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LETTER Communicated by Michael Lewicki

Blind Source Separation Using Temporal Predictability

James V. Stone
Psychology Department, Sheffield University, Sheffield, S10 2UR, England

Ameasure of temporal predictability is defined and used to separate lin-
ear mixtures of signals. Given any set of statistically independent source
signals, it is conjectured here that a linear mixture of those signals has
the following property: the temporal predictability of any signal mixture
is less than (or equal to) that of any of its component source signals. It
is shown that this property can be used to recover source signals from
a set of linear mixtures of those signals by finding an un-mixing matrix
that maximizes a measure of temporal predictability for each recovered
signal. Thismatrix is obtained as the solution to a generalized eigenvalue
problem; such problems have scaling characteristics of O(N3), where N
is the number of signal mixtures. In contrast to independent component
analysis, the temporal predictability method requires minimal assump-
tions regarding the probability density functions of source signals. It is
demonstrated that themethod can separate signalmixtures inwhich each
mixture is a linear combinationof source signalswith supergaussian, sub-
gaussian, and gaussian probability density functions and on mixtures of
voices and music.

1 Introduction

Almost every signalmeasuredwithin aphysical system is actually amixture
of statistically independent source signals. However, because source signals
are usually generated by themotion of mass (e.g., a membrane), the form of
physically possible source signals is underwritten by the laws that govern
howmasses can move over time. This suggests that the most parsimonious
explanation for the complexity of a given observed signal is that it consists
of amixture of simpler source signals, each from a different physical source.
Here, this observation has been used as a basis for recovering source signals
from mixtures of those signals.

Consider two people speaking simultaneously, with each person a dif-
ferent distance from two microphones. Each microphone records a linear
mixture of the two voices. The two resultant voice mixtures exemplify three
universal properties of linear mixtures of statistically independent source
signals:

1. Temporal predictability (conjecture)—The temporal predictability
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(formally defined later) of any signal mixture is less than (or equal
to) that of any of its component source signals.

2. Gaussian probability density function—The central limit theorem
ensures that the extent to which the probability density function (pdf)
of any mixture approximates a gaussian distribution is greater than
(or equal to) any of its component source signals.

3. Statistical Independence—Thedegree of statistical independence be-
tween any two signal mixtures is less than (or equal to) the degree of
independence between any two source signals.

Property 2 forms the basis of projection pursuit (Friedman, 1987), and
properties 1 and 2 are critical assumptions underlying independent com-
ponent analysis (ICA) (Jutten & Hérault, 1988; Bell & Sejnowski, 1995). All
three properties are generic characteristics of signal mixtures. Unlike prop-
erties 2 and 3, property 1 (temporal predictability) has received relatively
little attention as a basis for source separation.

However, temporal predictability has been used to augment conven-
tional source separation methods, such as ICA.1 These conventional source
separation methods are defined in terms of model pdfs and their corre-
sponding cumulative density functions (cdfs) of source signals. Such meth-
ods are invariant with respect to temporal permutations of signals. For
convenience, these methods will be referred to as cdf-based blind source
separation (BSS cdf) methods. Specifically, Pearlmutter and Parra (1996) in-
corporate a linear predictive coding (LPC) model into Bell and Sejnowski’s
ICA method. This is achieved by augmenting the conventional ICA un-
mixing matrix W with extra parameters, which are coefficients of a LPC
model. The resulting “contextual ICA” method encourages extraction of
source signals that conform to both the LPC model and the high-kurtosis
pdf model implicit in ICA. Attias (2000) describes a method for augment-
ing independent factor analysis with a first-order hidden Markov model in
order tomodel temporal dependences within each source signal. Themeth-
ods described in both Pearlmutter and Parra (1996) and Attias (2000) are
demonstrated on signals that cannot be separated by ICA alone. More re-
cently, Hyvärinen (2000) described complexity pursuit, a method in which
ICA is augmented with a measure of the time dependencies of extracted
sources. 2 However, each of these three methods requires the use of itera-
tive, gradient-ascent techniques in order to locate maxima of a nonlinear
merit function.

The Bussgang techniques surveyed in Bellini (1994) can be shown to
equalize correlations between a signal and a time-delayed version of that

1 The method described in Bell & Sejnowski (1995). Bell and Sejnowski (1995) is used
as a reference point for conventional ICA methods in this article.

