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Abstract

Strong-field quantum electrodynamics predicts electron-seeded electron–positron pair cascades

when the electric field in the rest-frame of the seed electron approaches the Sauter–Schwinger field, i.e.
h = ~E E 1SRF . Electrons in the focus of next generationmulti-PW lasers are expected to reach this
threshold.We identify three distinct cascading regimes in the interaction of counter-propagating,

circularly-polarised laser pulses with a thin foil by performing a comprehensive scan over the laser

intensity (from1023 to 5×1024Wcm−2) and initial foil target density (from1026 to 1031m−3). For

low densities and intensities the number of pairs grows exponentially. If the intensity and target

density are high enough the number density of created pairs reaches the relativistically-corrected

critical density, the pair plasma efficiently absorbs the laser energy (through radiation reaction) and

the cascade saturates. If the initial density is too high, such that the initial target is overdense, the

cascade is suppressed by the skin effect.We derive a semi-analyticalmodel which predicts that dense

pair plasmas are endemic features of these interactions for intensities above 1024Wcm−2 provided the

target’s relativistic skin-depth is longer than the laser wavelength. Further, it shows that pair

production ismaximised in near-critical-density targets, providing a guide for near-term

experiments.

1. Introduction

To correctly describe the interaction of strong electromagnetic fields withmatter requires strong-field quantum

electrodynamics (QED). Thewell-known ‘break down’ of the vacuumvia pair production is predicted to occur

at the critical Sauter–Schwinger field = » ´ -E m c e 1.32 10 V mS
2 3 18 1. Strong-fieldQEDprocesses can

occur infields far weaker than this criticalfield. Nonlinear Compton scattering of photons in the quantum

regime and pair production via the Trident process can occur if the electric field in the rest-frame of the electron

(or positron), ERF, is equal to the critical field, i.e. the quantum efficiency parameter h = ~E E 1SRF .We can

reach η∼1 for laserfieldsmuchweaker thanES as thefields themselves can rapidly accelerate electrons to high

Lorentz factor, resulting in a strong Lorentz boost toERF. Pair production by themulti-photon Breit–Wheeler

process can occur if the photons emitted duringCompton scattering satisfy a similar condition on their

quantum efficiency parameter (defined below)χ∼1. An electromagnetic cascade can ensue ifmany

generations of electrons and positrons can be generated by thefields. Usually this occurs via a two-step process

whereby the electrons and positrons produced by the Breit–Wheeler process radiate photons by nonlinear

Compton scatteringwhich subsequently decay to further pairs and so on.

Upcoming facilities, like several of those comprising the extreme light infrastructure (ELI) [1, 2], are

expected to reach laser intensities of > -I 10 W cm23 2, andwill be capable of accelerating electrons in the

plasma generated at the laser focus such that η∼1. The possibility of the experimental realisation of this regime,

has stimulated investigation of the aboveQEDprocesses in laser-matter interactions. In particular, the

prediction that strong-fieldQEDprocessesmight lead to the prolific production of photons and pairs has led to
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various studies of laser-induced electromagnetic cascades and their requirements [3–11]. These studies suggest

that cascades should be possible once laser intensities reach ~ - -I 10 W cm23 24 2, as expected fromupcoming

facilities. A direct consequence of a pair cascade is the formation of a dense electron–positron pair plasma [6,

12–18]. Pair plasmas generated by cascades are believed to play an important role in extreme astrophysical

contexts such as pulsarmagnetospheres and active black holes [19–21]. Pair plasmas created during a cascade in

a laser-plasma interaction are predicted to couple strongly with the field of a laser leading to near-total

absorption of the laser pulse [6, 22, 23], with consequences for applications of these lasers, for example

quenching radiation pressure ion acceleration [24–26]. Hence, the experimental realisation of laser-induced

cascades willmark the transition to a regime, as yet only inferred in astrophysical environments, where strong-

fieldQEDand plasma effects are coupled [12, 13]. This is in contrast to experiments where nonlinear Compton

scattering [27–30] andmulti-photon Breit–Wheeler pair production [31] have previously been observed in the

interaction of electron beamswith intense lasers, i.e. not in a plasma environment.

The coupling between plasma andQEDeffects suggests that pair cascades will be sensitive to the initial target

density, plasma effects being far less significant in very low density targets [25]. In this paper we show that this is

indeed the case and that there are three cascade regimes defined by the initial target density (and laser intensity).

