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Abstract 9 
Car-following models, which are used to predict the acceleration-deceleration decisions of drivers 10 
in the presence of a closely spaced lead vehicle, are critical components of traffic microsimulation 11 
tools and useful for safety evaluation. Existing car-following models primarily account for the 12 
effects of surrounding traffic conditions on a driver’s decision to accelerate or decelerate. 13 
However, research in human factors and safety has demonstrated that driving decisions are also 14 
significantly affected by individuals’ characteristics and their emotional states like stress, fatigue, 15 
etc. This motivates us to develop a car-following model where we explicitly account for the stress 16 
level of the driver and quantify its impact on acceleration-deceleration decisions.  An extension of 17 
the GM stimulus-response model framework is proposed in this regard, where stress is treated as 18 
a latent (unobserved) variable, while the specification also accounts for the effects of drivers’ 19 
sociodemographic characteristics. The proposed hybrid models are calibrated using data collected 20 
with the University of Leeds Driving Simulator where participants are deliberately subjected to 21 
stress in the form of aggressive surrounding vehicles, slow leaders and/or time pressure while 22 
driving in a motorway setting. Alongside commonly used variables, physiological measures of 23 
stress (i.e. heart rate, blood volume pulse, skin conductance) are collected with a non-intrusive 24 
wristband. These measurements are used as indicators of the latent stress level in a hybrid model 25 
framework and the model parameters are estimated using Maximum Likelihood Technique. 26 
Estimation results indicate that car-following behaviour is significantly influenced by stress 27 
alongside speed, headway and drivers’ characteristics. The findings can be used to improve the 28 
fidelity of simulation tools and designing interventions to improve safety.  29 
 30 
Keywords: skin-conductance, heart rate, blood volume pulse, stress measurement 31 
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1. Introduction 1 
 2 
Car-following (CF) refers to the acceleration-deceleration decisions of a driver with respect to the 3 
behaviour of a closely spaced lead vehicle. CF models are critical components of microsimulation 4 
tools and are also used in safety analyses (Ahmed, 1999).  Over the past decades, there has been 5 
significant research focus on the development and improvement of car-following models (Toledo, 6 
2007). Saifuzzaman and Zheng (2014) classified the car-following models into two groups based 7 
on the modelling perspective: 1) engineering and 2) human factors based models. In the former 8 
type, the effects of surrounding traffic are used to model the acceleration-deceleration decisions of 9 
drivers (e.g. Toledo, 2003; Ossen. and Hoogendoorn, 2005; Choudhury et al., 2009; Marczak et 10 
al., 2013 to name a few). However, the adequacy of engineering CF models, in terms of cognitive 11 
and behavioural representativeness, has been criticised by several researchers who approached the 12 
issue from its human perspective. For instance, Brackstone and McDonald (2003) stressed the 13 
limitations of CF models and suggested the need to incorporate motivational and attitudinal factors 14 
to explain the heterogeneity among drivers. In the same direction, Hancock (1999) questioned 15 
engineering CF models for representing car-following task as an optimal rather than a satisficing 16 
task and criticized the use of noise terms to explain variations across behaviours. Further, van 17 
Winsum (1999) suggested a model framework based on psychological findings and highlighted 18 
the importance of accounting for human factors. 19 
 20 
Based on literature findings (retrieved from Hamdar, 2012; Treiber and Kesting, 2013), 21 
Saifuzzaman and Zheng (2014) provided a list of human factors that have been found to influence 22 
car-following behaviour including sociodemographic characteristics, reaction time, contextual 23 
sensitivity, aggressiveness and risk-taking propensity, desired speed, desired headway etc. 24 
Researchers in psychology have also identified that moods and stress have significant impacts on 25 
driving behaviour (Westerman and Haigney, 2000; Garrity and Demick, 2001; Hill and Boyle, 26 
2007). The concept of incorporating human factors in microscopic driving behaviour models has 27 
been already reported and considered in some microsimulation tools (Rathi and Santiago, 1990; 28 
Liu et al., 1995; Dias et al., 2013). The main attention has been focused on the integration of groups 29 
of drivers with different characteristics and accounting for aggressive drivers. The aggressive 30 
drivers are expected, amongst others, to apply more abrupt rates of acceleration-deceleration, 31 
accept shorter gaps and have shorter desired headways (Laagland, 2005). Thus, in existing 32 
applications, the “aggressive” proportion of traffic is assigned different desired values compared 33 
to the rest. However, in many cases, the values assigned to the various drivers’ groups are derived 34 
from theory, rather than observations (Bonsall et al., 2005). Based on these capabilities of specific 35 
microscopic simulation tools, Soria et al. (2014) calibrated car-following models using naturalistic 36 
driving data. Moreover, Mubasher et al. (2017) associated a Big Five Factors Model of Personality, 37 
as derived from traffic psychology (Herzberg, 2009), to specific parameters of the IDM model 38 
(Treiber et al., 2000) and developed car-following models for different patterns of personality 39 
utilising existing software. The importance of drivers’ characteristics has been also underscored in 40 
non-related to microscopic simulation driving behaviour modelling approaches; Anastasopoulos 41 
and Mannering (2016) modelled the effect of speed limit on speed choice and found several effects 42 
of sociodemographic characteristics (e.g. gender, age, income etc.). 43 
 44 
Apart from the base model specifications, where only the parameters’ values among drivers vary, 45 
there are also more sophisticated examples of car-following models. In order to increase the 46 
behavioural realism, Hamdar et al. (2008) and Hamdar et al. (2014) suggested a car-following 47 
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model, based on the prospect theory of Kahneman and Tversky’s (1979). The model considers car-1 
following as a sequential risk-taking process and allows for risk-taking manoeuvres based on a 2 
probability of being involved in a rear-end collision. This probability is estimated as a function of 3 
variables such as acceleration, spacing and relative speed. In another approach, Saifuzzaman et al. 4 
(2015) incorporated an additional term in their model, in order to represent task difficulty (TD) as 5 
expressed by the Task-Capability Interface (TCI) model (Fuller, 2005). This term is specified as a 6 
function of time headway, spacing and speed of the driver. Although the aforementioned model 7 
specifications aim to indirectly account for human factors, the relevant terms are still expressed as 8 
a function of traffic related variables and do not refer to characteristics of the drivers per se; drivers 9 
are still assumed to behave in the same way for given traffic conditions. The unobserved 10 
heterogeneity in car-following behaviour has been investigated across drivers (e.g. Ossen and 11 
Hoogendoorn, 2011; Kim et al., 2013) and within drivers (e.g. Pariota et al., 2016). However, it 12 
has taken the form of statistical distributions and random parameters rather than being linked to 13 
individual characteristics. In a recent application, van Lint and Calvert (2018), used the IDM model 14 
to incorporate task demand and awareness (i.e. focus, distraction etc.). In a rather different 15 
approach, Hoogendoorn et al. (2010) conducted a driving simulator experiment to investigate the 16 
relationships between mental workload and car-following without however incorporating the 17 
former in the model specification. Finally, Farah and Koutsopoulos (2014) modified the GM model 18 
and expressed the stimulus part as a series of socio-demographic variables – incorporating the 19 
effect of stress and/or the state-of-mind was however beyond the scope of their paper. It is worth 20 
mentioning that the importance of accounting for the unobserved heterogeneity has been also 21 
highlighted in modelling approaches from other streams of driving behaviour research. For 22 
instance, Sarwar at al. (2017b) considered unobserved heterogeneity in a model specification for 23 
the simultaneous estimation of discrete and continuous dependent variables while Mannering et 24 
al. (2016) also emphasised the importance of this issue in the analysis of accident data.   25 
 26 
Driving stress has been defined as a situation that challenges drivers’ abilities, reduces their 27 
perceived control or threatens their mental/physical health (Gulian et al., 1989). It can be a 28 
consequence of several factors including the direct demands of the driving task, the environmental 29 
conditions, network characteristics, traffic conditions, secondary tasks (e.g. use of navigation 30 
system, texting), etc. (Hill and Boyle, 2007). It is worth mentioning, that traffic, weather and road 31 
conditions have been also linked to accident occurrence (Norros et al., 2016), which can be an 32 
outcome of the increased demands of the driving task in some occasions. Moreover, time urgency 33 
and congestion levels have been identified as two factors influencing drivers’ stress (Hennessy and 34 
Wiesenthal, 1999). In many studies, stress has been measured with self-reported surveys, however, 35 
an alternative, and potentially more reliable, approach to detect drivers’ level of stress and study 36 
its effects, is through its implications on human physiology. While traditionally, stress levels are 37 
detected using levels of cortisol (e.g. Mather et al. 2009) which limits measurement of stress at a 38 
single or few time points, recent advances in sensor technologies and affective computing have 39 
made it possible to measure stress levels through physiological responses, e.g. changes in heart 40 
rate (HR), electrodermal activity (EDA), blood volume pulse (BVP), etc. on a continuous basis 41 
and in a non-intrusive way. There are several existing studies related to driving stress that use this 42 
type of data (Healey and Picard, 2005; Singh and Queyam, 2013). However, the aforementioned 43 
studies mostly focused on detecting the stress level of the driver rather than investigating its effects 44 
on driving behaviour. 45 
 46 
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This study aims to filling in the research gap in the state-of-the-art car-following models by 1 
bridging the engineering and human-factor based approaches to include the full ranges of variables 2 
influencing the decisions and bring a safety-related perspective via drivers’ stress. A novel 3 
framework has been proposed in this regard to quantify the relative impact of driving stress in car-4 
following decisions. The models are estimated using data from the University of Leeds Driving 5 
Simulator (UoLDS) where the participants were intentionally subjected to stressful driving 6 
conditions caused by time pressure and surrounding traffic conditions. Their driving actions were 7 
recorded alongside physiological measurements of stress indicators (electrodermal act ivity, heart 8 
rate and blood volume pulse) and socio-demographic characteristics. The detailed data collected 9 
from different scenarios are used to estimate the car-following model parameters. 10 
 11 
The remainder of the paper is organised as follows: The next section presents the data collection 12 
efforts and exploratory analyses of the data. This is followed by the model structures and 13 
estimation results. We conclude the paper with the summary of the research and directions of 14 
future research. 15 
 16 
 17 
2. Data 18 
 19 
 20 
2.1 Driving simulator experiment 21 
The use of driving simulators, originally used primarily for human-factors research, is gaining 22 
popularity in the context of driving behaviour modelling. The driving simulator data has been used 23 
in development of car-following (Hoogendoorn et al., 2010), overtaking (Farah et al., 2009), and 24 
signal crossing (Danaf et al., 2015) behaviour for instance.  Further, there have been driving 25 
simulator-based studies focussing on aggression (Sarwar at al., 2017a) and risk-taking (Lavrenz et 26 
al., 2014; Tran et al., 2015) to evaluate the safety impacts. 27 
  28 
The data used in this research is based on primary data collected as part of a comprehensive driving 29 
simulator study (Next Generation Driving Behaviour Models – NG-DBM) for investigating the 30 
effect of stress in different driving decisions. The experiments were conducted using the University 31 
of Leeds Driving Simulator (UoLDS). The UoLDS (Figure 1) is a high fidelity, dynamic simulator. 32 
The vehicle cab is a 2005 Jaguar S-type with all driver controls available and fully operational. 33 
This includes the steering wheel and braking pedal, and there is also a fully operational dashboard. 34 
The vehicle is positioned in a 4m diameter spherical projection dome. The dome provides fully 35 
textured 3-D graphical scene with a horizontal field of view of 250o and 45o vertical. The raw data 36 
output consists of observations of 60Hz frequency. 37 
 38 
The full data collection process involved around 90 minutes of driving in the simulator for each 39 
individual. Participants initially had a short briefing session regarding the simulator and its 40 
operation followed by a practice session of approximately 15 minutes to familiarise themselves 41 
with the simulated environment and vehicle dynamics (i.e. motion system). For safety reasons, 42 
participants were accompanied by a researcher during the practice run. Thereafter, participants 43 
started the main driving sessions, composed of two different environments, using an urban setting 44 
and a motorway setting of approximately same duration each, with a short break in between. For 45 
the main part of the data collection, they were instructed to drive and behave as they would 46 
normally do in real life driving. 47 
 48 
 49 
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 1 
Figure 1: The University of δeeds Driving Simulator 2 

