
This is a repository copy of System-independent ASR error detection and classification 
using Recurrent Neural Network.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/143097/

Version: Accepted Version

Article:

Errattahia, R., Hannani, A.E.L., Hain, T. orcid.org/0000-0003-0939-3464 et al. (1 more 
author) (2019) System-independent ASR error detection and classification using Recurrent
Neural Network. Computer Speech and Language, 55. pp. 187-199. ISSN 0885-2308 

https://doi.org/10.1016/j.csl.2018.12.007

Article available under the terms of the CC-BY-NC-ND licence 
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


 

Accepted Manuscript

System-Independent ASR error detection and classification using

Recurrent Neural Network

Rahhal Errattahi, Asmaa El Hannani, Thomas Hain,

Hassan Ouahmane

PII: S0885-2308(18)30203-1

DOI: https://doi.org/10.1016/j.csl.2018.12.007

Reference: YCSLA 970

To appear in: Computer Speech & Language

Received date: 4 July 2018

Revised date: 16 November 2018

Accepted date: 11 December 2018

Please cite this article as: Rahhal Errattahi, Asmaa El Hannani, Thomas Hain, Hassan Ouahmane,

System-Independent ASR error detection and classification using Recurrent Neural Network, Computer

Speech & Language (2018), doi: https://doi.org/10.1016/j.csl.2018.12.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service

to our customers we are providing this early version of the manuscript. The manuscript will undergo

copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please

note that during the production process errors may be discovered which could affect the content, and

all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.csl.2018.12.007
https://doi.org/10.1016/j.csl.2018.12.007


ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

Highlights

• A system independent approach for ASR error detection and classification is proposed.

• A set of generic features is used to train the ASR error detection and classification model.

• Variant Recurrent Neural Network based on label dependency is proposed as an effective classifier.

• The proposed system achieves competitive performances on the Multi-Genre Broadcast Media data as
compared to the state-of-the-art approaches.
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System-Independent ASR error detection and classification using Recurrent

Neural Network

Rahhal Errattahia, Asmaa El Hannania,∗, Thomas Hainb, Hassan Ouahmanea

aLaboratory of Information Technologies, National School of Applied Sciences, University of Chouaib Doukkali, Morocco
bSpeech and Hearing Group, Department of Computer Science, University of Sheffield, UK

Abstract

This paper addresses errors in continuous Automatic Speech Recognition (ASR) in two stages: error detection
and error type classification. Unlike the majority of research in this field, we propose to handle the recognition
errors independently from the ASR decoder. We first establish an effective set of generic features derived
exclusively from the recognizer output to compensate for the absence of ASR decoder information. Then,
we apply a variant Recurrent Neural Network (V-RNN) based models for error detection and error type
classification. Such model learn additional information to the recognized word classification using label
dependency. As a result, experiments on Multi-Genre Broadcast Media corpus have shown that the proposed
generic features setup leads to achieve competitive performances, compared to state of the art systems in
both tasks. Furthermore, we have shown that V-RNN trained on the proposed feature set appear to be an
effective classifier for the ASR error detection with an Accuracy of 85.43%.

Keywords: Automatic Speech Recognition, ASR error detection, ASR error type classification, Recurrent
Neural Network

1. Introduction

Over the last few decades, Automatic Speech Recognition (ASR) has gained increasing interest among
researchers and industry. This is due to the wide variety of applications in which ASR has been used, such
for example, speech-to-text technologies (e.g broadcast news transcription, video/TV programs subtitling,
meeting transcriptions), speech based human machine interaction (e.g. Voice search engines, voice controlled5

intelligent assistants) and natural language understanding applications (e.g. voice question answering, speech-
to-speech translation). The reason of the wide adoption of ASR in our daily life is the added value that users
perceive when using their voice as an input, because the voice is a more natural way for people to communicate
and is often faster than typing and in some cases (hands are busy, over the phone, in the dark or we are
moving around) is the only available mode of interaction [1].10

However, despite the impressive progress made in the field of speech processing, ASR systems continue to
make errors during transcription, especially when handling various phenomena, including acoustic conditions
(e.g. noise, competing speakers, channel conditions), out of vocabulary words, and pronunciation variations.
Error-prone ASR results usually impact performances of the post recognition applications, like information
retrieval, speech to speech translation, spoken language understanding, etc. Thus, ASR systems need a15

suitable approach for localizing ASR errors that may affect the post recognition application performance.
Confidence scores proposed by ASR literature, when available, might be helpful to indicate if a word is correct
or not by setting up a confidence threshold. Nevertheless, it only indicates how confident the ASR system is
concerning its own output and does not imply the word correctness.

