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ROUPST COMMON SPATIAL PATTERN (CSP) ESTIMATION USING DYNAMIC TIME

WARPING TO IMPROVE BCI SYSTEMS

Ahmed M.Azab, Lyudmila Mihaylova, and Mahnaz Arvaneh

(Automatic Control and System Engineering, University of Sheffield)

ABSTRACT

Common spatial pattern (CSP) is one of the most popu-

lar feature extraction algorithms for brain-computer interfaces

(BCI). However, CSP is known to be very sensitive to noise

and prone to overfitting. This paper proposes a novel dy-

namic time warping (DTW) based approach to improve CSP

covariance matrix estimation and hence improve features ex-

tracted. Dynamic time warping is a well-known technique to

find an optimal alignment between two time-dependent se-

quences under certain conditions. The proposed approach

align the available trials for each class to the mean signal of

this class. The proposed DTW-based approach is applied to

the SVM classifier and evaluated using one of the publicly

available datasets. The results showed that the proposed ap-

proach when compared to normal CSP, improved the classi-

fication results from 78% to 83% on average. Importantly,

some subjects gained improvement around 10%.

Index Terms— Brain computer interface (BCI), Com-

mon spatial pattern (CSP), Dynamic time warping (DTW)

1. INTRODUCTION

Brain-computer interface (BCI) provides a direct communica-

tion between a person’s brain and an electronic device without

the need for any muscle control [1]. Electroencephalogram

(EEG) is the most widely used brain signals in BCI since it is

measured non-invasively with a high temporal resolution. In

the EEG-based BCI system, User mental’s state is decided by

classifying the feature extracted from EEG. Common Spatial

pattern is one of the most popular feature extraction methods

for BCIs. The importance of spatial filtering arises due to the

poor spatial resolution of EEG measurements. Thus the EEG

pattern of interest is mixed with several irrelevant but con-

current neural activities. Using spatial filtering, signals from

multiple electrodes are linearly combined to increase signal

to noise ratio, leading to extract more discriminative EEG sig-

nals.

Despite being popular and effective, CSP is known to be

very sensitive to noise and prone to overfitting. There are

different reasons which can lead to poor CSP features.First,

EEG signals are very easy to catch noisy during recording.
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So, it is very difficult to estimate the probability distributions

for high dimensional noisy EEG signals where outliers will

have a great negative effects. Second, EEG are highly non-

stationary which may happen due to several factors such as:

the variations of users’ mental states, miss concentration and

fatigue, which will also lead to inaccurate CSP features. So,

poor performance is likely to happen when using the classifier

trained on the features extracted from such EEG data.

To address CSP drawbacks, different algorithms have

been proposed. Most of the proposed algorithms focus on

improving common spatial patterns (CSP) through modifica-

tion of either the covariance matrix estimation method or the

CSP optimization objective function. Even to over come non-

stationarity problem [2, 3, 4], or to overcome the problem of

small training set [5]. Whereas, there are other techniques

which tries to improve CSP by tuning the frequency band

where CSP will be applied [6].

This paper proposes a novel DTW-based CSP approach to

improve CSP covariance matrix estimation. In the proposed

approach, the mean signal of the available trials for each class

are calculated. To cope with the problem nos-stationarity of

EEG signals, we hypothesize that alignment of EEG trials to

a common signal might reduce the non-stationarties between

these trials. Following this assumption, the available trials for

each class are aligned to the calculated mean signal of this

class to minimize the non-stationarity between the available

EEG trials. At this stage the available trials from the same

class get as close as possible to the mean of this class and also

to each others. The new aligned trials are used to calculate

the CSP covariance matrix. Based on our knowledge this the

first time to use DTW with BCI and in a such way.

The proposed approach is evaluated using one of publicly

available datasets with moderate number of subjects. Perfor-

mance of the proposed approach is also compared with the

results of the normal CSP state algorithm.

The remainder of this paper is organized as follows. In

Section II, we will describe our proposed transfer learning

approach. The experimental setup is shown in Section III.

Evaluation results are discussed and analyzed in Section IV.

Finally, conclusions are drawn in Section V.