This is in contrast to previous workwhich has usually considered cascades from a small number of seed electrons

or very lowdensity plasma [6, 10] or cascades from targets with a narrow range of higher densities, for examples

of the latter see [14, 17]. Specifically, we investigate the case of two counter-propagating circularly-polarised

laser pulses interactingwith a thin foil. Here cascades are seeded by electrons in a plasma target with electron

number density Î -[ ]n 10 , 10 m0
26 31 3 for laser pulses each of intensity = Î-( ( )) [ ]I I 10 W cm 0.1, 524

24 2 .

We have simulated cascades using the particle-in-cell (PIC) code EPOCH, [32], which includes the strong-field

QEDprocesses described above [33]. 1D and 2D simulations have been performed in order to showwhere in

I24-n0 space cascades and dense pair plasmaswill develop, as has previously been done for gamma-ray emission

by nonlinear Compton scattering only [34]. In doing so, we outline expectations for future experiments using

ultra-high intensity lasers and provide an approximatemodel for predicting the production of a dense pair

plasma over awide range of possible experimental conditions.

2. Semi-analytical scaling for the pair plasmadensity

In order to interpret the cascade simulations presented later, it is useful to derive a simple scaling for the number

of pairs produced. This will also allow us to identify the cascading regimes and their dependence on target

density. Similar scalings have been presented previously for cascading from a very low initial electron density

[10] and for a cascade in in initially underdense plasma [25, 35]. Here we extend this to include the case of an

initially near-critical density or overdense plasma to enable us to explore density space fully.We begin by

discussing the electromagnetic fields.

2.1. Counter-propagating circularly-polarised laserfields

The electricfield of a circularly-polarised plane-wave propagating in the x-direction is

f f= ( )( )E f tE 0, sin , cos0 , where f w= -t kxL ,ωL and k are the laser frequency andwavenumber,

respectively, f (t) is a function determining the slowly varying temporal profile of the laser pulse, andE0 is the

amplitude of thewave. The± sign on the cosine determines the sense of the field rotation.We can further define

the laser strength parameter w=a eE m cL0 0 for later use [36]. For circular-polarisation, l» m( )a I6000 24 m
2 1 2.

A counter-propagating wave is introduced by letting  -k k. Adding these positive (+k) and negative (-k)

moving components, for same-sense combinations (i.e. the sign on the z-component of each beam is (±,±)),

the resultant electric field (for easewe set f (t)=1) is w w= ( )E kx t tE 2 cos 0, sin , cosL L0 and describes a

standingwave in x rotating about the beam-axis, with electric (magnetic)nodes at kx=nπ/2, for odd (even) n,

i.e. for x=nλ/4.
If thewavelength is long relative to length scales of processes involved, we can approximate the field by a

rotating electric field, given simply by the time-dependent portion of the equation forE above. In this case,

electronmotion and pair production can be treated as in [3] to fairly good approximation.

2.2. Relativistic transparency

If we consider a plasma placed between the two circularly-polarisedwaves, then for laser intensities such that

a0?1, themotion of electrons becomes sufficiently relativistic that their average Lorentz factor

g » +¯ ( )a1 0
2 1 2 (neglecting radiation reaction—discussed below)must be accounted for in the effective

plasma frequency w ḡp . Since g ¯ 1, thismeans the plasma frequency is dramatically reduced relative to the

laser frequency and a plasmawhichwas overdense at lower intensity becomes underdense, allowing the laser to

propagate through the plasma. As the plasma frequency is related to the plasma density by w µ np e
1 2, and given

2
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that the non-relativistic critical density is e w=n m eC e L0 0
2 2, the relativistically corrected critical density

becomes g= ¯n nC C0. At the intensities considered in this work, a0?1 and so g »¯ a0 and using the value for a0
given above the relativistically-corrected critical density is l» m( )n n I600C C0 24 m

2 1 2.

A further correction is due to the strong radiation reaction experienced by electrons at intensities sufficient

for quantum effects to become apparent, thus requiring the introduction of a damping correctionwhich reduces

ḡ below a0 [3, 22, 37].When radiation damping is weak the critical density is the same as the undamped value

given above, that is nC
W. However, for intensities I241, damping becomes strong and the critical density

becomes »n a n2C
S

C0 0. Here we use the undamped classical value = =n n a nC C
W

C0 0 for simplicity, and here

onwhen discussing under/overdense plasmawemean relativistically under/overdense.