ASR error detection, also known as confidence estimation, aims to improve the exploitation of ASR outputs20

by highlighting the erroneous words in the recognizer output. The ASR error detection can also be passed
downstream to an error type classification component that can classify the erroneous word as: Substitution
or Insertion. Where, Substitution (S) refers to the error where a word in the reference is transcribed as
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a different word. While, Insertion (I) refers to the error where a word, that has no correspondence in the
reference, appears in the automatic transcription.25

The most widely studied approach in ASR error detection field is features-based, requiring the extraction
of features from the ASR system or its output. The identification of effective features for ASR error detec-
tion is an open problem and several approaches have been proposed in the literature [2, 3, 4]. The proposed
features, in the literature, may be divided into two main categories based on their sources: decoder-based fea-
tures and non-decoder-based features. The decoder-based features are heavily dependent on the recognizer’s30

implementation since they are based on intermediate information generated by the recognizer’s decoder such
as word lattices, Word Confusion Networks (WCN), n-best lists, and the recognizer’s acoustic models. This
type of features has the disadvantage of not being always accessible, and particularly when the ASR system is
used as a black-box and the user does not have access to the internal features of the decoder. The non-decoder
based features are however derived from external sources such as the recognizer output (i.e. transcription35

text), language models, part of speech tags, and syntactic and semantic features.
When information about the inner workings of the decoder used for transcription is accessible, current

ASR error detection methods can supply post ASR applications with reliable indicators about output word
correctness. This condition, however, does not always hold in the above scenarios. A clear motivating example
is provided by the exponential growth of black-box speech recognition services, as Google voice Search and40

automatic captions in Youtube videos, where no information is available about the system used to produce
the transcriptions. In this paper, we extends our previous works [5, 6] on ASR error detection to a new and
different scenario where information about the inner workings of the ASR system is not accessible. Unlike
most approaches reported in the literature, we propose to handle the speech recognition errors independently
from the decoder’s internal information using a set of features derived exclusively from the recognizer output45

and hence should be trainable for any ASR system.
To the best of our knowledge, this paper represents the first extensive investigation of an efficient and

system-independent automatic error detection in ASR output. Along this direction, the main contributions
of this paper can be summarized as follows: i) build a generic and system independent feature set for ASR
error detection and classification; ii) apply a variant of Recurrent Neural Network as classifier in ASR error50

detection and classification tasks for the first time; iii) perform feature analysis, isolating the contribution of
each feature set; and iv) perform experiments on a new domain, namely multi-genre broadcast data.

From an application perspective the proposed approach could be used to: i) decide at run-time whether
a given input signal has been properly recognized (e.g. dialogue application), ii) assess if an automatic
transcription is acceptable as it is (e.g. automatic video subtitling), iii) select the best transcription among55

options from multiple ASR systems (e.g. ROVER-based hypothesis combination methods), or iv) converge
towards an automatic ASR error correction system.

The remainder of the paper is organized as follows. After an overview of related works in Section 2,
we describe our proposed approach for ASR error detection and error type classification in Section 3. Our
experimental settings is fully described in Section 4, including a detailed description of the training and60

testing data sets, and the ASR system used for the transcription. In Section 5 we present the evaluation of
our system with a detailed discussion of the achieved results for error detection and error type classification
respectively. Finally, in Section 6 we give some concluding remarks and future directions of this work.

2. Related Works

There is a plethora of research that addresses the issue of ASR errors. Various types of approaches have65

been proposed and can be broadly classified into three categories [17]. In the first set of approaches, the
posterior probability of the word given the acoustic signal is regarded as the confidence measure using a critical
decision threshold to distinguish between correct and erroneous words [18, 19, 20, 21, 22]. In the second set of
approaches, the confidence measure problem of ASR is formulated as a statistical hypothesis testing problem
where the task is to test the null hypothesis that a given word or a words sequence is correctly recognized70

and truly come from a segment of speech against the alternative hypothesis that such word or words sequence
is wrongly recognized and is not from that speech segment [23, 24, 25]. In the third set of approaches, a
classifier is built using features generated from different sources (i.e. decoder and non-decoder features) to
distinguish correctly recognized words from incorrectly recognized words [26, 14, 27, 28, 3, 2, 16, 4]. Usually

3
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Table 1: Summary of the related research in the field of ASR error detection and classification.