 3 
[source: University of Leeds, University of Leeds Driving Simulator]  4 

 5 
The current analysis focused only on the motorway setting. The motorway was composed of six 6 
main sections approximately 6km long each, connected with some shorter road segments specified 7 
as intersections. In each of the main road segments, different traffic scenarios were implemented, 8 
while the role of intersections was to provide a smoother transition and also reduce potential 9 
residual effects from previous road segments, as no specific events were planned in these locations. 10 
 11 
Before explaining more detailed the traffic scenarios in each motorway segment, it is worth 12 
mentioning that one of the main objectives of the study had also been to examine drivers’ 13 
behaviour under time pressure. Hence, participants were deliberately subjected to time pressure. 14 
During their briefing session, participants were instructed that they had to reach their destination 15 
within 35 minutes and they could see an emoji placed on the dashboard (Figure 2) as an indicator 16 
of their performance. Moreover, they were informed that the emoji displayed to them was 17 
determined based on expected arrival time which was computed and constantly updated using a 18 
sophisticated algorithm running in the background and uses variables such as current speed, speed 19 
limit, distance to the end, an average estimated delay that will be caused by the events ahead etc. 20 
as inputs. This was then used to determine which of the three emoji to show.  Participants were 21 
instructed that the green state would indicate they were doing well, in terms of time, while the red 22 
would mean that they were late. The intermediate amber emoji meant that they were marginally 23 
fine in terms of time. That is, they would receive a red emoji if they had further delay in the 24 
remaining driving tasks. The introduction of an amber state was decided to make the shift from 25 
green to red emoji more convincing to the participants. 26 
 27 

 28 

 29 
Figure 2: Time pressure emoji 30 

 31 
 32 
In reality, the state of the time pressure emoji was not related to participants’ actual performance 33 
but was pre-decided in order to induce time pressure in specific road segments. It may be noted 34 
that the choice of 3 different emoji to indicate time pressure, was preferred to a conventional 35 
countdown timer since it would be easier to manipulate. In order to increase the likelihood that 36 
participants would consider time pressure indications, they were instructed that a penalty would 37 
be imposed on the monetary reward for their participation in case they were late at the end of the 38 
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motorway (red emoji). However, this was never the case since both main scenarios of the 1 
experiment were programmed to end in the amber time pressure state. 2 
 3 
Regarding the motorway scenario itself, it has been already mentioned that it was composed by 4 
various traffic scenarios. In the initial road section, no specific events were taking place and the 5 
time pressure indicator was green. This was followed by the road section with “aggressive” 6 
surrounding traffic. This scenario was implemented by allowing the driving simulator car drones 7 
(vehicles controlled by the simulator software) to accept shorter gaps while performing a lane 8 
change. This resulted in the occurrence of lane change manoeuvres at short headways with respect 9 
to participants’ position. The scenario was repeated at the next main road segment as well but this 10 
time under the presence of time pressure (amber or red). In the next scenario participants faced 11 
traffic at slow speeds which aimed to create a sense of congestion. This scenario was time based 12 
(as opposed to all the rest which were position based) with an approximate duration of 5.5 minutes. 13 
During this scenario, participants faced all possible time pressure states. The last segment of the 14 
motorway did not include any specific events apart from changes in the emoji states. 15 
 16 
It should be mentioned that the order of scenarios/time pressure states was always fixed and the 17 
same for all participants. It is acknowledged that this experimental design might have impacted 18 
driving behaviour, especially in the last segments of the motorway (e.g. owing to fatigue or 19 
impatience). The order of scenarios was always the same as it was easier to develop the motorway 20 
following this approach. Moreover, the emoji was always green during the first part of the 21 
motorway for purposes of realism, as the drivers would not expect to see an amber or red indication 22 
at the very early stages. For the same reason, there was some type of time pressure at the last 23 
motorway segments. In terms of each individual scenario, it was decided to present to participants 24 
a green to red sequence of time pressure indicators within an effort to minimise the risk of 25 
increasing their physiological responses at the beginning of a specific scenario that would 26 
potentially influence and prevent them from returning to the baseline levels. 27 
 28 
Drivers’ physiological data, across the whole experiment, was collected using the Empatica Eζ 29 
wristband. The device is very similar to a common smart-watch and thus offers a non-intrusive 30 
manner to obtain physiological data. The Empatica E4 wristband provides information about heart 31 
rate (HR), Electrodermal Activity (EDA), blood volume pulse (BVP) and temperature (TEMP). 32 
Each of the physiological indicators was collected with a different frequency, depending on the 33 
attributes of the wristband. EDA and temperature have a 4Hz frequency, blood volume pulse 64Hz 34 
and heart rate 1Hz. 35 
 36 
 37 
2.2. Physiological indicator extraction 38 
As stated previously, participants used a wristband device that collected physiological responses. 39 
One of the main objectives of the study was the incorporation of these responses in a car-following 40 
model framework in order to investigate the possibility of obtaining more behaviourally 41 
representative outcomes. Following findings from existing literature (Picard et al., 2001; Katsis et 42 
al., 2011), the raw signals were transformed, and a series of indicators were extracted. The 43 
indicators were calculated based on 10s moving windows (Katsis et al., 2011; Kushki et al., 2011) 44 
centred at each acceleration observation.  45 
 46 
Heart rate (HR): The HR signal was transformed into z-scores to reduce inter-individual 47 
differences and obtain more comparable values (Picard et al., 2001). The mean transformed HR 48 
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values were than calculated for each window. The basic z-score transformation can be described 1 

as ቀx - µɐ ቁ, where x is a heart rate observation, ȝ is the heart rate mean value across the whole urban 2 

task and ı is its standard deviation.  3 
 4 
Blood pressure (BVP): The same transformation as HR was also applied to the BVP signal and 5 
from the z-scores it was calculated, for each 10s window, the mean of the first absolute difference 6 
(FAD) as Equation 1: 7 