2.3. Strong-field effects

The important strong-fieldQED effects in lasermatter interactions have been discussed extensively in the

literature (see, for example [4, 33, 38]), we review themhere for convenience. The characteristic field of strong-

fieldQED is the Sauter–Schwinger field = » ´ -E m c e 1.32 10 V mS e
2 3 18 1. For electrons and positrons, the

importance ofQED effects is governed by the dimensionless, Lorentz-invariant parameter


h

g
º = » + ´mn

n
^∣ ∣ ∣ ∣ ( )

e

m c
F p

E

E E
E v B , 1

e s s
3 4

RF

where the last equality is validwhen the electron (positron) is ultra-relativistic. pμ is the four-momentumof an

electron travelling in a background electromagnetic fieldwithfield tensor mnF , γ is the Lorentz factor of an

electron travelling at velocity v,E⊥ is the component of the electric field perpendicular to the electronsmotion

(i.e. perpendicular to v) andB is themagnetic field.

An electron at amagnetic node of the standingwave formed by counter-propagating circularly-polarised

laser pulses performs circularmotionwith the centripetal force provided by the component of the laser’s electric

field perpendicular to itsmotionE⊥. In this case h g» ^/E ES. At high intensities the average value for the

Lorentz factor of an electron g = + »¯ ( )a a1 0
2 1 2

0 (again neglecting radiation reaction—see [3, 22] for the

equivalent discussion including radiation reaction), meaning the average η value h l» » m^¯ a E E I1.75S0 24 m for
counter-propagating circularly-polarised beams (assuming =Ê E2 0). For pair production to become

important we require that the electromagnetic field strength approaches the Sauter–Schwinger field, i.e. h ~¯ 1,

fromwhich it can be seen that for counter-propagating lasers of l =m 1m we require the intensity be I24∼0.57.
For η∼1, three quantumeffects predominantly affect the behaviour of electrons, positrons, andγ-ray

photons interactingwith an intense laser. These are nonlinearCompton scattering andpair production via the

Trident andmulti-photonBreit–Wheeler processes. Thefirst, nonlinearComptonScattering, is the scattering ofn

laser photonsÿωLby an electron resulting in a single high-energyγ-ray photonÿωγ, i.e.  w w+  + g
- -ne eL .

It governs the emission of high-energyγ-ray photons by an electronor positron accelerated by the laserfields. The

average energyof the emitted gamma-ray photon is w h»g( ) 0.44av times the emitting electrons energy [4] and
so for η∼1 each emission leads to a large change in the electrons energy and the electron’smotionbecomes

stochastic [39, 40]. However, it has recently been shown that amodified-classical approach to radiation

reactionusing theultra-relativistic formof the Landau–Lifshitz equation [41] including theGaunt factor g(η)

for synchrotron emission [42]describes the averagemotionof the electronpopulation to good

approximation [43, 44].

The trident process occurswhen a virtual photon decays into an electron–positron pair which is

subsequently separated by an external electromagnetic field. The rate of this process increases relatively slowly

with intensity [3] and as such it is typically ignored as it will be here.

Thefinal process ofmulti-photon Breit–Wheeler pair production is similar to the Trident process but

results from a real photon, rather than virtual, interactingwith laser photons to produce a pair, i.e.

 w w+  +g
- +n e eL . This process is dependent on a second Lorentz-invariant quantumparameter for the

photonÿωγ,

 
c

w
º = + ´mn

n g
^∣ ∣ ∣ ˆ ∣ ( )

e

m c
F k

m c
cE k B

2 2
, 2

e e

2

3 4 2

where  nk is the four-momentumof the photon interactingwith a background (laser)field, wg is its energy and
k is its three-wavevector. In the case of photons emitted by an electron performing circularmotion at the

magnetic node, the average value ofχ is given by c w» g ^¯ [( ) ](m c E E2av e S
2 ).

Rates for nonlinear Compton scattering andmulti-photon Breit–Wheeler pair production are known and

are conveniently reviewed in, for example [45]. These rates were calculated under the assumptions of a quasi-

static andweak externalfield. Thefirst requires that the formation length of processes be short relative to the

characteristic length-scale for change of the external field so that the ratesmay be calculated for a constant field.