Approach Features Classifier Data % Accuracy

Zhang and Rudnicky [2] Decoder features:

3 Acoustic features
3 Lattice features
2 N-Best features
Non-decoder fea-

tures:

1 LM feature
2 Parser-based Fea-
tures

SVMs CMU Communicator
system [7]
Training: 1000 utter-
ances
Testing: 781 utter-
ances

Detection: 81.8

Pellegrini and Trancoso [8] Decoder features:

1 Acoustic feature
1 Posterior feature
4 Lattice features
Non-decoder fea-

tures:

3 Parser-based Fea-
tures

ANN-HMMs ALERT European
Portuguese BN corpus
[9]
Training: 108k words
Testing: 16.5k words

Detection: 87.84

Ogawa et al. [10] Decoder features:

3 WCN features
3 Acoustic features
Non-decoder fea-

tures:

3 Lexical features

CRF MIT lecture speech
[11]
Training: 1.92M words
Testing: 72K words

Detection: 84.2
Classification:
65.22

Chen et al. [12] Decoder features:

3 WCN features
2 Acoustic features
Non-decoder fea-

tures:

2 Statistical Machine
Translation features
3 Parser-based Fea-
tures

CRF BBN Byblos ASR sys-
tem [13]
Training: 1.5M words
Testing: 4.6K words

Detection: 69.1

Korenevsky et al. [14] Decoder features:

4 WCN features
2 Lattice features
Non-decoder fea-

tures:

1 LM feature
3 Lexical features

RNNs Spontaneous Speech
[15]
Training: 85 hours
Testing: 15 hours

Detection: Report-
ing results using
Precision-Recall
graph

Ogawa and Hori [16] [4] Decoder features:

8 WCN features
4 Acoustic features
Non-decoder fea-

tures:

2 LM features
3 Lexical features

DBRNNs MIT lecture speech
[11]
Training: 2M words
Testing: 72K words

Detection: 85.52
Classification:
83.33

4
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the features-based approaches outperform the two other approaches, thanks to the effect of combining various75

sources of information.
In this paper, we mainly focus on features-based ASR error detection approaches. Much research has been

done to identify the effective features and the suitable classifier for word correctness prediction in the output
transcription of ASR systems. In general, features-based works could be categorized into two sub-categories:
error detection and error type classification. Error detection, also referred to as confidence estimation, is80

the most popular ASR error detection task, in which each recognized word in the automatic transcription
is labeled either as correct if it is correctly recognized, or as error if not [26, 14, 29, 16, 4, 27, 28, 3, 2].
Error type classification rely on specifying the type of the ASR error [30, 10, 16, 4]. In other words each
recognized word is labeled as correct, substitution, insertion or deletion. The majority of earlier works in this
field consider only substitution and insertion errors, giving the difficulty to identify deletion errors. However,85

recently some researchers start working on deletion error detection, e.g. [30, 4].
Table 1 summarizes the related research in both areas. It can be seen clearly from this table that

most of features used in the reported works are derived from the decoding process (e.g. acoustic features,
lattice features, and confusion network based features) and that most effort is targeted towards the detection
task. Therefore, the major contribution in ASR error detection and classification performance comes from90

recognizer dependent features which makes those approaches strictly related to the components of the ASR
system used during the training process and hence can’t be generalized to other systems. Particularly, when
the recognition systems are used as a black-box and the user does not have access to the internals of the
decoder. In addition, most of these features are redundant with the information used in generating output
by the speech recognition system in the first place and so contribute little new information. In the other95

hand, few non-decoder features have been investigated in the literature and most of the examined features
are domain specific. For example, in [12] the proposed method is based on the statistical machine translation
features, which is in most cases built on a domain specific data. But, despite the use of such features, the
achieved results may appear very modest with a classification accuracy of 69.1%. So, even by today, an
effective recognizer-independent detection of ASR errors remains to be explored.100

Therefore, we believe that a promising approach lies in combining the most commonly used and easily
accessible decoder features that include acoustic information, such as posterior probability, with a non-decoder
source of complementary information. Linguistic analysis which is represented by Language Models (LM) is
one such source. For this purpose, we propose to use a set of generic features derived exclusively from the
recognizer output. The feature space is based on two information sources, the recognizer confidence score105

and an out-of-domain LM. These features, which are totally independent from the decoding process, have
wider applicability to the recognizer-independent ASR error detection and classification tasks that represent
our target scenario.