FADX = 
1

σ - 1   ȁXn+1 - Xnȁσ

n=1

 (1) 

 8 
The aforementioned BVP indicator was normalised using a min-max transformation in order to 9 
always obtain values between 0-1. This transformation is common practice in literature (Zhai and 10 
Barreto, 2006; Sun et al., 2010) to reduce the inter-individual differences. In brief, the 11 
transformation can be summarised as shown in Equation 2: 12 
 13 
  14 

FADX norm = 
FADX  െ  FADX min

FADX max  െ  FADX min   (2) 

 15 
Electrodermal activity (EDA): The EDA observations were processed using the Matlab package 16 
Ledalab (Karenbach, 2005). The skin conductance responses (SCRs) were obtained applying 17 
trough-to-peak analysis, where the amplitude of a response is calculated as the difference in the 18 
EDA values between a peak in the signal and its preceding trough (Benedek and Kaernbach, 2010). 19 
The number of responses and the sum of their z-scores in each 10s window were then considered 20 
as additional EDA indicators. The min-max transformation was also applied in the sum of 21 
amplitudes indicator. Based on findings in existing literature (Sano et al., 2014), a critical value 22 
equal to 0.01ȝS was selected as the minimum critical SCR.  23 
 24 

 25 
2.3 Sample analysis 26 
In total, 45 participants were recruited through the UoLDS recruitment list. The only eligibility 27 
criteria was having a valid UK driving licence. However, 3 of the participants reported nausea at 28 
the practice drive of the experiment and thus completely removed from the analysis. Out of the 29 
remaining participants that successfully completed the urban scenario, that was presented to them 30 
first, only 36 (19 male, 17 female) fully completed the motorway setting as the rest dropped out 31 
because of sickness. Motion sickness was also investigated with a yes/no question in a post driving 32 
survey. In total, 11 of 36 participants reported motion sickness however, given that they completed 33 
the experiment and their behaviour was not found to significantly differ, in terms of speed, 34 
acceleration etc. from those who did not report motion sickness, it was decided to include them in 35 
the analysis. The mean age of participants was approximately 35 years and the corresponding 36 
standard deviation was 11 years. Half of the participants stated that they were driving on a daily 37 
basis. The average driving experience of participants was almost 15 years. Regarding accident 38 
involvement, 6 participants reported involvement in minor accidents while 3 reported involvement 39 
in serious accidents. It is worth mentioning that a major accident was defined as one where at least 40 
one person required medical treatment and/or there was property damage above £500. Finally, 6 41 
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participants stated that they had at least once received a ticket penalty for speeding behaviour. The 1 
descriptive statistics of the sample are presented in Table 1. 2 
 3 

Table 1: Descriptive statistics of the sample 4 

 5 
In Table 2, we also present the descriptive statistics of the key traffic variables. For an in-depth 6 
insight, the full data is split into three parts: 7 
 8 

 No events zone: This segment was composed of the initial and the last segment of the 9 
motorway. As a result, this segment involved, in total, motorway parts where no specific 10 
events took place apart from time pressure in the last segment. 11 

 Aggressive neighbour zone: This part was composed of the two motorway segments where 12 
the surrounding vehicles (car drones) could show aggressive behaviour, mostly accepting 13 
shorter gaps during their lane-change manoeuvres. Also, in this case, participants faced all 14 
possible time pressure states. 15 

 Slow traffic zone: This zone included the motorway segment where traffic was 16 
intentionally slowed to give the impression of congestion. All emoji were shown to 17 
participants during this segment. 18 

 19 
It is worth mentioning that in order to ensure that only car-following behaviour was captured (and 20 
also exclude free-flow), the conditions to include an observation in the analysis had been that a 21 
participant has not attempted a lane-change for a duration of 4s before the observation and also 22 
always had a time headway shorter than 4s with the leader. All other observations were excluded 23 
from the data. Table 2 presents the descriptive statistics of the data included in the main analyses. 24 
An in-depth descriptive and inferential statistics analysis of the whole driving simulator 25 
experiment has been carried out by Paschalidis et al. (2019). 26 
  27 

Variable Intervals Frequency % Mean Std. Dev. Min Max 

Gender 
Female 17 0.47 - - - - 
Male 19 0.53 - - - - 

Age - - - 35.06 10.99 19 57 
Driving experience - - - 14.83 11.73 1 39 

Frequency of driving 

Everyday 18 0.5 - - - - 
2-3 

times/week 11 0.31 - - - - 

Once/ week 4 0.11 - - - - 
Less often 3 0.08 - - - - 

Minor accident involvement 
No 30 0.83 - - - - 
Yes 6 0.17 - - - - 

Major accident involvement 
No 33 0.92 - - - - 
Yes 3 0.08 - - - - 

Ticket for speeding 
No 30 0.83 - - - - 
Yes 6 0.17 - - - - 

Physiological indicators 
 Min Mean Max Std. Dev. 
HR mean -3.55 -0.09 4.48 0.91 
BVP first absolute difference 
mean 

0.00 0.08 0.47 0.04 

SCR Sum Amplitude 0.00 0.09 1.00 0.15 
SCR no of responses 0.00 0.81 12.00 1.42 
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Table 2: Descriptive statistics of the motorway scenarios 1 

 2 
 3 
3. Model framework 4 
 5 
We first present the basic structure of the state-of-the-art car-following model followed by the 6 
novel extension to incorporate the effect of stress. Each of the models was estimated without and 7 
with the consideration of sociodemographic variables. This approach resulted in four main model 8 
specifications which can be summarised as: 9 
 10 

 Base car-following model (no sociodemographic variables) (Section 3.1) 11 
 Car-following model with sociodemographic variables (but no latent stress variable) 12 

(Section 3.2) 13 
 Car-following model with latent stress variable (but no sociodemographic variables) 14 

(Section 3.3) 15 
 Car-following model with both sociodemographic and latent stress variables (Section 3.4) 16 

 17 
3.1 Base car-following model 18 
 19 
 20 
Basic structure 21 
The model structure is based on the stimulus-response GM car-following model (Gazis et al., 22 
1961). In the original GM model, acceleration choices for a vehicle are a function of its speed, 23 
space headway and relative speed with the lead vehicle. The original specification is (Equation 3):  24 
 25 anሺtሻ|Ĳn= Į

Vnሺtሻȕ

ǻXnሺtሻȖ ǻVn(t - Ĳn) (3) 

 26 
where: ǻXn is the space headway at time t, Vn is the following vehicle speed, ǻVn is the relative 27 
speed between the following and the lead vehicle and Ĳn is the driver specific reaction time. Finally, 28 
Į, ȕ and Ȗ are constants. 29 

  Traffic variables Min Mean Max Std. Dev. 
No events      

Acceleration (m/s2) -10.09 -0.02 2.18 0.72 
Speed (m/s) 9.04 26.95 40.98 3.86 
Relative speed with lead vehicle (m/s) -26.63 -0.49 11.25 2.89 
Spacing with lead vehicle (m) 5.56 49.07 145.16 24.37 
Time headway with lead vehicle (s) 0.27 1.83 4.00 0.84 
      

Aggressive drivers     

Acceleration (m/s2) -10.23 -0.03 2.94 0.92 
Speed (m/s) 6.30 26.77 40.86 3.63 
Relative speed with lead vehicle (m/s) -20.03 -0.34 17.43 2.82 
Spacing with lead vehicle (m) 0.81 46.75 140.57 25.00 
Time headway with lead vehicle (s) 0.11 1.75 4.00 0.88 
      