In general the rates depend not only on η andχ (as defined in equations (1) and (2)) but also the parameters

= -∣ ∣F E c B ES
2 2 2 2 and = ∣ · ∣G c EE B S

2. However, provided theweak-field approximation applies, i.e. that

3
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E ES0 ( F G, 1and h  ( )F Gmax ,2 ), the rates can be treated using the constant crossed-field
configuration (as a function of η,χ only). In this case the rate that an electronwith energy gmc2 emits a photon

and a photonwith energy ÿωγ decays to an electron–positron pair are [8, 45]

ò
a
l

h
g

c
h c
c

pa
l w

c c= =g
h

g
 

( )
( ) ( )W

c F
W

c m c
T

3
d

, 2
. 3

f

c

f

c

e

0

2 2

λc andαf are theComptonwavelength andfine-structure constant. F(η,χ) is the quantum synchrotron function

(whose form is given in [33]) and c c» [ ( )]T K0.16 2 31 3 (K1/3 is a Bessel function of the second kind).When

developing the semi-analyticalmodel wewill assume that h h= ¯ and c c= ¯ in these equations for the rates.

2.4. Identifying the cascade regimes

Wenowhave the formulae required to develop our semi-analyticalmodel of dense pair plasma production.

Laser-induced electron–positron cascades have been previously investigated for various laser intensities, targets

and laser pulse shapes (e.g. [3, 4, 7, 10]). The dynamics of cascades are complicated and in general analytical

solutions are unattainable. Recently Grismayer et al [10] derived semi-analytical scalings for the growth of the

cascade from a small number of seed electrons. This has been extended to include cascades from an initially

underdense plasma by Luo et al [35] andDel Sorbo et al [25]. The latter cases, where the seed is an initially

present electron–ion plasma, is farmore likely to be realised in experiments.We extend the analysis of this case

to include the case where this electron–ion plasma has density close to or above the critical density.

We canwrite the coupled rate equations for the number of pairs N and the number of photonsNγ [8]:

= g ˙ ( )N W N , 4

= -g g g ˙ ( )N W N W N2 . 5

Herewe have neglected photon emission from the electrons in the initially present electron–ion plasma.

Recently it has been shown that the generated electron–positron plasma radiatesmore energy [25].

These equations have solutions of the form µ Gg ( )N t texp, , where the cascade growth rate is

G = - + + g



⎛

⎝
⎜

⎞

⎠
⎟ ( )

W W

W2
1 1

8
. 6

If the time between emissions is small, i.e. if wg 
- -W L,

1 1, then the distance a particle can travel from its

parent before emitting itself is short (=λ). Hence, if the initial density of electrons in thefield region is n0, the

density of electron–positron pairs will evolve in amanner similar toN± or according to

= G - ( ( ) ) ( )n n texp 1 . 70

This assumes that the plasma formed of the original electron ion plasma and the generated pair plasma is

everywhere underdense (i.e. the plasma frequency of the plasma is less than the laser frequency) so that the lasers

are perfectly transmitted and the standingwavemay formwithout disturbance.

The previous assumption breaks down if the number density of electrons in the original electron–ion plasma

or the self-generated pair plasma approaches the relativistically-corrected critical density for the laser light

g g e w= =¯ ¯n n m eC C e L0 0
2 2. In this case the plasma can shield the electrons and positrons from the laser fields by

the skin effect and pair production is curtailed [12, 13]. To account for the skin effect we propose the following

heuristicmodification to equation (7) (whichwewill see workswell when compared to simulation results):

l
d

= G - -
⎛

⎝
⎜

⎞

⎠
⎟( ( ) ) ( )n n texp 1 exp . 8

S
0

The factor l d-( )exp S for constant wavelengthλ and relativistic skin depth d g w= Î ¥¯ ( )c 0,S p —ωp is the
electron plasma frequency in the originally present electron–ion plasma. That is, in the limit that the relativistic

skin depth δS is large (i.e. δS?λ) the exponential factor goes over to unity, giving the original underdense case

in equation (7), and as the skin depth becomes small (δS=λ) the number of pairs approaches zero as expected

due to the reduced interaction volume of the strong laser-fields with the plasma.