2 Hyvärinen’s work came to my attention while this article was under revision.
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signal, for a specific value of delay. However, Bussgang techniques also
require a nonlinear function to be chosen, which is analogous to the cdf
used in ICA. As with ICA, the quality of solutions can depend critically on
the form chosen for this nonlinear function (Cardoso, 1998).

Wu and Principe (1999) describe a BSS cdf technique for separation of
source signals with nongaussian pdfs, without prior knowledge of the pdfs
of source signals. In common with ICA, the method is based on the obser-
vation that source signals tend to be nongaussian. In contrast to ICA, source
signals are recovered by maximizing a quadratic measure of the difference
between each extracted signal and a gaussian signalwith the same standard
deviation as the extracted signal.

One source separation method that does not explicitly rely on the pdf
of extracted signals is described in Molgedey and Schuster (1994). These
authors implicitly assume that a set of source signals is uncorrelated at two
different time lags: L = 0 and L = 1t. This yields a general eigenvalue
problem, so that the solution matrix is unique and readily obtainable using
standard eigenvalue routines. One practical drawback is the method’s sen-
sitivity to the chosen value of 1t. For example, if one of two source signals
is periodicwith period θ = 1t, then the solutions to the eigenvalue problem
become degenerate, so that source separation fails.

In this article, a method explicitly based on a simple measure of tempo-
ral predictability is introduced. The main contribution of this article is to
demonstrate thatmaximizing temporal predictability alone canbe sufficient
for separating signal sources. No formal proof is given of the temporal pre-
dictability conjecture stated in previously in this section, the main purpose
being to demonstrate the utility associated with this conjecture. Although
counterexamples to this informal conjecture are easy to construct, a formal
definition of the conjecture is robust with respect to such counterexamples
(see section1.4).Moreover, resultspresentedhere suggest that the conjecture
holds true for many physically realistic signals, such as voices and music.

1.1 Problem Definition and Temporal Predictability. Consider a set of
K statistically independent source signals s = {s1 | s2 | · · · | sK}t, where
the ith row in s is a signal si measured at n time points (the superscript t
denotes the transpose operator). It is assumed throughout this article that
source signals are statistically independent, unless stated otherwise. A set
of M ≥ K linear mixtures x = {x1 | x2 | · · · | xM}t of signals in s can be
formedwith anM×Kmixingmatrix A: x = As. If the rows of A are linearly
independent,3 then any source signal si can be recovered from x with a
1 × M matrix Wi: si = Wix. The problem to be addressed here consists in
finding an unmixing matrix W = {W1 | W2 | · · · | WK}t such that each row

3 This condition can be satisfied (for instance) by placing each of K speakers a different
distance from each of M microphones.
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vector Wi recovers a different signal yi, where yi is a scaled version of a
source signal si, for K = M signals.

1.2 A Solution Strategy. The method for recovering source signals is
based on the following conjecture: the temporal predictability of a signal
mixture xi is usually less than that of any of the source signals that contribute
to xi. For example, the waveform obtained by adding two sine waves with
different frequencies is more complex than either of the original sinewaves.

This observation is used to define a measure F(Wi, x) of temporal pre-
dictability, which is then used to estimate the relative predictability of a
signal yi recovered by a given matrix Wi, where yi = Wix. If source signals
are more predictable than any linear mixture yi of those signals, then the
value of Wi, which maximizes the predictability of an extracted signal yi,
should yield a source signal (i.e., yi = csi, where c is a constant).

An information-theoretic analysis of the function F proves that max-
imizing the temporal predictability of a signal amounts to differentially
maximizing the power of Fourier components with the lowest (nonzero)
frequencies (see Stone, 1996b, Stone, 1999). The function F is invariant with
respect to the power of low-frequency components in signal mixtures and
therefore tends to amplify differentially even very low power components,
which have the lowest (nonzero) temporal frequency.