3. Proposed Approach

We approach both ASR error detection and ASR error type classification as a supervised learning problem.110

Given a training set of (transcription, labels) aligned utterances, the task is to predict the label of each word
in a test set of unseen (transcription) utterances using a variant Recurrent Neural Network. The workflow
that we propose for both tasks is illustrated in Figure 1.

3.1. Word Alignment Labels

To get the training labels in continuous speech recognition, we align the recognition output of the training115

set with its reference transcription using the NIST SCLITE1 scoring package. Table 2 shows examples of
such word alignment results. For the error detection task, a word label takes binary value that indicates if
the recognized word is correct (C) or incorrect (E), while for the error type classification task, a recognized
word is classified into one of three categories, i.e. correct (C), substitution error (S) or insertion error (I). In
this work we don’t take into account the deletion errors.120

1NIST SCLITE Scoring Package Version 1.5, http://www.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm

5



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

Figure 1: General workflow of the proposed approach.

Table 2: An example of word sequence alignment result between a recognized utterance and its corresponding reference tran-
scription from the MGB corpus.

REFERENCE: they all live near the river ***** GRANTA in Cambridge
HYPOTHESIS: they all live near the river GRANT ARE in Cambridge
Error detection label: C C C C C C E E C C
Error type classification label: C C C C C C I S C C

3.2. Features

The identification of recognition errors in continuous speech recognition is accomplished by analysing
each word within its context based on a set of features. As we aim to develop a generic model for ASR error
detection, we did a categorization of all features that will be investigated in this work in three sets: baseline,
semi-generic and generic. As illustrated in Figure 2, the features categorization is performed depending on125

the nature and the source of the features. We split features into two main categories based on their sources:
decoder based features and non-decoder based features. For the decoder features, they represent all features
that are based on the ASR decoder or on the internal components of the decoder. The non-decoder features
may include any features extracted from external information sources: such as LMs, semantic parsers, etc.

Figure 2: Features categorisation

The baseline feature set consists of 11 features that have been consistently reported in the literature to130

be effective in ASR error detection (see Table 3). Where the first three features (i.e CM features) are derived
directly from the ASR output: posterior probabilities. Given that the majority of ASR systems generate, in
addition to the output words, a score (probabilistic value between 0 and 1) called confidence score to indicate

6
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Table 3: Baseline features used for ASR error detection and error type classification

Feature Description
CM features

1 Log posterior probability of current word
2 Log posterior probability of previous word
3 Log posterior probability of next word

Acoustic features
4 Word acoustic log-likelihood
5 Word duration

WCN features
6 Number of alternatives
7 Insertion log probability (Total probability of ǫ arcs)
8 Substitution log probability (Total probability of alternatives)
9 Is the previous word equal to a null symbol corresponding to ǫ?
10 Is the next word equal to a null symbol corresponding to ǫ?

LM Features
11 Word LM log-score

the trustworthiness of any word generated by the ASR decoder. In addition, two features are extracted: one
from the ASR internal acoustic models and an extra feature that represent the word length in millisecond.135

The third type of baseline features are derived mainly from a Word Confusion Network (WCN). The WCN,
example in Figure 3, is build from a word lattices using the Mangu et al. [31] algorithm where each edge
is labeled with a word hypothesis and its posterior probability and the ǫ arc corresponds to word deletion
(null arc). We generated 5 features from the WCN using the SRILM toolkit2: The first feature represents
the number of arc at each segment. The second represents the posterior probability of the ǫ arc. The third140

is calculated as the some of the posterior probability of the arcs in the current segment without the ǫ. And
finally, the two last features are binary features that take value 1 if the posterior probability of ǫ arc is the
highest in the adjacent segment, and 0 otherwise. The last type of baseline features is a non-decoder feature
which represents an in-domain LM score.

Figure 3: Sample Word Confusion Network.