2. METHODOLOGY

2.1. Common Spatial Patterns (CSP) Algorithm

CSP linearly transforms the data from the original EEG-

channels into new channels to better differentiate between

two conditions by maximizing the variance of one condition

while minimising it for the other. The CSP filters are calcu-

lated based assigning a new weight for each channel depend

on the projection matrix . This projection matrix will have as

much filters as the number of channels and the columns of

the matrix will carry the weights to make linear combinations

of the original EEG channels to decide which EEG-channels

carry the most useful information. The first half of the pro-

jection matrix will maximize the variance for class one and

minimize it for class two, while the second half of the pro-

jection matrix will maximize the variance for class two and

minimize it for class one under the assumption that the signal

is band-pass filtered [7].

One of the major limitation of CSP filters, is the non-

robust covariance matrices estimation problem due to its

sensitivity to artifacts and noise, which will negatively affect

the CSP filters. Based on the amount of features needed an

amount of CSP-channels, also called filter pairs, are selected.

When selecting a pair of filters, the outermost channels are

chosen, which correspond to the highest and lowest eigenval-

ues by construction, and thus contain most information, the

following equations will show how feature extraction based

on CSP works.

Let consider, Xiǫn × t is the ith band passed signal trial

and Zǫt×n is the signal after spatial filtration with Wǫn×n
projection matrix of CSP.

Z = XT
i W (1)

Here, for each trial n and t are the numbers of EEG chan-

nel and time points respectively. Let C1ǫRn×nand C2ǫRn×
n are covariance matrix of EEG signal X for the two classes.

C1 and C2 can be computed by [8]:

C(c) =
1

nc

∑

iǫIc

Xi ×XT
i c = [1, 2] (2)

Here, all trials corresponding to class care denoted by Ic ,

and the total number of trials for each class c is nc. CSP filter

matrix W can be computed by:

C1 ×W = (C1 + C2)×WD (3)

where, eigenvalues for C1 formed the D diagonal matrix.

Generally, classification is done using m pairs of filters from

W . In this report, the first three and last three rows of W are

used to acquire spatial filtered signal Z∗ǫt×m [8].

Z∗ = XTW ∗ (4)

Finally, If all EEG-data points would be used, the dimen-

sionality of the data would be too high to be used by the clas-

sifier, so the most relevant features are extracted so the feature

vector FǫR2m can be computed by calculating logarithm of

variance of Z [8].

F = log(var(Z∗)) (5)

3) Support Vector Machines(SVM):it is a discriminative clas-

sifier formally defined by a separating hyperplane. In other

words, given labeled training data (supervised learning), the

algorithm outputs an optimal hyper-plane which categorizes

new examples. The decision boundary can be found by solv-

ing the following constrained optimization problem :

Min
1

2
||W ||2 (6)

The aim is set to estimate a transformation matrix W where

the scattering of between class is maximized and within class

scattering is minimized of.

subject to yi(W
Txi + b) (7)

Where, b is the bias value, which can be calculated em-

pirically, and the class label will be depending on the sign of

f(x) will give.

2.2. Dynamic Time Warping (DTW)

Dynamic time warping (DTW) was initially proposed to

solve the time deformation problem between a two patterns

in speech recognition problems [9]. Subsequently, DTW has

been applied to other problems such as object recognition,

classification and clustering of time domain signals such

as:EEG, ECG, subject identification, and motion analysis.

For EEG, DTW is typically used as a measure of dissimi-

larity between two patterns after being optimally aligned. In

this paper, DTW is used in an unconventional way as goal is

not to find the DTW distance between two trials but to align a

collection of measured trials from one class in the average of

these class trials. Based on our knowledge this is the first time

to use DTW in such a way and with motor imagery signals.

In order to develop the proposed CSP approach based

DTW alignment, the general formulation of DTW algorithm

and how it is used to generate a pair of aligned responses is

described first.

Suppose we have two time series Q and C, of length k
and v respectively, where:

Q = q1, q2, ..., qi, ..., qk (8)

C = c1, c2, ..., cj , ..., cv (9)

To align two sequences using DTW we construct an n −
by−m matrix where the (ith, jth) element of the matrix con-

tains the distance d(qi, cj) between the two points qi and cj
Typically the Euclidean distance is used

d(qi, cj) = (qi− cj) (10)



Each matrix element (i, j) corresponds to the alignment

between the points qi and cj . A warping path W , is a contigu-

ous set of matrix elements that defines a mapping between Q
and C. The kth element of W is defined as: wk = (i, j)k so

we have:

W = w1, w2, ..., wk, ..., wK max(m,n) ≤ K < m+n−1
(11)

The warping path is typically subject to several constraints.

Boundary conditions: w1 = (1, 1) and wK = (m,n).
Continuity: Given wk = (a, b) then wk−1 = (a, b) where

aa′ ≤ 1 and b− b′ ≤ 1.

