1,100] with k = 1, we investigated the

effects of varying the decision difficulty κ ∈ [0.5,1] keeping

constant the number of options n = 6 (Fig. 3(a)), and of

varying number of options n ∈ [2,12] keeping constant the

decision difficulty κ = 0.9 (Fig. 3(b)). Each run terminates

either when the maximum decision time Tmax = 10 is reached

or when a sub-population committed to a single option

reaches the decision quorum Q = 0.8 (i.e. at least 160 robots

are committed to the same option). The maximum decision

time has been selected to be safely above the average

decision time to avoid premature terminations. The results

of the analysis are shown in Fig. 3 where each coloured pie

represents a tested condition and indicates the percentage of

runs terminating in a decision deadlock (yellow), a decision

for the best quality option (green), or a decision for any of

the (n−1) inferior equal-quality options (red). The obtained

results are in agreement with previous deterministic mean-

field analyses that show the need of high positive/negative

feedback to break the decision deadlock [19], [45] and with

stochastic analyses of decision-making models of ants and

slime moulds [46], that show that a high positive feedback

reduces decision accuracy.

Figure 3(a) shows the existence of a dilemma: On the one

hand, low values of r guarantee accurate decisions when

there is a superior-quality option (v
H
≫ v

L
) but lead to a

decision deadlock when all options are similar (v
H
≈ v

L
). On

the other hand, high values of r guarantee deadlock-breaking

but the system is very sensitive to initial random fluctuations

which lead to inaccurate decisions (i.e. the first discovered

option has higher probability to be selected even of inferior

quality). Additionally, Fig. 3(b) shows that the minimum

r necessary to break deadlock increases quadratically with

the number of options. Therefore, the interaction rate r that

maximises accuracy varies as a function of the decision

problem (number and quality of options) which is normally

unknown to the swarm. Hence any fixed value of r has

drawbacks and causes poor performance in certain scenarios.
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Fig. 3. Results of the SSA showing the influence of the interaction
ratio r = h/k with k = 1 (of Eq. (1)) for various best-of-n problems in
the case of S = 200 robots. The pie-charts indicate the percentage of
1,000 runs terminating in a decision deadlock, i.e. below quorum Q = 0.8,
after Tmax = 10 (yellow), a decision for the best-quality option vH = 10
(green), or a decision for any n− 1 inferior-quality distractor vL = κ · vH

(red). (a) Sensitivity of CDCI to the ratio r for various problem difficulties
κ ∈ [0.5,1] in case of n = 6; the minimum r necessary to break decision
deadlock grows quadratically with κ . (b) Sensitivity of CDCI to the ratio r

for various number of options n ∈ [2,12] in case of κ = 0.9; the minimum r

necessary to break decision deadlock grows quadratically with n. Sufficiently
high values of interaction rate r, always lead to a decision but accuracy
rapidly decreases with increasing n or κ .

C. The time-varying CDCI strategy

To solve the previous dilemma without prior knowledge

of the decision problem (n and κ), we propose a novel

decentralised strategy which consists of beginning with low

interaction rate r (to limit initial random fluctuations) and

then increasing the interaction rate over time to reach con-

sensus. The initial low r corresponds to relatively sporadic

interactions to prevent commitment to the first discovered

options (which may have inferior quality v
L
) propagating

through the swarm. The increase of interactions over time,

instead, has the function to break decision deadlocks and to

allow the swarm to build up consensus for the best discovered

option. Additionally, the robots will modulate the increase

speed of interactions as a function of the estimated quality;

that is, they will start to recruit (and cross-inhibit) earlier for

better quality options. We expect that this quality-sensitive

increase of interactions could result in improved accuracy

and decision speed compared with the standard CDCI.