1.3 MeasuringSignalPredictability. Thedefinitionof signalpredictabil-
ity F used here is:

F(Wi, x) = log
V(Wi, x)

U(Wi, x)
= log

Vi

Ui
= log

∑n
τ=1(yτ − yτ )

2

∑n
τ=1(ỹτ − yτ )2

, (1.1)

where yτ = Wixτ is the value of the signal y at time τ , and xτ is a vector of K
signal mixture values at time τ . The term Ui reflects the extent to which yτ

is predicted by a short-term moving average ỹτ of values in y. In contrast,
the term Vi is a measure of the overall variability in y, as measured by the
extent to which yτ is predicted by a long-term moving average yτ of values
in y. The predicted values ỹτ and yτ of yτ are both exponentially weighted
sums of signal values measured up to time (τ − 1), such that recent values
have a larger weighting than those in the distant past:

ỹτ = λS ỹ(τ−1) + (1 − λS) y(τ−1) : 0 ≤ λS ≤ 1

yτ = λL y(τ−1) + (1 − λL) y(τ−1) : 0 ≤ λL ≤ 1. (1.2)

The half-life hL of λL is much longer (typically 100 times longer) than the
corresponding half-life hS of λS. The relation between a half-life h and the
parameter λ is defined as λ = 2−1/h.

Note that maximizing only Vi would result in a high variance signal
with no constraints on its temporal structure. In contrast, minimizing only
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U would result in a DC signal. In both cases, trivial solutions would be
obtained for Wi because Vi can be maximized by setting the norm of Wi to
be large, and U can be minimized by setting Wi = 0. In contrast, the ratio
Vi/Ui can be maximized only if two constraints are both satisfied: (1) y has
a nonzero range (i.e., high variance) and (2) the values in y change slowly
over time. Note also that the value of F is independent of the norm of Wi,
so that only changes in the direction ofWi affect the value of F

4.

1.4 Redefining Signal Predictability. One counterexample to the tem-
poral predictability conjecture is as follows. Consider two sine wave source
signals s1 and s2 with the same period such that s2 = s1 +π . The signal mix-
ture s = s1 + s2 is zero at all time points and is therefore quite predictable.

While s is intuitivelypredictable, theoperationaldefinitionofpredictabil-
ity F used here is robust with respect to such counterexamples. Specifically,
the value of the function F is undefined for s because if s = 0 everywhere,
then Vi = Ui = 0 and F = log 0/0. Conversely, if the frequencies of s1 and
s2 are not exactly the same, then the value of F is no longer undefined.

The informal temporal predictability conjecture can now be restated for-
mally in terms of the function F, as follows: if the value of F associated with
a signal mixture xi is not undefined, then the value of F of each mixture is
greater than (or equal to) the value of F of each source signal in thatmixture.

2 Extracting Signals by Maximizing Signal Predictability

2.1 ExtractingaSingleSignal. Considera scalar signalmixtureyi formed
by the application of a 1 × M matrix Wi to a set of K = M signals x. Given
that yi = Wix, equation (1.1) can be rewritten as

F = log
WiCW

t
i

WiC̃Wt
i

, (2.1)

where C is an M × Mmatrix of long-term covariances between signal mix-

tures and C̃ is a corresponding matrix of short-term covariances. The long-

term covariance Cij and the short-term covariance C̃ij between the ith and
jth mixtures are defined as

C̃ij =

n∑

τ

(xiτ − x̃iτ )(xjτ − x̃jτ )

Cij =

n∑

τ

(xiτ − xiτ )(xjτ − xjτ ). (2.2)

4 Previous experience with iterative gradient ascent on F shows that the length of Wi

varies only a little throughout the optimization process. However, the method of solution
used in this article avoids this issue.
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Note that C̃ and C need to be computed only once for a given set of signal
mixtures and that the terms (xiτ − xiτ ) and (xiτ − x̃iτ ) can be precomputed
using fast convolution operations, as described in Eglen, Bray, and Stone
(1997).

Gradient ascent on F with respect to Wi could be used to maximize F,
therebymaximizing the predictability of yi. The derivative of Fwith respect
toWi is

∇WiF =
2Wi

Vi
C −

2Wi

Ui
C̃. (2.3)

One optimization procedure (not used here) would consist of iteratively
updatingWi until a maximum of F is located:Wi = Wi + η∇WiF, where η is
a small constant (typically, η = 0.001).

Note that the function F is a ratio of quadratic forms. Therefore, F has ex-
actly one global maximum and exactly one global minimum, with all other
critical points being saddle points (Borga, 1998). This implies that gradient
ascent is guaranteed to find the global maximum in F. Unfortunately, re-
peated application of the above procedure to a single set ofmixtures extracts
the same (mostpredictable) source signal.While this canbepreventedbyus-
ing procedures such as Gram-Schmidt orthonormalization, a more elegant
method for extracting all of the sources simultaneously exists, as described
next.