Slow traffic     

Acceleration (m/s2) -10.04 -0.09 1.90 0.67 
Speed (m/s) 7.67 14.79 35.93 4.83 
Relative speed with lead vehicle (m/s) -21.76 -0.96 8.99 2.70 
Spacing with lead vehicle (m) 5.79 26.16 113.90 14.51 
Time headway with lead vehicle (s) 0.42 1.82 3.98 0.69 
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Based on the GM model, several extensions have been suggested. Herman and Rothery (1965) 1 
were the first to highlight that passenger cars have different acceleration and deceleration capacity. 2 
In order to address this shortcoming in the GM model, Ahmed (1999) introduced acceleration-3 
deceleration asymmetry within a stimulus-response framework (Equation 4): 4 
 5 
an

gሺtሻ|Ĳn = s ሾXn
gሺt - Ĳnሻሿ × f ሾǻVnሺt - Ĳnሻሿ + İn

gሺtሻ (4) 
 6 
where: s[.] represents sensitivity, as a vector of explanatory variables and f[.] represents the 7 
stimulus, given as the relative speed. Also, İg is a normally distributed disturbance term while g 8 
represents the car-following regime (acceleration or deceleration). In the present study, the 9 
sensitivity and stimulus parts are analysed in (Equations 5 and 6): 10 
 11 

sሾXn
gሺt - Ĳnሻሿ = Įg 1

ǻTnሺtሻȖg (5) 

 12 f ሾȟVnሺt Ǧ ɒnሻሿൌ ȟVnሺt Ǧ ɒnሻɉg
 (6) 

 13 
where: ȟT୬ is the time headway, ǻVn is the relative speed between the subject and the lead vehicle 14 
and Ĳn is the reaction time. Finally, Įg, Ȗg and Ȝg are parameters to be estimated and g indicates the 15 
type of regime. The GM model offers several computational advantages – both in estimation and 16 
application.  It is a well identified/specified model and the likelihood function can be estimated 17 
without the need for any parameter normalisations. Therefore, it was considered as a suitable car-18 
following model for the purpose of the current paper. It is worth highlighting that instead of 19 
applying the original GM model specification, the sensitivity part was modified in order to 20 
consider only time headway, as in Papadimitriou and Choudhury (2017). 21 
 22 
The reaction time distribution 23 
The current model specification also allows for the incorporation of reaction time. Following 24 
examples in literature (Ahmed, 1999), the reaction time is assumed to follow a log-normal 25 
truncated distribution (Equation 7):  26 
 27 

ɔሺɒnሻൌ ۔ۖەۖ
ۓ ͳɒnɐɒ ɔ ൬lnሺɒnሻ ǦɊɒɐɒ ൰Ȱ ൬lnሺɒmaxሻ ǦɊɒɐɒ ൰ ǦȰ ൬lnሺɒminሻ ǦɊɒɐɒ ൰               if ɒmin൏ɒnɒmax

Ͳ                                                                   otherwise  (7) 

 28 
where: ĳ(.) is the standard normal distribution density function, ĭ(.) is the cumulative normal 29 
distribution, Ĳn is the reaction time of driver n, ȝĲ is the mean of the distribution of ln(Ĳn), ıĲ is the 30 
standard deviation and Ĳmax, Ĳmin are the bounds of truncation. Truncation is required since reaction 31 
time is finite. The bounds are set deterministically while the mean and the standard deviation are 32 
estimated simultaneously with the rest of the model parameters. The bounds of reaction time were 33 
set between 0 and 4 seconds (Ahmed, 1999; Kusuma, 2015). 34 
 35 
 36 
 37 
 38 
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Likelihood Function  1 
In Equation 3, assuming that the disturbance terms are normally distributed, the probabilities of 2 
accelertion-deceleration decisions can be expressed using the standard normal density function 3 
(Equation 8): 4 

 5 

ĳ൫an
gሺtሻ|Ĳn൯=

1
ıİg

ĳ ቆan
gሺtሻ-sሾXn

gሺt-Ĳnሻሿ×fሾǻVnሺt-Ĳnሻሿ
ıİg

ቇ (8) 

 6 
where: g א {acc,dec}. 7 
 8 
Also, the assumption of the GM car-following model is that a driver accelerates if the relative 9 
speed is positive and decelerates if negative. Given this, the distribution of acceleration decisions 10 
is given, conditionally on reaction time Ĳ, as (Equation 9): 11 

ĳሺanሺtሻ|Ĳnሻ=ĳሺan
accሺtሻ|ĲnሻįሾǻVn(t-Ĳn)ሿĳ൫an

decሺtሻ|Ĳn൯(1-įሾǻVn(t-庨n)ሿ)
 (9) 

 12 
where:  13 

 14 

įሾǻVn(t-Ĳn)ሿ= ቄ 1    if ǻVn(t - Ĳn)≥0        0        otherwise             15 

 16 
In the current specification, the acceleration observations of each driver n are assumed to be 17 
independent while the heterogeneity in driving behaviour is captured through the reaction time 18 
distribution. Thus, the conditional joint density of the acceleration sequential observations, of a 19 
driver n, is the product of the conditional densities of the acceleration decisions (Equation 10):  20 

ĳሺanሺ1ሻ,anሺβሻ,…,anሺTnሻȁĲnሻ= ෑ ĳ(anሺtሻTn

t=1

ȁĲnሻ     (10) 

 21 
The unconditional form of the distribution above is (Equation 11): 22 
 23 

ĳ൫anሺ1ሻ,anሺβሻ,…,anሺTnሻ൯= න ĳሺanሺ1ሻ,anሺʹሻ,…,anሺTnሻȁĲnሻĲmax

Ĳmin
ĳ(Ĳn)dĲ (11) 

 24 
At the final step, the model is estimated by maximizing the log-likelihood function of the 25 
acceleration observations (Equation 12): 26 

δδ=  lnൣĳ൫anሺ1ሻ,anሺβሻ,…,anሺTnሻ൯൧σ

n=1

 (12) 

 27 
3.2. Car-following model with sociodemographic variables 28 
An important component of driving behaviour heterogeneity is also drivers’ sociodemographic 29 
characteristics. As mentioned in the Introduction section, this has been a disregarded issue in the 30 
vast majority of existing models. An interesting approach to incorporate these variables has been 31 
suggested by Farah and Koutsopoulos (2014), where sociodemographic characteristics are a part 32 
of the stimulus component. In brief, following the aforementioned work, Equation 6 is extended 33 
to (Equation 13): 34 
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f ሾȟVnሺt Ǧ ɒnሻሿൌ ȟVnሺt Ǧ ɒnሻɉgାஒg  (13) 
 1 
where:  Z୬ is a vector of sociodemographic variables and ȕg is the vector of the corresponding 2 
parameters. The inclusion of these variables is expected to enhance the explanatory power of the 3 
models and provide improved behavioural representation of the car-following process. The 4 
remaining of the model specification and estimation follows the same process presented in Section 5 
3.1. 6 
 7 
3.3 Car-following model with latent stress variable  8 
In the current study, stress levels are not directly measured but instead, their effects on 9 
physiological responses are observed. Thus, the suggested framework incorporates stress as a 10 
latent variable in the car-following model. The structure of the new model specification is based 11 
on the hybrid choice modelling approach (see Abou-Zeid and  Ben-Akiva, 2014 for details).  12 
 13 

 14 
Figure 3: Example of the proposed car-following framework incorporating stress 15 

 16 
The new latent variable model (presented in Figure 3) is composed by two main parts, the structural 17 
equation, which describes the latent variable specification and the measurement component which 18 
is linking the latent variable to the indicators (Joreskog and  Sorbom, 1984). In a car-following 19 
context, stress levels are expected to affect drivers’ sensitivity to the presented stimulus (relative 20 
speed in the case of GM model). Hence, the latent variable that represents stress is incorporated as 21 
a shift to the sensitivity through an additive term.  22 
 23 
At the same time, the stress levels may be also influenced by the traffic conditions. For example, 24 
a driver may be more stressed if the driver in the front is too close or too slow. For this reason, 25 
stress in turn was expressed as a function of time headway and relative speed, following the 26 
formulation in Equation 14. However, as shown in a later section, our results indicated that only 27 
the time headway had a statistically significant effect on stress and thus, relative speed was dropped 28 
from the specification. The overview of the suggested model specification is depicted in Figure 3. 29 
Latent variables are shown in ovals and observed variables are shown in rectangles. The solid and 30 
the broke lines represent structural and measurement relationships respectively.   31 
 32 
The overall specification of the suggested latent variable car-following model can be summarised 33 
as (Equations 14-16): 34 



 
 