We investigate two variants of the proposed time-varying

strategy: a gradual increase of the interaction rate r (function

rramp(t) in Fig. 4(a)) and a jump of the interaction rate from

low to high values (function rstep(t) in Fig. 4(b)):

rramp(t) =
hramp(t)

k
, hramp(t) =







Hmax

τ(v̂i)
t if t <τ(v̂i)

Hmax if t ≥τ(v̂i)

, (2)

rstep(t) =
hstep(t)

k
, hstep(t) =

{

0 if t <τ(v̂i)

Hmax if t ≥τ(v̂i)
, (3)

In both functions, the individual transitions strength k re-

mains constant at k = 1, while the interaction strength h(t)
increases over time until a maximum Hmax. The function

Fig. 4. (Left) Two forms for the time-varying interaction h(t): hramp(t)
of Eq. (2) in panel (a) and hstep(t) of Eq. (3) in panel (b). With the ramp
function, the robot constantly increases the interaction strength hramp(t)
with slope proportional to the estimated quality v̂i; instead, with the
step function, the robot does not interact hstep(t) = 0 until a time τ(v̂i)
that is inversely proportional to the estimated quality v̂i. (c) Results of
the SSA (1,000 runs each condition and same colour code of Fig. 3)
predicting the decision outcome of a 200-robot swarm for various best-
of-n problems (n ∈ {3,6,9,12}) and difficulty κ = 0.9. The rramp(t) and
rstep(t) from Eqs. (2)-(3) with parameters τ0 = 5 and Hmax = 100 show a
considerable improvement in accuracy (reported on each pie-chart).

τ(v̂i) = τ0vmax/v̂i describes the time at which a robot com-

mitted to option i reaches Hmax, therefore it determines

the slope of the ramp and the jumping time of the step

function. If the estimated quality is the maximum value, i.e.

v̂i = vmax, the maximum interaction strength is reached at

τ0, otherwise it happens later. The functions of Eqs. (2)-(3)

can be implemented in a decentralised fashion by asking

the robots to modify the strength of their interactions over

time, in particular by increasing the probability of sending

recruitment and cross-inhibition messages. In other words,

the robots vary the probabilities of Eq. (1) with the time-

varying term h from Eqs. (2)-(3).

We assess the performance of the proposed strategy in

its two variants through master equation analysis. The orig-

inal version of SSA proposed by Gillespie only considers

constant transition rates, therefore, to take into account

the time-varying probabilities of the individual behavioural

rules of Eq. (1), we used a modified version of SSA, as

proposed in [47]. Figure 4(c) compares the decision outcome

of time-invariant interaction rate r and the two proposed

time-varying interaction strategies for various problems with

n ∈ {3,6,9,12} and κ = 0.9. The results of each tested

condition are obtained via 1,000 SSA runs and follow the

same colour code of Fig. 3. A swarm with low time-invariant

relative interaction rate r = 1 has dynamics dominated by

the individual behaviours of discovery and abandonment,

which are not sufficient to break the deadlock between

more than three similar-quality alternatives. Using high time-

invariant r = 100, the dynamics are dictated by the interaction

behaviours of recruitment and cross-inhibition, which act

respectively as positive and negative feedbacks on the com-

mitted sub-populations. In this case, initial random fluctua-

tions quickly spread through the system and the probability

to select the inferior options is high and increases with n.

Both functions of time-varying r(t) show a considerable

performance improvement in terms of decision accuracy, in



particular rstep(t) has 100% accurate outcomes.

VI. ROBOT SWARM SIMULATIONS

We simulate through ARGoS each proposed strategy in

100 runs on a swarm of S = 200 Kilobots1. We impose

a time limit of Tmax = 2 hours within which we expect

the swarm to reach an agreement in favour of one option

(decision quorum Q = 80%). We use Tmax as a cutoff to

compute the swarm decision/indecision. Figure 5(a) shows

the decision speed and accuracy for n ∈ {3,6} options in a

difficult decision problem of κ = 0.9 (vH = 10 and vL =
9), with a quality estimation noise strength σ2 = 1. As

correctly predicted by the stochastic analysis of Sec. V-B,

low interaction rate (i.e. r = 1) gives slow dynamics and

leaves the swarm undecided, unable to break the decision

deadlock within the cutoff time. A high interaction rate (i.e.

r = 100) speeds up the convergence dynamics at the cost

of low accuracy. The time-varying strategy rramp(t) (with

τ0 = 50 min) shows an improvement in both speed and

accuracy. The accuracy performance is further improved by

the rstep(t) strategy (with τ0 = 50 min) which interestingly

also has a highly consistent and predictable decision time

at few minutes after τ0. Finally, DC has the highest speed

but a very low accuracy due to the quick spreading of noisy

quality overestimates. SSA gives a good prediction of the

expected dynamics although it does not (and is not supposed

to) give the exact same swarm dynamics because the swarm

robotics process and the master equation model are different.