In addition to the baseline features; we introduce three non-decoder features as in [5], which are system-
independent. These features, called contextual features are based on LM probability calculated from an
out-of-domain N-gram dataset. In contrast to previous work where authors use a limited in-domain N-gram
dataset, which is generally the same used in the ASR system, we propose to use a very generic N-gram
dataset in order to make our solution flexible with any ASR System. Contrary to the baseline LM feature
which is based on in-domain data. The N-gram LM probability is commonly used in ASR systems. However,
in actual ASR systems, N-gram language models consider only the left side context, i.e the probability of
a given word with its preceding context. Including both sides of the context (i.e. left and right) could
provide additional information about the correctness of a given word in its context. Therefore, we propose
two N-gram LM based features, where the first one is the probability of the word given its left context, and
the second one is the probability of the word given its right context. In other words, giving a sequence S of

2http://www.speech.sri.com/projects/srilm

7
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N words w1, ..., wi, ..., wN , left and right LM probability of wi, are calculated using the Equations 1 and 2
respectively:

LeftLM = P (wi−n+1, ..., wi−1, wi) (1)

RightLM = P (wi, ..., wi+n−2, wi+n−1) (2)

Where in both equations n represents the context length (n− 1 words in the left and n− 1 words in the145

right), which correspond also to the N-gram order. When using a context window of two words (n = 2), the
approximation of 1 and 2 using the chain rule of probability and a bigram LM model, we get:

LeftLM = P (wi−1, wi) = P (wi|wi−1) (3)

RightLM = P (wi, wi+1) = P (wi+1|wi) (4)

Where LeftLM is the standard forward bigram LM, and RightLM represents the backward bigram LM.
The third contextual feature is called the sentence oddity [32], which was first introduced for the problem

of detecting substituted words in intercepted communication, where words that might raise attention are150

replaced by other innocent words that are in general not meaningful in the context of the sentence. In
this work, we adopt the definition of sentence oddity for the problem of ASR error detection, starting from
the following proposition: when a substitution or insertion has occurred, the joint probability of the entire
remainder of the sentence, without the substituted or the inserted word, might be expected to be high. While,
the joint probability of the sentence containing the substituted or the inserted word might be expected to155

be much lower, since the erroneous (i.e. substituted or inserted) word is unusual in the context of the
sentence. Thus, instead of calculating the frequency of the bag-of-words as in [32], we propose to use the
joint probability of the words sequence. So, for a given sequence S of N words w1, ..., wi, ..., wN , we redefine
the Sentence Oddity (SO) as:

SO =
P (w1, ..., wi−1, wi+1, ..., wn)

P (w1, ..., wi, ..., wn)
(5)

where, P (w1, ..., wi−1, wi+1, ..., wn) denotes the joint probability of the words sequence without the word wi,160

and P (w1, ..., wi, ..., wn) denotes the joint probability of the whole words sequence. The larger SO measure
is, the more likely it is that the word is erroneous.

The joint probability of a given word sequence S, P(S), can be approximated with Equation 4 :

P (S) = P (w1, ..., wN )

=
N∏

j=1

P (wj |wj−n+1, ..., wj−1)
(6)

where, n denotes always the N-gram order.
We denote by semi-generic features any features that could be easily extracted from the ASR outputs165

(e.g confidence measures) or from external sources. So, the semi-generic features set includes contextual
features as well as the confidence scores features. The reasons behind considering CS features as semi-generic
are: i) most speech systems today provide the CS measure to inform users what can be trusted and what
cannot; ii) the value of the confidence score is thus one of the critical factors in determining success or failure
of the speech decoder. While the generic features, include only features that are totally independent to the170

ASR decoder. The advantage of using such features is building an ASR error detection and classification
system that could be easily trained for any ASR decoder that provides the hypothesis words as well as their
confidence scores.

8
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3.3. Classifier

ASR errors often are not single events [6]. This is because a miss-recognized word generates often a175

sequence of ASR errors. Starting from this fact, we propose to use a Variant of Recurrent Neural Network
(V-RNN) [33] as the classifier for ASR error detection for the first time. The proposed system is based on
a recurrent learning strategy overs the outputs labels to train the network, as illustrated in Figure 4c. This
variant model perform recurrent connection between the output and the input layers, unlike simple RNN,
see Figure 4b, where the recurrent connection is only in the hidden layer. Intuitively, the network receives as180

input the previous word label prediction, yt−1 ⊂ Y and the input vector X = x1, ..., xn and then computes
an output vector ht, which is dependent on the entire sequence of labels y0, ..., yt−1,as follows:

ht = relu(Azt + b) (7)

where z is the joint vector of model inputs z = yt−1, x1, ..., xn, A and b are parameters of the model.
ht are then passed to a softmax layer which defines a probability distribution over the set of output la-
bels P (y|yt−1, X). Unlike in Multi-Layer Perceptron (MLP) see Figure 4a, which estimates the conditional185

probability of the labels at each time step using only the input vector P (y|X).
The model can be optimized using a Stochastic Gradient-based technique named Adam [34]. This method

computes individual adaptive learning rates for different parameters from estimates of first and second mo-
ments of the gradients. We note here that for the hidden layer we used Rectified Linear Units instead of
sigmoids activation function. The experimental setup used to train and evaluate the classifiers as well as the190

configuration parameters are given in the following section.