2.2 Simultaneous Source Separation. The gradient of F is zero at a so-
lution where, from equation (2.3),

WiC =
Vi

Ui
WiC̃. (2.4)

Extrema in F correspond to values of Wi that satisfy equation (2.4), which
has the form of a generalized eigenproblem (Borga, 1998). Solutions forWi

can therefore be obtained as eigenvectors of the matrix (C̃−1C), with corre-
sponding eigenvalues γi = Vi/Ui. As noted above, the first such eigenvector
defines a maximum in F, and each of the remaining eigenvectors defines
saddle points in F.

Note that eigenproblems have scaling characteristics of O(N3), where N
is the number of signal mixtures. The matrix W can be obtained using a
generalized eigenvalue routine. Results presented in this article were ob-

tained using the Matlab eigenvalue function W = eig(C, C̃). All K signals
can then be recovered: y = Wx, where each row of y corresponds to exactly
one extracted signal yi.

2.2.1 Separating Mixtures for M > K. If the number M of mixtures is
greater than the number K of sources signals, then a standard procedure
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for reducingM consists of using principal component analysis (PCA). PCA
is used to reduce the dimensionality of the signal mixtures by discarding
eigenvectors of x that have eigenvalues close to zero.However, in this article,
only mixtures for which K = M are analyzed.

2.3 A Physical Interpretation. The solutions found by the method are

the eigenvectors (W1,W2, . . . ,WM)of thematrix (C̃−1C). These eigenvectors

are orthogonal in the metrics C and C̃:

WiC̃W
t
j = 0

WiCW
t
j = 0, (2.5)

where,

WiC̃W
t
j =

∑

τ

(yiτ − ỹiτ )(yjτ − ỹjτ )

WiCW
t
j =

∑

τ

(yiτ − yiτ )(yjτ − yjτ ). (2.6)

Given equations (2.5), a simple and physically realistic interpretation of
the method can be demonstrated. Consider the short-term and long-term
half-life parameters hS and hL in the limits (hS → 0) and (hL → ∞). First,
in the limit (hS → 0), the short-term mean is ỹτ ≈ yτ−1, and therefore
(yτ − ỹτ ) ≈ dyτ /dτ = y′

τ . Second, if y has zero mean, then in the limit
(hL → ∞), the long-term mean y ≈ 0, and therefore (yτ − yτ ) ≈ yτ . In these
limiting cases, equations (2.5) and (2.6) imply that

E[y′
iy

′
j] = 0

E[yiyj] = 0, (2.7)

where E[ ] denotes an expectation value. Thus, one interpretation of the
method is that each signal yi = Wix is uncorrelated with every other signal
yj = Wjx, and the temporal derivative y′

i = Wix
′ of each extracted signal is

uncorrelatedwith the temporal derivative y′
j = Wjx

′ of every other extracted

signal, where x′ is a vector variable that is the temporal derivative of the
mixtures x. Critically, if two signals yi and yj are statistically independent
then the conditions specified in equation (2.7) are met. Therefore, mixtures
of independent signals are guaranteed to be separable by the method, at
least in the limiting cases specified above.

3 Results

Three experiments using the method described above were implemented
in Matlab. In each experiment, K source signals were used to generate M =
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Table 1: CorrelationMagnitudesBetweenSource Signals andSignalsRecovered
from Mixtures of Source Signals with Different pdfs.

Source Signals
Signals

Recovered s1 s2 s3

y1 0.000 0.001 1.000
y2 1.000 0.000 0.000
y3 0.042 0.999 0.002

K signal mixtures, using a K × K mixing matrix, and these M mixtures
were used as input to the method. Each mixture signal was normalized
to have zero-mean and unit variance. Each mixing matrix was obtained
using the Matlab randn function. The short-term and long-term half-lives
defined in equation (1.2) were set to hS = 1 and hL = 9000, respectively.
Correlations between source signals and recovered signals are reported as
absolute values. Results were obtained in under 60 seconds on aMacintosh
G3 (233MHz) for all experiments reportedhere, usingnonoptimizedMatlab
code. In each case, an un-mixing matrix was obtained as the solution to
a generalised eigenvalue problem using the Matlab eigenvalue function

W = eig(C, C̃).