As the cascade progresses the number density of pairs can continue to growuntil it reaches the
relativistically-corrected critical density g g e w= =¯ ¯n n m eC C e L0 0

2 2, at which point the laser energy is fully

absorbed by the pair plasma [10, 22], depleting thefield—the cascade saturates.We can estimate the saturation

time (tC) by setting n±=nC in equation (8), which gives

l
d

=
G

+
⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟ ( )t

n

n

1
ln exp 1 , 9C

C

S0

provided the laser pulse length τP is longer than tC the cascade can saturate resulting in the formation of a

relativistic-critical density pair plasma.
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Using equation (8) for n± and equation (9) for tC, we can discern three regimes for the cascade, depending on

the initial target density and the laser intensity:

1.Exponential growth: if the laser intensity is sufficiently high and the plasma is relativistically underdense, i.e.

the skin-depth is larger than the laserwavelength, then the interaction volume of the laserwith the plasma is

large enough that a cascade can be initiated, generating a pair plasmawhose density grows exponentially

according to (8).

2. Saturation: tC is less than the laser pulse duration τp and the cascade develops until a critical density pair

plasma forms and the cascade saturates. Once this occurs the plasma partially absorbs (and partially reflects)

the remainder of the laser pulse. Therefore for τp>tCwewould expect appreciable laser absorption caused

by nonlinear Compton scattering and the resulting radiation reaction in the generated critical density pair

plasma [10, 22, 25]. If τp<τC the cascade remains in the exponential growth phase, so the density of pairs

remains low and thus therewill not be appreciable laser absorption.

3.Cascade suppressed: if the electron number density in the initially present electron–ion plasma is higher than

the relativistically-corrected critical density the laser-plasma interaction region is severely limited by the

small skin depth. In this case equation (8)predicts a progressively lower number density of pairs produced

scaling inversely with the target density, i.e. the cascade is suppressed even if the laser intensity high enough

to cause a cascade in an initially underdense plasma.

3. Verifying the cascade regimeswith PIC simulations

3.1. Simulation set-up

To investigate the semi-analytical scaling for pair plasma number density given in equation (8) and the cascade

regimes predicted in section 2.4, we performed 1D and 2DPIC simulations using theQED-PIC code EPOCH

[32]. EPOCH includes strong-fieldQEDprocesses using a now standardMonte-Carlomodel, described in [33].

We simulated the specific case of two counter-propagating circularly-polarised lasers interactingwith a

m=l 1 m thick hydrogen plasma target. The peak intensity I (of one of the counter-propagating laser pulses)
and the initial electron number density in the target n0were varied between = (I I 1024

24 Wcm - )2 Î[ ]0.1, 5
and Î [ ]n 10 , 100

26 31 m−3, respectively.

Each laser had a continuous flat temporal-profile, with aGaussian ramp-up (with time-scale l c2 ), in order

to reduce numerical artefacts due to discontinuities. The laserwavelengthwas chosen to be l m= 1 m to be

close to expected values from futuremulti-PW laser facilities. In the 2D simulations, the beamwas given a

Gaussian profile in the transverse direction, with focal spot size 2.5 μm.

For simplicity, the target was a fully-ionisedHydrogen plasma (withmobile ions). The target was initialised

with density given by a top-hat profile in the x-direction (the direction of laser propagation), so that

= =( )n x t n, 0 0 for  m∣ ∣x 0.5 m and zero elsewhere. In the 2D simulations, the target was simply extended

infinitely in the transverse (y) direction to form a foil.

In the 1D simulations the spatial domainwas 8 μm in length and discretisedwith 1024 cells. A reflecting

boundarywas placed at x=0 in order to reduce computational load (this is reasonable when considering the

longitudinal symmetry of the physical set-up). A total of 100×1024≈105macroparticles were used to

initialise the target plasma, split equally between protons and electrons.While in the 2D simulations a domain

size of 6 μm×12 μmwas used, discretisedwith 600 cells in the x-direction and 1200 cells in the y-direction.

The target was represented by 64×600×1200≈4.6×107macroparticles again split evenly between

electrons and protons.

Examination of the evolution of pair and plasma densities as well as the laser absorption for the case =I 124

and varying n0 showed satisfactory convergence for the above number of cells andmacroparticles. Further

increases in spatial resolution or particles per cell produced no substantial changes to the generation of a dense

pair plasma, andwould have been prohibitively computationally expensive for I24>1.We have neglected

collisions.