13 
 

 1 
Structural equations: 2 
 3 
Stressn(t)= ȟYn(t) + Șn(t), Șn(t)=σ~(0,1) (14) 

 4 
an

gሺtሻ|Ĳn = ሼsሾXn
gሺtሻሿ+ șg Stressn(t)ሽ× f ሾǻVnሺt-Ĳnሻሿ + İn

gሺtሻ (15) 
 5 
Measurement equations: 6 
 7 

Ik,n(t)=ȕIk
 + ȗIk

 Stressn(t) +u k,n(t) uk,nሺtሻ = σ~(0,ıIk
β ) (16) 

 8 
 9 
 10 
where: Stressn(t), is the latent variable representing stress which is expressed as a function of Yn(t) 11 
explanatory variables with a vector ȟ of parameters to estimate and Șnሺtሻ is a standard normal 12 
disturbance term. Also, șg is a set of parameters capturing the effect of the latent variable in the 13 
acceleration-deceleration regimes, I୩ǡ୬(t) is an indicator k of individual n at time t, as extracted 14 
from the raw physiological responses, ȕIk

 is a constant of the kth indicator, ȗIk
 is a parameter that 15 

captures the effect of the latent variable on the kth indicator and u ୩ǡ୬(t) is a normally distributed 16 
disturbance term. If the mean value is subtracted from each continuous indicator, then the ȕIk

 k 17 

does not need to be estimated. 18 
 19 
Given the assumption of normality for the disturbance term of each indicator, a measurement 20 
equation takes the form (Equation 17): 21 
 22 

ĳ൫Ik,n(t)൯=
1

ıIk
ĳ ቆIk,n(t) - ȗIk

 Stressn(t)
ıIk

ቇ (17) 

 23 
where: ĳሺ.ሻ denotes the probability density function (pdf) of a standard normal distribution. For 24 
an individual n, the total likelihood of observing a specific pattern of indicators is given as the 25 
product of the pdf values at time t as shown in Equation 18: 26 
 27 

δ ቀIk,n(t)| ȗIk
,Stressn(t),ıIk,tቁ = ෑ ĳ൫Ik,n(t)൯K

k=1

 (18) 

 28 
The car-following model in its basic specification, captures heterogeneity across drivers through 29 
reaction time. However, the latent variable is expected to influence acceleration observations 30 
within the same individual n. Thus, following Hess and Train (2011) the new model specification 31 
accounts for heterogeneity both at the inter-individual (reaction time) and intra-individual level 32 
(latent variable for stress). The new log-likelihood function then takes the following form, as 33 
presented in Equation 19: 34 
 35 
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δδ=  ln න ൭ෑ ቆන ĳ൫Įnሺtሻ൯ 

Ș
δ ቀIk,n(t)| ȗIk

,Stressnሺtሻ,ıIk,tቁ  ĳሺȘሻdȘቇT

t=1

൱ ĳሺĲሻdĲ
Ĳmax

Ĳmin

൩σ

n=1

 

 

(19) 

 1 
Given the nature of a stimulus-response car-following model formulation (a driver reacts to the 2 
stimulus of relative speed with a specific sensitivity), the specification presented in section 3.2 is 3 
reasonable in terms of behavioural interpretation; stress levels could affect drivers’ sensitivity to a 4 
presented stimulus.  5 
 6 
It may be noted that additional model specifications (presented in Equations 20 to 22) have been 7 
tested and compared with the proposed model specification. 8 
 9 
an

gሺtሻ = sሾXn
gሺtሻሿ× f ሾǻVnሺt-Ĳnሻሿ + șg Stressn(t) + İn

gሺtሻ (20) 
 10 

an
gሺtሻ = ሺĮg+ șg Stressnሺtሻሻ 1

ǻTnሺtሻȖg  × f ሾǻVnሺt-Ĳnሻሿ + İn
gሺtሻ (21) 

 11 

an
gሺtሻ = Įg 1

ǻXnሺtሻȖg+ șg Stressnሺ୲ሻ  × f ሾǻVnሺt-Ĳnሻሿ + İn
gሺtሻ (22) 

 12 
Each variant presented above represents different approximations regarding the effects of stress 13 
on car-following behaviour. For instance, Equation 20 assumes that stress has an overall shift on 14 
acceleration values, Equations 21 and 22 assume that stress interacts with the constant term and 15 
the time headway respectively. It should be mentioned that these specifications resulted in either 16 
worse log-likelihood values or unrealistic predictions in the sensitivity analysis (as performed in 17 
Section 4.3) and thus were not selected as the recommended specifications. 18 
 19 
3.4 Car-following model with both sociodemographic and latent stress variables 20 
The last of the model specifications presented in the current paper focuses on the estimation of the 21 
latent variable car-following model, while it also accounts for the effects of sociodemographic 22 
characteristics. The incorporation of these variables is following the specification presented in 23 
Section 3.2 while the rest of the process remains the same as in Section 3.3. This approach provides 24 
the benefit to investigate the effects of stress within a car-following model framework, on top of 25 
the sociodemographic variables and thus obtain more robust outcomes.  26 
 27 
4. Estimation results 28 
The current section presents the results of the various car-following model specifications. We first 29 
estimated base models (i.e. car-following models without socio-demographic and stress latent 30 
variables) and tested for significant differences among the various segments (Section 4.1). Based 31 
on these results, we retained separate models for each of the scenarios and developed the following 32 
four sets of models, as presented in Section 3. These can be summarised to the base car-following 33 
models without sociodemographic variables (Section 4.1), car-following models with 34 
sociodemographic variables, but no latent stress variable (Section 4.2), car-following models with 35 
latent stress variable, but no sociodemographic variables (Section 4.3) and car-following models 36 
with both sociodemographic and latent stress variables (Section 4.4). The final equations, 37 
including the parameter estimates for all models, are presented in Appendix A. 38 
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4.1 Base car-following models  1 
 2 
Parameter estimates 3 
As described previously, three different segments were extracted from the motorway scenario and 4 
investigated separately to examine for significant differences in car-following behaviour due to 5 
the different nature of traffic conditions. Three separate models were then estimated from these 6 
segments. These were: a model from the segments without specific events (“No events” model), a 7 
model from the aggressive drivers’ zone (“Aggressive drivers” model) and a model from the slow 8 
traffic zone (“Slow traffic” model). As an initial step, the various models were estimated following 9 
the basic GM model specification presented in section 3.1. The parameter estimates are presented 10 
in Table 3. All parameters of the car-following components have expected values and signs while 11 
most of them are significant at the 95% level. For instance, all acceleration constants are positive 12 
while the deceleration ones are negative. Moreover, the stimulus parameters (relative speed) have 13 
values smaller or close to 1, as expected, owing to the limited acceleration/deceleration a driver 14 
can apply (Ahmed, 1999). It should be mentioned that the “σo events” model was also estimated 15 
using data only from the motorway segment without time pressure, but almost all parameter 16 
estimates did not significantly differ from those presented in Table 3.  17 
 18 
Sensitivity analysis 19 
The sensitivity analysis of the “Aggressive drivers” model is presented in the current section as an 20 
example of model interpretation. In particular, the effect of each explanatory variable is illustrated 21 
(Figure 4) with respect to the estimated parameters of acceleration-deceleration regimes. For 22 
purposes of consistency, the ranges of acceleration/deceleration were kept constant across 23 
explanatory variables. It is worth mentioning that despite the differences in the parameter 24 
estimates, similar patterns were in general observed for all three segments. 25 
 26 
The observed trends are consistent with expectations and findings in the existing literature. When 27 
in acceleration regime, drivers tend to apply lower rates of acceleration as time headway increases, 28 
since traffic conditions are more likely to be closer to free flow. On the other hand, deceleration 29 
rate increases in absolute terms, as time headway decreases, implying safety concerns from the 30 
perspective of drivers to avoid a potential crash. Finally, an approximately linear relationship is 31 
observed between acceleration-deceleration rates and relative speed. 32 
 33 
Reaction time 34 
The estimated reaction time distributions are illustrated in Figure 5. The mean reaction time is 35 
largest for the slow traffic scenario as expected and consistent with literature findings (Törnros, 36 
1995). The mean and the standard deviation for the reaction time is smaller for aggressive driving 37 
scenario (as drivers are more alerted). 38 
 39 
Model comparison 40 
In order to examine whether traffic conditions affect car-following behaviour, the three models 41 
were compared in terms of individual parameters and overall model fit. The former was 42 
investigated with the t-test of parameter equivalence which is summarised as (Equation 23): 43 
 44 
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tdiffǡkൌ ȾͳǡkǦȾʹǡkඨ൬Ⱦͳǡktͳǡk ൰ʹ  ൬Ⱦʹǡktʹǡk ൰ʹ 
(23) 