3.1 Separating Mixtures of Signals with Different Pdfs. Three source
signals s = {s1 | s2 | s3}

t are displayed in Figure 2: (1) a supergaussian
signal (the sound of a gong), (2) a subgaussian signal (a sine wave), and
(3) a gaussian signal. Signal 3 was generated using the randn procedure in
Matlab, and temporal structure was imposed on the signal by sorting its
values in ascending order. These three signals were mixed using a random
matrixA to yield a set of three signalmixtures: x = As. Each signal consisted
of 3000 samples; thefirst 1000 samples of eachmixture are shown inFigure 1.
The correlations between source signals and recovered signals are given in
Table 1. The three recovered signals each had a correlation of r > 0.99, with
only oneof the source signals, andother correlationswere close to zero.Note
that the mixtures used here do not include any temporal delays or echoes.

3.2 SeparatingMixtures of Sounds. For each experiment reportedhere,
50,000 data points were sampled at a rate 44,100 Hz, using a microphone to
record different voices from a VHF radio onto a Macintosh computer. Two
sets of eight sounds were recorded: male and female voices and classical
music, with and without singing.

3.2.1 Separating Voices. The method was tested on mixtures of normal
speech. Correlations between each source signal and every recovered signal
for four and eight voices are given in Tables 2 and 3, respectively. Graphs
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Figure 1: Three signal mixtures used as input to the method. See Figure 2 for a
description of the three source signals used to synthesize these mixtures. Only
the first 1000 of the 9000 samples used in experiments are shown here. The
ordinal axis displays signal amplitude.

of original (source) voice amplitudes and the signals recovered from a set
of four mixtures (not shown) are shown in Figure 3. Note that correlations
are approximately r = 0.99. With correlations this high, it is not possible
to hear the difference between the original and recovered speech signals.
A correlation of 0.956 was found between source 8 and recovered signal 3;
this represents the worst performance of the method out of all data sets
described in this article.

Table 2: Correlation Magnitudes Between Each of Four Source Signals and Ev-
ery Signal Recovered (y1, . . . , y4) by the Method.

Source Signals
(voices)

Signal
Recovered s1 s2 s3 s4

y1 0.097 0.994 0.028 0.049
y2 0.996 0.081 0.012 0.019
y3 0.002 0.042 0.995 0.095
y4 0.030 0.076 0.101 0.992

Note: Each source signal has a high correlation with
only one recovered signal.
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Figure 2: Three signals with different probability density functions. A super-
gaussian gong sound, a subgaussian sine wave, and sorted gaussian noise (see
text) are displayed from top to bottom respectively. In each graph, the source
signals used to synthesize the mixtures displayed in Figure 1 are shown as a
solid line, and corresponding signals recovered from those mixtures are shown
as dotted lines. Each source signal and its corresponding recovered signal have
been shifted vertically for display purposes. The correlations between source
and recovered signals are greater than r = 0.999 (see Table 1). Only the first
1000 of the 9000 samples used are shown here. The ordinal axis displays signal
amplitude.

3.2.2 SeparatingMusic. Themethodwas testedonmixtures of eight seg-
ments ofmusic. Correlations between each source signal and each recovered
signal for eight music segments are given in Table 4. Again, correlations are
approximately r = 0.99, and it is not possible to hear the difference between
the original and recovered music signals.

The method seems to be largely insensitive to the values used for the
short-term and long-term half-lives defined in equation 1.2, provided the
latter is much larger than the former.

3.3 How Maximizing Predictability Can Fail. The method is based on
the assumption that different source signals are associated (via Wi) with
distinct critical points in F. However, if any two source signals have the
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Figure 3: Four voices (two male and two female). In each graph, the source
signals used to synthesize four mixtures (not shown) are shown as solid lines,
and corresponding signals recovered from these mixtures are in shown as dot-
ted lines. Each source signal and its corresponding recovered signal have been
shifted vertically for display purposes. The correlations between source and re-
covered signals are greater than r = 0.99 (see Table 2). Only the first 1000 of the
50,000 samples used are shownhere. The ordinal axis displays signal amplitude.

Table 3: Correlation Magnitudes Between Each of Eight Source Signals and
Every Signal Recovered by the Method.