3.2. 1D simulation results
Figure 1 shows the time evolution of the number of pairsN± and the production rate Ṅ for selected 1D

simulations. As previously seen byGrismayer et al [10] two distinct phases of the cascade are observed: (1) an

exponential growth phase where the plasma remains sufficiently underdense that the standingwave pattern is

not disturbed; (2) a saturation phase where the pair plasma density reaches the relativistic critical density and the

laser energy is absorbed and the rate of pair production levels off. The dynamics of the cascade is as follows: at

t=0, the laser hits and begins to bore through the target, compressing the electron density. In the cases

5
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considered infigure 1, the target is initially underdense and the laser propagatesmostly unhindered by the

plasma, forming a standingwave in the plasma volume after a time l/c≈3.33 fs. If the laser intensity is such that

η∼1, then γ-ray photons radiated by the electrons (and positrons) can decay to form electron–positron pairs

within the laser-plasma interaction volume, initiating the cascade.

From figure 1, we note that increasing the target density does not change the overall behaviour of the cascade

in the exponential growth phase; that is, the functional dependence of the number of pairs produced and the

production rates on time remain similar as we vary the target density, but are offset temporally as the cascade

must develop from fewer seed electrons in a lower density target.

Figure 2 shows the density of positrons produced at t=30fs. This supports the description of the temporal

evolution of the cascade given above. For the lowest target density the cascade has just begun to to saturate and

the standingwave in the electromagnetic fields has yet to be disrupted by the generated pair plasma. As a result

the created positrons congregate in the nodes of electric field (themagnetic nodes are unconditionally unstable).

For higher density targets the cascade has saturated at the critical density, disrupting the standingwave and so the

periodicity in positron density is lost.

Figure 1. (Left)The number of positronsNp generated in a cascade for I24=1 and = -n 10 , 10 and 10 m0
27 28 29 3 (corresponding to

the colours denoted by the legend). (Right)Positron production rate dNp/dt.

Figure 2.Positron densities at time t=30 fs for the same parameters as the those infigure 1.

6
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3.2.1. Pair plasma generation for varying laser intensity and target density

Figure 3 shows themaximum, over the spatial domain, of n±/nC at time t=40 fs2 as a function of the intensity

of each laser pulse and the initial electron number density in the target. For both the predictions of the semi-

analytical results presented in section 2.4 and the simulations, the density is capped at nC to show the different

regimes clearly. Themodel predictions are shown by the colour plot and the 1D simulation results by the

coloured dots. The theory and simulation results are qualitatively well-matched, we can see the demarcation of

the regimes predicted by themodel are borne out by the simulation results. Both themodel and the simulations

predict that the regionwhere a dense pair plasma is created extends to lowest intensity when the initial density of

the target is close to the critical density. In the simulations a dense pair plasma forms at intensity

> ´ -5 10 W cm23 2. This is in linewith Zhu et al [17], who observe a similar effect using structured plasma to

strongly focus two~ -10 W cm22 2 pulses (to> 1023Wcm−2) incident on a near-critical hydrogen plasma.Note

that there is some discrepancy between the simulations and the simplemodel when the target density close the

critical density. At this density we expect very complex plasma behaviour, not easy to capture in a simple scaling

law, and sowould not expect perfect agreement.

3.2.2. Absorption due to pair generation

Wenow consider the impact of the generated dense pair plasma on laser absorption. As described in section 2.3,

the processes of nonlinear Compton scattering andmulti-photon Breit–Wheeler pair production both result in

the absorption of photons from the background field. In addition energy can be absorbed from the laser pulse as

the laser-fields accelerate the generated pairs against the radiation reaction force. The latter classical absorption

dominates over the former quantum effect [46]which is neglected in the simulations.

Amodel for absorption has been derived byGrismayer et al [23] and developed for dense targets byDel

Sorbo et al [25]. In thismodel it is assumed that strong absorptionwill occur once the pair plasma density

reaches the critical density. The time for this to occur is given by equation (9) above, which results in a new

adaptation of themodel to include the skin effect in dense targets. The laser absorption is then the ratio of the

energy absorbed to the laser energywhich, for  ttC P, is


 t

t= - Q -
⎛

⎝
⎜

⎞

⎠
⎟ ( ) ( )

t
t1 , 10

a

L

C

P
P C

where theHeaviside function tQ -( )tP C accounts for themodel assumption that the absorption is negligible,

i.e. zero, for tC>τP. For continuous beams, as considered in this paper, the pulse duration is taken to be the

time fromwhen the laser pulses collide to the time at which the absorption ismeasured.