(a) Simple MLP (b) RNN (c) V-RNN

Figure 4: Neuronal based models for ASR error detection and classification

4. Experimental settings

4.1. Multi-Genre Broadcast Challenge Data

The experiments in this paper make use of the data provided by the British Broadcasting Corporation
(BBC) for the Multi-Genre Broadcast (MGB) challenge 2015 [35]. Task 1 of the challenge involved par-195

ticipants having to perform the automatic transcription of a set of BBC shows. These shows were chosen
to cover the multiple genres in broadcast TV, categorized in terms of 8 genres: advice, children’s, comedy,
competition, documentary, drama, events and news. The development data was used as the evaluation set
in line with previous work [38, 39, 40]. This data set consisted of 47 shows that were broadcast by the BBC
during a week in mid-May 2008.200

The MGB development set were first transcribed using the ASR system described in section 4.2, giving
a word error rate of 30.1% as in [36, 37], and the resulting transcription was aligned with the reference
transcription in order to get target labels for training our models. For ASR error detection and classification
experiments, the MGB development set was split into 70% for training, 30% for test (after shuffling the
utterances). The distribution of words in the training and test sets is summarized in Table 4.205

9
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Table 4: Words label distribution in the training and test sets

Word label Training set Test set

Correct 86339 37158
Substitution 20406 8583
Insertion 2981 1260

4.2. ASR System

The setup for ASR experiments is the same as in [38, 36, 37] with 2-gram and 4-gram language models
built on LM1 + LM2 text by first selecting a vocabulary of 200k words from all the words in the LM2 text
(87k) and augmented with the most frequently occuring words in LM1. The acoustic models consisted of
Bottleneck DNN-GMM-HMM. The Bottleneck system used a DNN for extracting 26 features. The DNN210

took as input 15 contiguous log-filterbank frames and consisted of 4 hidden layers of 1, 745 neurons plus
the 26-neuron Bottleneck layer, and an output layer of 8, 000 triphone state targets. State-level Minimum
Bayes Risk (sMBR) was used as the target function for training the DNN. Feature vectors for training the
GMM-HMM systems were 65-dimensional, including the 26 dimensional Bottleneck features, as well as 13
dimensional PLP features together with their first and second derivatives. GMM-HMM models were trained215

using 16 Gaussian components per state, and around 8k distinct triphone states.
Decoding was performed using the 2-gram LM and rescored using the 4-gram LM, to produce lattices,

which were then used to compute word confusion networks and subsequently WCN-derived features.

4.3. Out-of-domain N-gram Dataset

Concerning the contextual features (i.e. LeftLM, RightLM, SO) extraction, we used the smoothed back-220

off Microsoft Web N-gram corpus [39]. This corpus provides an open-vocabulary, smoothed back-off N-gram
Models and is dynamically updated as web documents are crawled. Since being composed of a huge volume of
data crawled from web pages and documents of different domains, the Microsoft Web N-gram corpus provides
a wide-ranging vocabulary (e.g. 1.2B 1-gram, 11.7B 2gram) that can cover most of the English vocabulary
in all domains, which justify our choice. In this work and for computational reason we used a context frame225

of two words (bigram) for contextual features (i.e. LeftLM, RightLM, SO).

4.4. ASR Error Detection and Classification Models

As a first set of experiments, we compared the proposed V-RNN with four other classifiers: MLP, Bayesian
Network (BN), Support Vector Machines (SVM), and two Long Short-Term Memory (LSTM) based RNNs
namely unidirectional LSTM (ULSTM) and bidirectional LSTM (BSLTM). Both, V-RNN and MLP models230

consist of a single layer of 2048 units with a relu [40] activation function as described in 3.3. The SVMs were
trained using non-linear radial basis function, and the parameters were optimized on the training data using
a grid search procedure in the range between 10−9 and 103. In all our experiments the optimal value of γ
was 10−7. The BN classifier uses the simple estimator function to estimate the conditional probability and
the k2 algorithm to heuristically search for the most probable beliefnetwork structure. The ULSTM consists235

of 1 hidden layer of 2048 staked LSTM units. While the BSLTM one has a bidirectional structure with two
hidden layers, one forward and one backward, each of 2048 LSTM units.