 1 
 2 

 3 
Figure 4: Sensitivity plots of the “Aggressive drivers” car-following model 4 

 5 
where ȕ1,k and ȕ2,k are the parameter estimates of the kth parameter of the two models and t1,k and 6 
t2,k are corresponding t-statistics.  The null hypothesis of parameter equivalence is rejected at 95% 7 
level of confidence if |tdiff,k|>1.96. The three base models were compared pairwise, and the results 8 
of the t-test are presented in Table 3. 9 
 10 
 11 
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Table 3: Parameter estimates and t-test of parameter equivalence of the base car-following models 1 
2 

  
No events model 

(1) 
Aggressive drivers 

model (2) 
Slow traffic model (3) t-test of parameter equivalence 

  Estimate t-ratio Estimate t-ratio Estimate t-ratio (1) and (2) (2) and (3) (1) and (3) 
Reaction time distribution 
ȝt 0.297 1.58 -0.068 -0.22 0.655 14.63 1.01 -1.86 -2.31 
ıt 0.725 7.40 0.746 4.30 0.350 2.73 -0.10 2.32 1.83 
          
Car-following acceleration 
Constant 0.193 8.39 0.139 7.93 0.347 6.97 1.85 -2.82 -3.94 

Time headway (s) 0.400 3.76 0.063 0.49 0.275 1.77 2.03 0.67 -1.05 

Relative speed (m/s) 0.707 10.15 0.818 10.84 0.674 9.73 -1.08 0.34 1.41 

ıacc 0.447 22.03 0.634 15.78 0.337 25.72 -4.16 4.53 7.02 
          
Car-following deceleration 
Constant -0.219 -5.65 -0.174 -4.98 -0.255 -5.43 -0.86 0.59 1.38 

Time headway (s) 1.192 4.05 0.857 8.31 0.486 2.73 1.07 2.05 1.80 

Relative speed (m/s) 0.786 4.15 1.009 9.28 0.709 9.5 -1.02 0.38 2.29 

ıdec 0.770 15.64 0.985 17.25 0.694 17.06 -2.85 1.19 4.16 
δδ(ȕ) -9278.67 -13622.58 -5681.67 

 ȡ2 0.22 0.10 0.32 
N 36 36 36 
Observations 10105 11325 7236 
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 1 

Figure 5 Reaction time distributions of the car-following models 2 
 3 
With reference to the results of the t-tests, some of the parameters among the three models 4 
significantly differ either at the 90% or 95% level, indicating significant differences in car-5 
following behaviour (e.g. acceleration constants significantly differ in all examined pairs). 6 
However, some of the variables (mean of reaction time and time headway) were retained in the 7 
‘Aggressive Driver’ model in spite of being insignificant at λ0% level of significance for the sake 8 
of consistency and ease of comparison. It may be noted that inclusion of these insignificant 9 
variables may have some affect the efficiency of the estimation.  10 
Estimation results indicate that there is a significant difference in the reaction time distribution of 11 
“Slow traffic” model which may show that drivers perceive stimulus differently in various traffic 12 
conditions. As a final step, the models were also compared pairwise, in terms of total fit, with the 13 
likelihood ratio test. For each pair, the total sum of LL (unrestricted model) was compared with 14 
the LL value of a model estimated using the same data but a single set of parameters only for both 15 
components (restricted model). The two models were then compared using the likelihood ratio test 16 
with degrees of freedom equal to the difference in estimated parameters. The results of these 17 
likelihood ratio tests showed that in all cases, the null hypothesis was rejected indicating the 18 
restricted models were significantly worse compared to the unrestricted. Following the findings 19 
also from the t-tests of individual parameter equivalence, this outcome further indicates that a 20 
single set of parameters, for model estimation from different segments of the motorway, does not 21 
capture the heterogeneity in car-following behaviour and the differences should be considered with 22 
additional parameters. Based on these results, the stress effects are investigated separately for each 23 
segment in the next section. 24 
 25 
4.2. Car-following models with sociodemographic variables  26 
The models presented in the previous section were extended to also consider heterogeneity across 27 
drivers via sociodemographic characteristics. Based on the findings of Farah and Koutsopoulos 28 
(2014), these variables were incorporated as a part of the stimulus term (relative speed parameter) 29 
as detailed in Section 3.2. The parameter estimates are presented in Table 4. It should be mentioned 30 
that different sociodemographic variables were found to be significant in the three models  and 31 
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only the variables statistically significant at 90% level of confidence have been retained in the 1 
model. This led to addition of gender, age, driving frequency and accident involvement variables 2 
in models, while driving experience, speed violation history, education level and employment 3 
status were dropped as they were not statistically significant in any of the models. In the model 4 
specification, as accident involvement were considered both minor and major reported accidents 5 
while, with respect to driving frequency, the best fit occurred when driving 2-3 days per week or 6 
every day were combined as a single category. 7 
 8 

Table 4: Parameter estimates considering sociodemographic characteristics. 9 
  No events model (1) Aggressive drivers model (2) Slow traffic model (3) 
  Estimates t-ratio Estimates t-ratio Estimates t-ratio 

Reaction time distribution 
ȝt 0.322 1.68 -0.023 -0.12 0.610 11.41 
ıt 0.760 6.38 0.766 7.66 0.338 2.77 
Car-following acceleration 
Constant 0.190 8.92 0.139 8.06 0.332 7.14 

Time headway (s) 0.389 3.65 0.055 0.44 0.223 1.56 

Relative speed (m/s) 0.942 7.18 0.815 11.1 1.449 7.64 
ıacc 0.447 23.24 0.634 15.92 0.337 25.08 
Car-following deceleration 
Constant -0.100 -3.66 -0.163 -5.86 -0.250 -5.22 

Time headway (s) 1.801 6.25 0.907 9.43 0.504 3.33 

Relative speed (m/s) 1.695 11.25 0.950 8.89 0.941 6.57 
ıdec 0.727 16.5 0.979 17.53 0.686 17.21 
Sociodemographic characteristics 
Female dummy acceleration -0.192 -1.79 0 NA -0.436 -2.33 
Female dummy deceleration 0.503 2.73 0.289 2.26 0 NA 
Accident involvement 
dummy deceleration 

-1.050 -6.35 0 NA 
-0.152 -1.83 

Age acceleration -0.008 -2.35 0 NA -0.012 -3.51 
Driving frequency dummy 
acceleration 

0.176 1.99 0 NA 0 NA 

Driving frequency dummy 
deceleration 

-0.387 -3.34 0 NA 
-0.203 -2.30 

δδ(ȕ) – (LR test) 
-8968.31 

(620.72 - Ȥ2
(99%,df): 16.81) 

-13588.98  
(67.20 - Ȥ2

(99%,df): 6.63) 
-5628.68 

(105.97 - Ȥ2
(99%,df): 13.28) 