Source Signals (voices)
Signal

Recovered s1 s2 s3 s4 s5 s6 s7 s8

y1 0.001 0.008 0.004 0.003 0.028 0.046 0.988 0.143

y2 0.994 0.013 0.003 0.001 0.001 0.017 0.016 0.109

y3 0.179 0.001 0.162 0.011 0.037 0.102 0.134 0.956

y4 0.015 0.012 0.007 0.999 0.024 0.032 0.004 0.004

y5 0.004 0.020 0.993 0.000 0.021 0.008 0.007 0.109

y6 0.010 0.003 0.026 0.018 0.021 0.992 0.044 0.111

y7 0.027 0.999 0.012 0.002 0.000 0.010 0.009 0.002

y8 0.015 0.003 0.027 0.022 0.998 0.020 0.021 0.043

Note: Each source signal has a high correlation with only one recovered signal.
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Table 4: Correlation Magnitudes Between Each of Eight Source Signals and
Every Signal Recovered (y1, . . . y8) by the Method.

Source Signals (classical music)
Signal

Recovered s1 s2 s3 s4 s5 s6 s7 s8

y1 0.096 0.993 0.001 0.001 0.019 0.030 0.035 0.043

y2 0.088 0.032 0.000 0.002 0.000 0.991 0.038 0.086

y3 0.006 0.070 0.005 0.001 0.016 0.094 0.085 0.990

y4 0.028 0.044 0.018 0.002 0.068 0.034 0.991 0.093

y5 0.005 0.007 0.998 0.066 0.006 0.009 0.021 0.010

y6 0.995 0.083 0.001 0.008 0.007 0.055 0.018 0.007

y7 0.000 0.001 0.075 0.997 0.002 0.002 0.000 0.000

y8 0.008 0.027 0.022 0.012 0.995 0.006 0.098 0.019

Note: Each source signal has ahigh correlationwith only one recovered signal.

same degree of predictability F, then two eigenvectors Wi and Wj have
equal eigenvalues (and are associated with the same critical points in F).
Therefore, any vector Wk that lies in the plane defined by Wi and Wj also
maximizes F, but Wk cannot (in general) be used to extract a source signal.
This has been demonstrated (not shown here) by creating two mixtures
x = As from two signals s1 and s2, where s1 is a time-reversed version of
s2. Although s1 and s2 have different time courses, they share exactly the
same degree of predictability F and cannot be extracted from the mixtures
x using this method.

In practice, signals from different sources (e.g., voices) typically can be
separated because each source signal has a unique degree of predictability
(i.e., value of F). Indeed, every set of signals in which each signal is from a
physically distinct source (e.g., voices) has been successfully separated in
the many experiments used in the preparation of this article.

4 Discussion

Methods for recovering statistically independent source signals from sig-
nal mixtures work by taking advantage of generic differences between the
properties of signals and their mixtures. Three such differences were sum-
marized in the introduction: (1) temporal predictability (conjecture) (the
temporal predictability of any signal mixture is less than (or equal to) that
of any of its component source signals), (2) gaussian probability density
function (the central limit theorem ensures that the extent to which the pdf
of anymixture approximates a gaussian distribution is greater than or equal
to any of its component source signals), and (3) statistical independence (the
degree of statistical independence between any two signal mixtures is less
than or equal to the degree of independence between any two source sig-
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nals). The last twohavepreviously beenusedas a basis for signal separation,
and the first has been used to augment source separation (e.g., Pearlmutter
&Parra, 1996; Attias, 2000; Porrill, Stone, Berwick,Mayhew,&Coffey, 2000).
In this article, only the first property (temporal predictability) has been used
to separate signal mixtures.

While themethod has a low-order polynomial time complexity ofO(N3),
thisdoesnotnecessarily imply that it finds solutionsmorequickly thanother
source separationmethods (see Comon&Chevalier, 2000, for an analysis of
the time complexityof ICAmethods).However, the fact that each simulation
reportedherewas run inunder 60 seconds (on aMacintoshG3)may indicate
that the method is reasonably fast. This issue can be resolved only by a
direct comparison of differentmethods on the same data sets. One desirable
property of method described in this article is that local extrema are not an
issue. This contrasts with other methods for which the existence of local
extrema may be difficult to detect (Ding, Hohnson, & Kennedy, 1994).