The classifiers were trained for each task, error detection and error type classification, using the pairs
of features and labels described above. In error detection, we have only two possible classes. A recognized
word will take the label correct if it is well recognized and the label error if it is miss-recognized. In error240

type classification task, in addition to the correct label the classifier will be trained to distinguish between a
substitution and insertion errors.

4.5. Performance Metrics

To measure the performance of our models, we used two popular classification evaluation metrics: Accu-
racy and F-measure, which are calculated as follows:

Accuracy =
tp+ tn

tp+ fp+ fn+ tn
(8)
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F −measure =
2 ∗ tp

2 ∗ tp+ fp+ fn
(9)

where, fn, fp, tn and tp denote the false negative, false positive, true negative and true positive, respec-
tively.245

Another metric that is commonly used to measure binary classification is the DET curve, which plot the
miss probability P (miss) vs. false alarm rate FA. The miss probability measures the rate of missing the
detection of an erroneous word. The false alarm rate measures the rate of incorrectly detecting a word error.
P (miss) and FA are given by:

P (miss) =
fn

tp+ fn
(10)

FA =
FP

N
(11)

5. Results250

5.1. Basic experiments

As a first experiment we compared the performance of the proposed V-RNN model with that of the five
other models; BN, SVM, MLP, ULSTM and BLSTM . The comparison was performed on error detection
task using the baseline feature set (11 features). Table 5, shows the results (Classification accuracy and the
F-score) of the error detection task using the six classifiers on the test set.255

Table 5: Classification accuracies [%] and F-scores [%] of error detection obtained with BN, SVM, MLP, ULSTM, BLSTM and
our proposed V-RNN for the test set using the baseline feature set

Classifier %Accuracy
%F-measure

correct error

BN 81.47 88.74 47.60
MLP 79.70 86.67 57.51
SVM 83.34 90.11 47.05
ULSTM 83.46 90.14 48.71
BLSTM 83.47 91.66 47.31
V-RNN 85.06 90.93 57.69

Figure 5: DET Plot comparing classifiers detection performance: BN, SVM, MLP and V-RNN on the test set using baseline
feature set.
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From the first three rows of the table, we can confirm that the SVM outperform both MLP and BN,
especially for the correct words detection. Despite that the BN gives the best performance for the erro-
neous words detection with an F-measure around 47.6%; it remains less efficient than the SVM in term of
classification accuracy with an accuracy of 81.47%, against 83.34% for the SVM.

Comparing the RNN based models (i.e ULSTM, BLSTM and V-RNN) to the other stander machine260

learning models, namely BN, SVM and MLP, we can confirm the superiority of the RNN based models. This
is because of the effect of training the RNN models on sequence data unlike other models, which are trained
on the words level independently to their context. We can also observe that the BLSTM performs better
than the unidirectional ULSTM. This improvement is due to the fact that Bidirectional LSTM-RNN can
handle longer bidirectional contexts of input feature vectors and can model highly nonlinear relationships265

between the input feature vectors and output labels.
It is apparent from this table that the V-RNN show better performance than other models. Comparing

the F-scores for the infrequent labels obtained with the V-RNN, we can clearly confirm the importance of
considering previous outputs labels to predict the current word.

Figure 5 shows the DET plot, for the 4 classifiers: BN, SVM, MLP and V-RNN. The plot shows significant270

gain when using V-RNN, and is consistent with the results in Table 5. At 10% false alarm rate, we achieved
about 15% absolute reduction in Miss probability by using V-RNN based model compared to the BN based
model, and about 6% compared to both SVM and MLP.

We can confirm that, as it was expected, the V-RNN outperform the other classifiers in ASR error
detection task. Thus, in the following experiments, we will only report the results using the V-RNN model.275

The next set of experiments is aimed at investigating the features described in 3.2 in order to determine
which ones perform best, both in isolation and in combination.