Figure 4 shows the percentage of laser energy absorbed as predicted by the abovemodel, i.e. equation (10),

and obtained from the 1D simulations 42 fs after the laser hits the target. Again the simplemodel predicts the

simulations results qualitatively verywell, although discrepancies at around the critical density are again seen.

Figure 3.The normalised pair plasma density g= n n n nC C0 from equation (8) at time t=40 fs (capped at n±/nC=1). Dots
are the results of 1D simulations with the specified parameters (the pair density is capped at the critical density). Illustrated are the
cascading regimes 1—exponential growth, 2—saturation and 3—cascade suppressed, identified in section 2.4.

2
This can be above the critical density even before saturation has occurred (see the density spikes infigure 2), potentially leading to the

spurious identification of a critical density pair plasma in figure 3.However, this is only a problem late in the exponential growth phase,
which is reached after 40fs for a narrow range of initial densities and laser intensities.
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The agreementwith the simplemodel and a comparisonwithfigure 3, demonstrates that strong laser absorption

is strongly correlatedwith the generation of a dense pair plasma. Recently it has been shown that the dense pair

plasma generated in cascades radiates the laser energy effectively and it is this which results in the laser

absorption and thus ignoring absorption until the onset of a cascade is justified [10, 25]. However, absorption

caused by the electrons in the original near critical plasmamay be a cause of the enhanced absorption in the

simulations at the critical density when compared to themodel (as seen by Bashinov andKim [37] using a

classical radiation reactionmodel andZhang et al [22] using a quantummodel). Note that this would be in

addition to enhanced absorption due tomore pair creation in the simulations of near-critical targets than the

model predicts due to complex plasma processes.

3.3. 2D simulation results

In order to test the robustness of the identified cascading regimes in amore realistic scenario, 2D simulations

were performed (with parameters described in section 3.1). Figure 5 shows that, as in the 1D case, the cascade

exhibits an exponential growth phase followed by saturation.

The qualitative similarity of the cascade development between the 1D and 2D simulations, as demonstrated

byfigures 1 and 5 suggests that the simplemodel presented in section 2.4may alsoworkwell for describing the

pair density and absorption in 2D simulations. Infigure 6we see the 2D equivalents tofigures 3 and 4, i.e. a

comparison to themodel predictions for average pair density and laser absorption. Qualitative agreement is

Figure 4.Predicted absorption fraction of the laser energy (colour scale) and 1D simulation results (dots) at t=42 fs, highlighting the
impact of the generation of a dense pair plasma.

Figure 5.2Dsimulations results showing: (left) thenumberof positronsNp generated in a cascade for I24=1 and = -n 10 and 10 m0
29 30 3

(corresponding to the colours denotedby the legend). (Right)Positronproduction rate dNp/dt. Thebehaviour is qualitatively the sameas in
the 1D simulations, the results ofwhichwere shown infigure 1.
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again seen between themodel and the simulations, demonstrating the usefulness of themodel inmore

experimentally applicable 2D simulations.

4.Discussion

Wehave investigated the case of two counter-propagating circularly-polarised laser pulses interactingwith a

thin fully-ionised hydrogen plasma. Electron–positron cascades in these interactions can lead to the formation

of dense pair plasmas dependent on the target density and laser intensity.We have identified several regimes of

laser-plasma interaction based onwhether or not a cascade can develop.We have shown, by developing a simple

model that for intensities I24>1 the growth rate in the number of pairs is sufficient for the production of a

relativistic-critical density pair plasma in a time comparable to a typical laser-pulse duration∼40fs. The cascade

saturates and the produced pair plasma absorbs a substantial fraction of the laser energy. The optimum initial

hydrogen target density for this to occur is close to the relativistic critical density with the intensity required to

develop a cascade to saturation increasing as the density decreases (figure 3).We showed infigure 1 that as the

initial target density decreases below the relativistically-corrected critical density the temporal evolution of the

number of pairs looks similar (exponential growth followed by saturation) but is shifted to later time as the

cascademust grow from fewer particles and the growth rate per particle is the same. Thus for a given intensity the

production of a dense pair plasma depends simply onwhether the initial density of the target is sufficient for the

density of pairs to reach the relativistic critical density in time tC given by equation (9)whichmust be less than

the laser pulse duration.Most previous studies have considered cascades seeded by targets ofmuch lower density