Of the methods reviewed in section 1, the method that Molgedey and
Schuster (1994) described is mathematically most similar to the one de-
scribed in this article, inasmuch as both methods involve a generalized
eigenvalue problem. As stated in section 1, Molgedey and Schuster implic-
itly assume that source signals are uncorrelated at two different time lags. In
contrast, one interpretation of the assumptions underlying the method pre-
sented here is that source signals are uncorrelated and their corresponding
temporal derivatives are also uncorrelated (in the limiting cases specified in
ection 2.3). Thus, although both methods can be formulated as generalized
eigenvalue problems, the assumptions required by each method regarding
the nature of source signals are qualitatively very different.

As defined above, the predictions (yτ and ỹτ ) of each signal value yτ are
based on a linear weighted sum of previous values {y}. Natural extensions
to this method could involve defining predicted values of yτ as general
functions of previous signal values {y}, yielding functionals of the general
form

G = log

∑n
τ=1( f ({y} − yτ )

2

∑n
τ=1(g({y} − yτ )2

. (4.1)

Here, the functions f and g provide predictions of yτ , based on previous
values {y} of yi, such that G is invariant with respect to the norm of Wi

(recall that y = Wix). For example, the functions f and g could be defined
in terms of linear predictive coefficients, as in Pearlmutter and Parra (1996),
or in terms of the exponents p and q in f (y) = yp, g(y) = yq. The ability
to incorporate specific types of models into the method could also be used
to deal with signal sources that contain echoes and delays. More generally,
information-theoretic measures of temporal structure, such as approximate
entropy (Pincus & Singer, 1996), may prove useful as measures of temporal
predictability for source separation (approximate entropy was investigated
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in the development of the method presented here). In particular, the issue
of sensor (e.g., microphone) noise has not been addressed in this article, and
these more elaborate measures of predictability may be robust with respect
to such noise.

It is noteworthy that the principles underlying the method have been
used for unsupervised learning in artificial neural networks (Stone, 1996a,
1996b, 1999; Becker&Hinton, 1992; Becker, 1993). This principle is useful for
both unsupervised learning and source signal separation precisely because
it is based on a fundamental property of the physical world: temporal pre-
dictability. However, predictability is not only a property of the temporal
domain; an obvious extension (explored in Becker & Hinton, 1992; Eglen et
al., 1997; Stone & Bray, 1995) is to apply the principle to the spatial domain.

Additionally, the assumptions of temporal or spatial predictability used
in the methods just described can be combined in a method that assumes
a degree of temporal and spatial predictability. Specifically, methods that
maximize predictability in space or predictability in time can be replaced by
a method that maximizes predictability over space and time. An analogous
spatiotemporal ICA method has been described in Stone, Porrill, Buchel,
and Friston (1999).

If all three properties listed above apply to any statistically independent
source signals and their mixtures, a method that relies on constraints from
all of these properties might be expected to deal with a wide range of signal
types. It is widely acknowledged that ICA forces statistical independence
on recovered signals, even if the underlying source signals are not indepen-
dent. Similarly, the current method may impose temporal predictability on
recovered signals even where none exists in the underlying source signals.
Therefore, a method that incorporates constraints from all three properties
should be relatively insensitive to violations of the assumptions on which
the method is based. A framework for incorporating experimentally rele-
vant constraints based on physically realistic properties has been formu-
lated in the form of weak models (Porrill et al., 2000) and has been used to
constrain ICA’s solutions. In particular, the function F has the correct form
for a weak model and has been shown to improve solutions found by ICA
(Stone & Porrill, 1999). Finally, the method described here may be useful in
the analysis of medical images and electroencephalogram data.

Ina seminal article,Bell andSejnowski (1995) compared their ICAmethod
toBecker andHinton’s IMAXmethod (1992) and speculated that “someway
may be found to view the two in the same light.” In fact, if the hidden layers
of nonlinear units in a temporal IMAX network (Becker, 1992) are removed,
then the resultant system of equations is given by equation 1.1 in the lim-
its (hS → 0) and (hL → ∞). The two methods can then be viewed in the
same light: whereas ICA recovers source signals by maximizing the mutual
information between input and output, (temporal) IMAX and the method
described here recover source signals by maximizing the mutual informa-
tion I(yτ ; yτ−1) between a recovered signal y at time τ and time (τ − 1).
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