5.2. Comparison of Generic Versus Semi-Generic and Baseline features

Table 6 displays the V-RNN error detection and error type classification performance achieved on the
test set using different features combination. Four settings are compared, corresponding to different types280

of features used in the V-RNN training. In addition to Classification Accuracy and F-score of each type of
label, an averaged F-score across all types of labels is also reported. This is because the frequencies of each
type of label are highly unbalanced and looking at the F-score of each class is not informative.

Table 6: V-RNN classification accuracies [%] and F-scores [%] of error detection (Correct/Error) and and error type classifica-
tion(Correct/Substitution/Insertion) obtained based on different combination of features.

Features Baseline Generic Semi-Generic All

Error detection
Classification accuracy 85.06 81.64 85.34 85.30
F-score: Correct 90.93 89.19 91.03 91.07

Error 57.69 39.24 59.90 58.41
Avg 83.84 78.54 84.39 84.10

Error type classification
Classification accuracy 83.55 80.18 83.27 84.00

F-score: Correct 90.55 89.21 91.05 91.06

Substitution 58.70 30.70 51.89 55.95

Insertion 07.60 19.64 22.90 14.48
Avg 82.37 76.43 81.92 82.45

The results show that when using the baseline features; the V-RNN model achieves 85.06% as classification
accuracy in ASR error detection. But, when using only the generic features, the model achieves slightly lower285

results with a classification accuracy of 81.64%. Nevertheless, it can be considered as a satisfying result since
to the best of our knowledge non of the reported works in the literature has produced similar results using
only non-decoder features. These later are often used as a boosting factor for the performance of the ASR
error detection systems and not as isolated features. On the other hand, using the semi-generic feature set
represents a good alternative to the baseline features since it provides an absolute improvement of 0.28%290

in the classification accuracy. Also, by checking the F-scores, we can observe that a relatively significant
improvement is obtained when using the semi-generic features as compared to the baseline features and
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the generic features alone. This improvement is especially relevant for the error labels where the F-score
passed from 57.69% when using baseline features to 59.90% when using semi-generic features. For error type
classification, we note that we perform an oversampling of the training samples with Insertion labels to adjust295

the class distribution. Taking a look at the second row of Table 6, we can observe that the F-scores change in
correlation with the labels frequencies. Therefore, given that the insertion errors are less frequent than the
substitution errors, the F-score of the substitution is higher than the F-score of the insertion. We observe
also that there are small differences between the F-scores for the frequent labels (correct) obtained with each
of the feature set. On the other hand, we observe a large differences between the F-scores of the less frequent300

labels (Insertion and Substitution) obtained with different feature set. It is clear that training V-RNN on
semi-generic features gives close results in comparison to the baseline feature set. In contrast, the best error
classification results was achieved when using the total feature set. However, when comparing the F-scores
for both type of errors e.g. Substitution and Insertion, we can confirm the superiority of the semi-generic
features in error type classification task. One reason for this may be the effect of using contextual features,305

the F-score of insertion labels when using the semi-generic features is 19.64% compared to only 07.60% when
using the baseline features.

Moreover, even when using only the generic features our results are still very positive, matching many and
improving some previous state-of-the-art systems with an accuracy of 81.06% (see Table 1). It is encouraging
to compare our findings with the state-of-the-art, particularly those reported in [4] by Ogawa et al., as in the310

later work authors make use of a lecture speech corpora with similar complexity to the broadcast corpora
used in our experiments.

6. Conclusions

We have presented a generic approach for automatic speech recognition error detection and error type
classification. Where we propose to handle the speech errors independently from the ASR decoder using a set315

of features derived exclusively from the ASR output and hence should be usable with any ASR system without
any further tuning. Experimental results showed that the proposed generic features achieve competitive
performance in error detection as compared to the state-of-the-art approaches. We have also shown that the
same setup could be applied to ASR error type classification task. More interestingly, we have confirmed
that ASR errors are influenced by their context and that by incorporating the label of the previous word via320

V-RNN leads to achieve higher results in both tasks (i.e. error detection and error type classification).
This study provides proof of concept that generic feature can provide confirmatory evidence of the cor-

rectness of word in the output transcription of ASR systems, as well as lead to reveal the effectiveness of
our variant RNN (V-RNN) in sequence tagging and particularly in ASR error detection. Future works will
include adding supplementary generic features, such as lexical and semantic features, with further refinements325

of our training model using advanced deep learning techniques while providing additional training data from
different tasks and using different ASR decoders. We also intend to consider the deletion error based on
contextual and lexical features.
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