ȡ2 0.25 0.11 0.32 
N 36 36 36 
Observations 10105 11325 7236 

 10 
All models were compared with the respective car-following models without sociodemographic 11 
characteristics using the likelihood-ratio test. In all cases, the difference was significantly higher 12 
from the critical values at the 99% level of significance. This finding shows that in all cases, model 13 
fit was significantly improved when drivers’ characteristics were considered. As expected, the 14 
smallest improvement occurred for the “Aggressive drivers” model where only the female dummy 15 
in the deceleration regime was found to be significant. Moreover, similar values were obtained for 16 
the reaction time distributions’ moments and the acceleration and deceleration constants kept their 17 
expected signs. The effects of the significant sociodemographic characteristics (90% level of 18 
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significance or above) on acceleration/deceleration behaviour were investigated through 1 
sensitivity analyses (appended in Appendix B). 2 
 3 
The model where largest number of sociodemographic variables were found to be statistically 4 
significant was the “σo events” model. In particular, gender, had significant effects on both 5 
acceleration and deceleration with male drivers applying higher acceleration and lower (absolute) 6 
decelerations. Age had a significant impact on acceleration only. More specifically, increase in 7 
age was associated with decrease in acceleration values. The effects of driving frequency had 8 
similar trends to those of gender on both acceleration and deceleration regimes. Moreover, higher 9 
driving frequency was related to higher acceleration and lower deceleration values. Also, 10 
participants who reported accident involvement also applied lower deceleration.  11 
 12 
Regarding the “Aggressive drivers” model, only gender in the deceleration regime was found to 13 
be significant. The type of effect was the same of the “σo events” model.  14 
 15 
In the “Slow traffic” model, the coefficients corresponding to female drivers for deceleration and 16 
to frequent drivers for acceleration were not found to be statistically significant. The statistically 17 
significant coefficients were found to have the same sign as the “σo events model” though the 18 
difference in magnitudes resulted slightly different trends in the sensitivity plots.  19 
 20 
4.3. Car-following models with latent stress variable  21 
Following the suggested methodological framework from Section 3.3, a series of car-following 22 
models incorporating stress as a latent variable were estimated. The estimation results of the latent 23 
variable car-following model based on Equation 15 are presented in Table 5. The estimates of the 24 
other specifications (Equations 20-22) are not presented in detail as they either resulted in 25 
inconsistent values during the sensitivity analysis (e.g. negative values in the acceleration regime, 26 
non-realistic deceleration rates etc.) and/or worse LL scores for the car-following component 27 
compared to the presented model. 28 
 29 
Measurement equation component:  30 
The parameters of the measurement components are of similar magnitude and same trend in all 31 
three models. There is a positive and significant effect of the latent variable almost on all 32 
indicators; that is, as stress increases, the value of each indicator increases too. This is in line with 33 
the a-priori expectations. The statistical significance is in general higher for the electrodermal 34 
response indicators (Sum of SCR amplitudes and Number of SCR responses exceeding the 35 
threshold) compared to the indicators corresponding to HR and BVP. Finally, the effect of the 36 
latent variable was not significant only on the HR indicator of “σo events” and “Slow traffic” 37 
models. 38 
 39 
Structural equation component:  40 
The parameter estimates, for all three models, are similar to the base specifications. The latent 41 
variable was expressed in all models as a function of time headway; its effect was always negative 42 
and significant at the 90% or 95% level. The effect of the latent variable on acceleration was 43 
positive indicating that as stress increases, drivers tend to accelerate more. The coefficient of the 44 
latent stress was found to be statistically significant in the acceleration components of the “σo 45 
events” and “Aggressive drivers” models, which is an indirect indication that the models are 46 
behaviourally more robust than the models without stress. The effect of stress was however not 47 
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significant in the “Slow traffic” model. This is likely to be due to the fact that in the “Slow traffic” 1 
segment, even if drivers desired to accelerate, they were constrained by the slow speeds of the 2 
surrounding traffic.  For the sake of compatibility, the variable was retained in the model though. 3 
It may be noted that inclusion of these insignificant variables may have some affect the efficiency 4 
of the estimation. Interestingly, the effect of stress on deceleration was not statistically significant 5 
in any of the models and removed from the model.  6 
 7 

Table 5: Parameter estimates of the latent stress car-following models  8 

  No events model (1) Aggressive drivers model (2) Slow traffic model (3) 
  Estimates t-ratio Estimates t-ratio Estimates t-ratio 
Reaction time distribution 
ȝt 0.294 1.57 -0.057 -0.19 0.655 14.56 
ıt 0.730 7.59 0.752 4.31 0.35 2.73 
Car-following acceleration 
Constant 0.190 8.21 0.137 7.82 0.349 7.18 

Time headway (s) 0.409 3.83 0.042 0.33 0.282 1.85 

Relative speed (m/s) 0.731 9.99 0.829 11.25 0.695 8.35 

ıacc 0.446 22.18 0.633 15.74 0.34 25.54 
Car-following deceleration 
Constant -0.219 -5.64 -0.173 -4.97 -0.255 -5.43 

Time headway (s) 1.190 4.05 0.856 8.32 0.486 2.72 

Relative speed (m/s) 0.787 4.17 1.011 9.30 0.708 9.50 

ıdec 0.770 15.67 0.985 17.25 0.693 17.06 
Effects of stress 

Stress acceleration 0.018 2.01 0.023 2.35 -0.012 -0.57 

Latent variable specification 
Time headway (s) -0.041 -2.38 -0.036 -1.80 -0.046 -4.37 
Measurement equations 
HR mean 0.089 1.54 0.093 2.10 0.065 1.47 
ıHR 0.972 15.24 0.864 15.48 0.844 15.04 
BVP first absolute difference 
mean 

0.016 6.23 0.015 4.13 0.016 5.29 

ıBVP-FAD 0.044 15.17 0.042 16.44 0.042 20.11 
SCR Sum Amplitude 0.168 29.6 0.164 14.63 0.159 27.46 
ıSCR-sum 0.037 13.25 0.038 12.52 0.038 4.10 
SCR no of responses 1.625 6.87 1.384 8.00 1.370 12.54 
ıSCR-no 0.531 5.27 0.489 4.18 0.396 3.00 
δδ(ȕ) – car-following 
component 

-9273.54 -13620.52 -5681.805 
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Sensitivity analysis 1 
This section presents the sensitivity analysis for the “σo events” and “Aggressive drivers” models 2 
considering the effects of the stress latent variable. As opposed to the sensitivity analysis presented 3 
in section 4.1, where acceleration patterns arise as a single curved line, either as a function of time 4 
headway or relative speed, the incorporation of the latent variable introduces a third dimension to 5 
be considered. This approach results in a “surface” of predicted values, where acceleration patterns 6 
vary also depending on the stress levels alongside traffic variables. Moreover, the values derived 7 
from the current sensitivity analyses, depend on parameter estimates of stress weighted by the 8 
distribution assumption of the latent variable, as explained in Section 3.3. Compared to the 9 
deterministic approach of the base car-following model, the suggested latent variable specification 10 
allows for a wider range of acceleration patterns and better match the reality. The sensitivity 11 
analysis of the latent variable models is presented in Figures 6 to 9. It may be noted that since the 12 
parameter estimates of stress for the deceleration regime were not statistically significant, only the 13 
acceleration regime is analysed in detail. 14 
 15 

 16 
Figure 6: Time headway sensitivity analysis of the “No events” latent variable model 17 

 18 
Regarding the derived acceleration patterns per se, Figure 6 shows the results of the “σo events” 19 
latent variable model, with respect to the time headway. On the left part of the figure, the plot 20 
corresponds to the Acceleration-Time headway plot presented in Figure 4, accounting also for the 21 
effects of the latent variable. Moreover, the base car-following model is highlighted with a dashed 22 
line. Given the model specification (latent variable is an additive disturbance to the sensitivity 23 
term) and also the similarity in the parameter estimates between the base and latent car-following 24 
models, the base model occurs as a line at the zero value of stress. The acceleration trend is in 25 
general similar to the one presented in the sensitivity analysis of the base model. For instance, 26 
higher acceleration values are observed at shorter time headways, while the values decrease as 27 
headway increases (and traffic conditions potentially approach free-flow). However, in addition, 28 
there is also a slope variation due to the stress effects. Hence, for the same value of time headway, 29 
acceleration increases as stress rises while similar values of acceleration can result for other 30 
specific combinations of time headway and stress. It may be noted that given the distribution of 31 
the latent variable (presented on the right part of Figure 6) the stress values are gathered around 32 
zero indicating that there is higher frequency of obtaining acceleration values from this zone 33 
compared to the tail end of the stress distribution.   34 
 35 
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Similar impacts of stress also occur in Figure 7 where the sensitivity plot of with respect to relative 1 
speed and stress is presented. It is worth mentioning that the figure has been rotated around the z-2 
axis for a better illustration of the results. Again, the overall pattern is similar to the one presented 3 
in the sensitivity analysis of the base model i.e. acceleration increases as relative speed becomes 4 
larger while the effects of the latent variable distribution apply in this case as well. Moreover, this 5 
plot shows that the latent variable model results higher upper range of acceleration compared to 6 
the base model (though with lower probabilities, owing to the distribution assumption of stress). 7 
 8 
 9 

 10 
Figure 7: Relative speed sensitivity analysis of the “No events” latent variable model 11 

 12 
The outcomes presented regarding the “σo events” model also extend to the “Aggressive drivers” 13 
model, as congruous patterns are observed (Figure 8 and 9) and all the acceleration trends are in 14 
line with expectations. Moreover, Figure 8 is an additional example that highlights the difference 15 
between the base and the latent variable model, as it is obvious that the latter provides a larger 16 
variability in acceleration values while the former is restricted only to the average band. This seems 17 
to be the case also in Figure 9, where the latent variable model also allows for acceleration values 18 
beyond the range of the base model providing potentially wider heterogeneity of drivers’ 19 
behaviour. 20 
 21 

 22 
Figure 8: Time headway sensitivity analysis of the “Aggressive drivers” latent variable model 23 
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 1 