The main differences are caused by the local discovery and

interactions. Discovery transitions are conditional on the

event of robots encountering the localised option in space and

Kilobots’ local communication happens only between nearby

neighbours with slow motion dynamics. Therefore, the robot

swarm is subject to correlated interactions while SSA is

computed under the assumption of uncorrelated interactions.

VII. DISCUSSION

This study investigates novel strategies for consensus-

decision making in decentralised systems in the context of

swarm robotics. Reaching an agreement among all group

members, in our case all robots, can be very challenging,

especially when candidate options have similar qualities [48].

We propose a decentralised strategy that considerably im-

proves decision accuracy and that we tested through compu-

tational analysis of master equations and swarm robotics sim-

ulations. The solution, inspired by honeybee house-hunting

behaviour [11], consists of increasing the strength of inter-

actions among robots over time and is based on principled

understanding and formal analysis of the system dynamics

from previous research [20], [6], [19]. While this work is

limited to simulation, we plan to test the proposed system

on a large-scale Kilobot swarm interfaced with ARK [36].

Most research on decision algorithms in swarm robotics

limits its analysis to binary choice experiments [10]. In the

swarm robotics literature, only a few exceptions investigated

1The robot control software is available online at https://github.
com/DiODeProject/Time-Varying-CDCI

Fig. 5. (a) 200-Kilobot swarm results (100 simulations for each condition)
for different decision strategies (in each column) in case of n∈{3,6} options
with difficulty κ = 0.9 and noise strength σ2 = 1. Top pie-charts show the
decision accuracy (same colour code of Figs. 3-4(c)). Bottom boxplots show
the decision time; the horizontal red line (at 2 hours) is the cutoff time
to compute the decision outcome (e.g. indecision vs decision). We let the
simulation run a maximum of 5 hours to display the complete decision
time dynamics. Low interaction rate (r = 1) shows low convergence rate
and frequent deadlocks. High interaction rate (r = 100) shows low accuracy.
Time-varying rramp (t) shows an improvement in accuracy, which is further

improved by rstep (t) (both time-varying strategies use τ0 = 50min). The DC
(of Sec. IV) shows low accuracy due to the spreading of noisy estimates.
(b) Speed (green lines with 95% confidence shades and right y-axis) and
accuracy (red lines and left y-axis) of the swarm robotics system for varying
interaction speed τ0 ∈ [0,60]min for the rstep (t) strategy. An inaccurate
tuning of τ0 may lead to sub-optimal performance.

scenarios with more than two options, e.g. [49], [50]. How-

ever, previous theoretical analysis showed that increasing

the number of options can considerably change the swarm

dynamics [19]. We therefore performed our analyses and

experiments in a genuinely best-of-n setup. The proposed

time-varying strategy is able to consistently show remarkably

high accuracy performance and a predictable decision speed,

for any tested number of options.

The time-variant strategy with the best performance sep-

arates the collective decision into two phases: an initial

phase of environment exploration based on independent

behaviour and absence of interactions, and a second phase of

information exchange based on frequent robot interactions to

reach consensus. Similar analyses have shown how systems

of collective motion [51], [52], [53], or foraging [54], [55],

can benefit from modulating the strength of individuals’

interaction in relation to environmental features. While our

strategy shows good performance, we note that the time

to move from the exploration to the interaction phase (i.e.

τ0) should be accurately tuned to the speed of the decision

process and, likewise, to environmental features. In Fig. 5(b)

we show how speed and accuracy vary as a function of τ0

for rstep(t). These results show that inaccurate tuning of τ0

may reduce the system performance. For instance, if the

swarm starts interacting before any option is discovered it

nullifies the positive effects of the strategy; conversely a long

exploration phase could unnecessarily delay consensus and

reduce decision speed. Instead of accurately tuning this key

parameter, in future work we plan to allow individual robots

to autonomously estimate when to move from exploration

to the interaction phase. In this way, the swarm should be

able to adapt its response to the decision problem without

requiring any speed tuning.

https://github.com/DiODeProject/Time-Varying-CDCI
https://github.com/DiODeProject/Time-Varying-CDCI
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