Monotonicity: Given wk = (a, b) then wk−1 = (a′, b′) where

aa′ ≤ 0 and b− b′ ≥ 0.

There are exponentially many warping paths that satisfy the

above conditions, however we are interested only in the path

which minimizes the warping cost. This path can be found

very efficiently using dynamic programming to evaluate the

following recurrence which defines the cumulative distance

γ(i, j) as the distance d(i, j) found in the current cell and

the minimum of the cumulative distances of the adjacent ele-

ments:

γ(i, j) = d(qi, cj)+min{γ(i−1, j−1), γ(i−1, j), γ(i, j−1)}
(12)

2.3. The proposed MI alignment based DTW transfer

learning method

In this paper, we assume that a large numbers of labeled tri-

als EEG trials are available from each subjects. The set of

labeled EEG trials for each subject can be presented as d =
(xi, yi)ni=1

, where xi and yi respectively denote the instances

matrix and the class label, yi ∈ {0, 1}, of the ith trial, and n
refers to the number of the trials. Each trial xi⊂Rh×v where

h is the number of instances and v is the number of channels

per trial. Typically, the classifier, is trained using the avail-

able subject-specific training features to predict the labels of

the unlabeled trials. The commonly used subject-specific (SS)

BCI model uses CSP algorithm to extract features. However,

one of the major limitation of CSP filters, is the non-robust

covariance matrices estimation problem due to its sensitivity

to artifacts and noise which will negatively affect the CSP

filters. To overcome this problem this paper proposes CSP

algorithm using DTW. The proposed algorithm tries to align

the available trials from each class to be as much similar to

the average of the available trials of this class. Now, we have

a big amount of trials that are greatly similar and can be used

to estimate the CSP features instead of the originally scattered

trials.

At first the average of the available trials per each class c
of is computed as follows:

tc = (1/nc)

nc
∑

i=1

xi, (13)

where c refers to the class label, tc refers to the average of

the available trials of class c, and nc is the number of trials

available from class c. After that a similarity matrix between

each available trial and the average signal from the same class

is computed using (12). Then the warping path for these two

trials is calculated in a way to minimize the following cost

function under the previously mentioned constraints:

D(tc, x
i) = min

(

1/k
k

∑

i=1

d{wk}
)

, (14)

where D is the accumulated distance between the average of

class c and each individual trial from the same class. Then the

indices of the warping path that minimize the previous cost

function for each source domain trial are used to construct

the new aligned trial as follows:

xi(aligned) = {xi(w1), ...., x
i(wk)} (15)

where () is the indices of this trial instance that have the min-

imum with the related instances from the reference signal.

Those reflected instances are the instances that will make this

trial to be similar to the reference average signal. Subse-

quently the covariance matrix of the new aligned raw EEG

trail is calculated as follows:

Σi(aligned) =
(xi(aligned))(xi(aligned))T

trace((xi(aligned))(xi(aligned)))
. (16)

Finally, the average of the calculated covariance matrices of

the aligned trials for each class c is computed as follows:

Σc = (1/nc)

nc
∑

i=1

Σi(aligned). (17)

3. EXPERIMENTS

In order to validate the proposed algorithms and compare

them with the baseline algorithms, all the algorithms are ap-

plied to data set 2a BCI Competition IV 2008 [10]. This

data set consists of EEG data from 9 subjects performing 4

classes of motor imagery task. In this paper only data from

right and left hand motor imagery are used. Two sessions on

different days were recorded for each subject. Each session

is comprised of 6 runs, each run consists of 12 trials for each

class.

EEG signal was recorded using 22 electrodes. EEG sig-

nals were sampled at 250 Hz, and were bandpass-filtered be-

tween 0.5 Hz and 100 Hz. Moreover, a 50 Hz notch filter

was applied to remove power line noise. The proposed al-

gorithms and the baseline algorithms are applied only on the

trials recorded on the second day by dividing it to two ses-

sions one for training (consists of the first 42 trials recorded

per class) and one for testing (consists of the last 30 trials

recorded per class). This was done to establish a practical



case that new subject data is coming from the same session.

For the new subject, different training sizes were examined

(i.e. 10, 20 and 42 trials per class). It is note that in each

multitask learning algorithm, the train data of each new sub-

ject and the other 8 other subjects were used for calculating

classification parameters.

This average covariance matrix will replace the covari-

ance matrix used to calculate the common spatial filters.
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