[6, 10], inwhich case a higher intensity is required to initiate the cascade. In additionmany previous studies

considered linearly-polarised lasers which are favourable to cascades butmake comparison to simplified

analytical theorymore difficult, suggesting that wemay be underestimating the reduction in the intensity

required to initiate a cascade by the use of near-critical density targets.

As the initial target density increases beyond the relativistic critical density pair cascades are rapidly

suppressed due to the shielding of the laserfields by the skin effect in the dense initially present electron–ion

plasma and the laser pulses are reflected.We found that a hard cut-off in the number of pairs produced at the

relativistic critical density does notmatch the simulations as well as a heuristically introduced exponential fall-

off proportional to l d-( )exp c .We have seen that the inclusion of a transverse direction in the simulations

reduces the generation of pairs (as seen for tighter focusing [47]), although near-critical targets are still optimum

for pair plasma production, as has previously been shown for gamma-ray emission [48–50]. This reduction can

be attributed to transverse spreading of pairs from laser focus due to ponderomotive and thermal pressure.

Recent work has shown that photon polarisation [51] and electron spin [52–54] could affect the

development of the cascade. These effects are not considered here. These effects should change the cascade

growth rate and somay affect the intensity required for saturation. The fact that cascade saturation and

suppression depend entirely on plasma processes suggests that these electron spin and photon polarisation

processes will not change the various phases of the cascade identified in section 2.4 and sowill not qualitatively

change the cascade regimes presented here. In additionwe only consider a very simple counter-propagating laser

Figure 6. Left: the normalised pair plasma density g= / /n n n nC C0 from equation (8) at time t= 40 fs (capped at =/n n 1C ).
Dots are the results of 2D simulationswith the specified parameters (the pair density is capped at the critical density). Right: predicted
absorption fraction of the laser energy (colour scale) and 2D simulation results (dots) at t= 42 fs.
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geometry, recent work has shown thatmore complicated laser pulses and geometries or high atomic number

targets could be favourable to cascades [55–58]. Againwewould not expect amore complicated laser pulse

geometry to qualitatively change the cascade regimes. The largest difference would be expected for a single laser

illuminating the target fromone side. By comparing the results from a recent paper considering this case [25]we

see that the regimes are broadly similar but that the cascade occurs atmuch lower intensity in the counter-

propagating laser case considered here—for single-sided illumination the target is accelerated to relativistic

speeds by the laser’s radiation pressure, reducing the intensity in its rest-frame [25, 59] (althoughDoppler

boosting can increase the degree of collimation of the emitted gamma-ray photons [60] and perhaps also the

produced pairs, whichmay be advantageous for some applications). Comparison to this work suggests that if

dense pair plasma production is the desired outcome of an experiment then two-sided illumination of a near-

critical density plasma is the ideal choice. If cascade suppression is required then the choice should be single

sided illumination of a significantly under-dense or over-dense target and in the over-dense case ionswill be

accelerated efficiently without laser energy loss to a cascade-produced pair plasma.

5. Conclusions

Wehave simulatedQED cascades in the case of two counter-propagating circularly-polarised lasers of intensity

Î [ ]I 0.1, 5 Wcm−2 interactingwith a hydrogen plasma foil of thickness 1 μmand initial density

Î [ ]n 10 , 100
26 31 m−3.We found that above a threshold intensity~ -10 W cm24 2 the cascade saturates

producing a pair plasmawith density equal to or greater than the relativistically-corrected critical density. The

optimum target density for this was found to be the relativistic critical density at which substantial absorption of

the laser by the created pair plasma occurs (50%). For densities lower than this there are too few electrons in

the in target to initiate a cascade (the number of pairs grows exponentially but does not reach saturation), at

higher density the skin effect screens the laser fields and the cascade is suppressed. This provides a guide for pair

plasma production experiments with next generationmulti-PW lasers.
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