 2 
Figure 9: Relative speed sensitivity analysis of the “Aggressive drivers” latent variable model 3 

 4 
Overall, our sensitivity analyses indicates that as stress increases, there is a significant increase of 5 
the acceleration rate, for both the “σo events” and “Aggressive drivers” models. From a 6 
behavioural point of view, drivers under higher levels of physiological stress express similar 7 
characteristics with the “aggressive” drivers used in some microsimulation tools. However, while 8 
the current microsimulation tools assume that an aggressive driver will always have higher 9 
acceleration values, the proposed model captures the intra-driver heterogeneity in a more robust 10 
manner. Moreover, from a road safety perspective, the increase of stress levels points out safety 11 
concerns regarding the performance of drivers. 12 
 13 
4.4. Car-following models with both sociodemographic and latent stress variables 14 
The last part of model estimation focused on the estimation of the latent variable car-following 15 
model also considering drivers’ sociodemographic characteristics. The model specification 16 
combined the models presented in Sections 3.2 and 3.3. The parameter estimates are outlined in 17 
Table 6. 18 
 19 
Similar to the models presented in Section 4.3, stress was found to have a positive effect only on 20 
the acceleration regimes of the “σo events” and “Aggressive drivers” models – however, statistical 21 
significance dropped to the 90% level in the former. The effect of time headway on stress remained 22 
negative and significant in all models. On top of these findings, the same effects of 23 
sociodemographic characteristics were also captured in the latent variable model with their levels 24 
of significance remaining the same, compared to the base cases. The detailed sensitivity analyses 25 
(generated assuming a sample average value for the sociodemographic variables) are presented in 26 
Appendix C. They show similar trends to those illustrated in Figures 6-9.  27 
 28 
5. Conclusion 29 
  30 
Car-following is a crucial component of driving behaviour both in terms of traffic flow replication 31 
and road safety analyses. The existing literature has highlighted the importance of incorporating 32 
human factors and the mental states of the driver in car-following models – but to the best of our 33 
knowledge, this had not been done in any previous study. This paper fills in this research gap with 34 
a special focus on driving stress by suggesting a framework for their incorporation in a modelling 35 
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framework. The study is based on data collected from a motorway scenario developed at the 1 
University of Leeds Driving Simulator, as part of a comprehensive driving simulator study, where 2 
participants were deliberately subjected to stressful conditions. 3 
 4 
Table 6: Parameter estimates of the latent variable car-following models with sociodemographic 5 

variables 6 
 No events model (1) Aggressive drivers model (2) Slow traffic model (3) 
 Estimates t-ratio Estimates t-ratio Estimates t-ratio 

Reaction time distribution 
ȝt 0.339 1.70 -0.018 -0.09 0.611 11.32 
ıt 0.773 6.27 0.770 7.58 0.338 2.76 
Car-following acceleration 
Constant 0.188 8.69 0.137 7.90 0.333 7.23 

Time headway (s) 0.394 3.72 0.033 0.27 0.226 1.58 

Relative speed (m/s) 0.956 7.36 0.827 11.47 1.479 7.98 
ıacc 0.446 23.39 0.633 15.90 0.337 24.10 
Car-following deceleration 
Constant -0.099 -3.65 -0.163 -5.86 -0.250 -5.13 

Time headway (s) 1.800 6.26 0.907 9.42 0.503 3.32 

Relative speed (m/s) 1.696 11.27 0.955 8.89 0.942 6.48 
ıdec 0.727 16.49 0.979 17.54 0.686 17.24 
Effects of stress 
Stress acceleration 0.016 1.74 0.023 2.38 -0.011 -0.47 
Latent variable specification 
Time headway (s) -0.041 -2.38 -0.036 -1.80 -0.046 -4.37 
Sociodemographic characteristics 
Female dummy 
acceleration 

-0.188 -1.83 0 NA -0.407 -1.85 

Female dummy 
deceleration 

0.502 2.73 
0.290 2.27 

0 NA 

Accident involvement 
dummy deceleration 

-1.050 -6.36 0 NA -0.152 -1.82 

Age acceleration -0.008 -2.38 0 NA -0.013 -3.22 
Driving frequency 
dummy acceleration 

0.171 1.97 0 NA 0 NA 

Driving frequency 
dummy deceleration 

-0.387 -3.35 0 NA -0.203 -2.29 

Measurement model 
HR mean 0.089 1.54 0.093 2.10 0.065 1.47 
ıHR 0.972 15.24 0.864 15.48 0.844 15.04 
BVP first absolute 
difference mean 

0.016 6.23 
0.015 4.13 0.016 5.29 

ıBVP-FAD 0.044 15.17 0.042 16.44 0.042 20.08 
SCR Sum Amplitude 0.168 29.62 0.164 14.63 0.159 27.46 
ıSCR-sum 0.037 13.26 0.038 12.52 0.038 4.02 
SCR no of responses 1.625 6.87 1.384 8.00 1.370 12.51 
ıSCR-no 0.531 5.27 0.489 4.18 0.396 2.95 
δδ(ȕ) – car-following 
component 

-8964.19 -13586.81 -5629.05 

 7 
 8 
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Different car-following models were estimated based on an adaptation of the traditional GM model 1 
for three different motorway traffic scenarios. Our findings suggest that various traffic conditions 2 
yielded different car-following behaviours emphasizing the need to investigate the effect of stress 3 
independently for each motorway segment. For the incorporation of stress, a latent variable was 4 
introduced in the model specification, capturing heterogeneity at the intra-individual level.  It may 5 
be noted that although the benefits of accounting for unobserved inter-intra heterogeneity have 6 
been demonstrated in other contexts using mixed logit (e.g. Hess and Train, 2011; Hess and 7 
Giergiczny, 2015) and hybrid choice models (e.g. Calastri et al., 2018), these efforts have often 8 
only led to minor changes in results. In the present work, the panel/dynamic nature of the indicators 9 
seems to have contributed to a greater ability to capture inter-intra heterogeneity, possibly due to 10 
more intra-individual variation in the experienced scenarios. 11 
 12 
Regarding the effects of stress, a positive effect on acceleration was found which was statistically 13 
significant in all cases other than the slow leader scenario (where the driver had restricted 14 
movement). From a behavioural perspective, drivers with higher levels of stress (as manifested in 15 
the physiological responses), express similar characteristics with the “aggressive” drivers used in 16 
some microsimulation tools. But while in the current state-of-the-art simulation tools, an 17 
aggressive driver is assumed to have the same level of aggression throughout the entire simulation, 18 
our findings indicate that there is significant within-driver heterogeneity which needs to be 19 
accounted for in the simulation.  Ignoring the within-driver heterogeneity in levels of aggression 20 
can have substantial impact on safety analyses. Interestingly, the effect of stress on deceleration 21 
was not found to be statistically significant in any scenario. A final remark regarding our findings, 22 
is the positive contribution of sociodemographic characteristics in the model fit. The latter were 23 
considered as a part of the stimulus term and their significance remained on both the base and the 24 
latent variable model highlighting the importance of incorporating human factors in driving 25 
behaviour models.  26 
 27 
However, while interpreting the results, it should be acknowledged that the research is based on 28 
data from a driving simulator experiment as opposed to real driving due to the infeasibility of 29 
controlling the surrounding traffic environment in the latter. Though utmost attention has been 30 
given to make the scenarios as realistic as possible, there is a possibility of behavioural 31 
incongruence owing to the “experimental flavour” of the simulated driving. Thus, there is a 32 
possibility of behavioural bias as a result of the lack of actual risk but also Hawthorne-like effects 33 
i.e. some participants may adapt their driving style closer to what they believe the observer 34 
perceives as desirable. Moreover, although participants were asked to drive as they would normally 35 
do, the absence of genuine possibility for physical harm and/or penalisation due to illegal driving 36 
may also lead to unrealistic behaviour e.g. in excessive speeding or lateral manoeuvring. However, 37 
this latter issue is not expected to significantly influence the outcomes of the current study as only 38 
car-following observations were considered and overtaking behaviour was excluded. In addition 39 
to the aforementioned issues, stress levels might be different when comparing simulated and real 40 
driving, and it will be interesting to combine the current data with real world data in future 41 
research. Another potential source of bias could be self-selection however, it is unlikely that it is 42 
correlated with stress levels and thus does not affect the results. Finally, the fixed order of 43 
scenarios/time pressure might have caused behavioural bias, as discussed in Section 2.1. 44 
 45 
Based on the findings of the current study, there is scope for further research. This involves the 46 
incorporation of stress in further aspects of driving behaviour (e.g. lane-change behaviour) but also 47 
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more elaborated model specifications, regarding the effects of stress, are being considered. For 1 
instance, stress levels are expected to have different effects across individuals while drivers’ traits 2 
and perceptions towards the driving task vary as well. These characteristics have been found to 3 
significantly influence drivers’ behaviour, in the research field of road safety, and their integration 4 
in a modelling context could improve models’ performance. Another interesting aspect will be to 5 
investigate potential temporal shifts of parameter estimates that have been highlighted in recent 6 
safety research (Mannering 2018). 7 
  8 
In terms of practical application of the models, the challenge lies in inferring the presence of stress 9 
levels in real-life driving. However, with advances in ubiquitous computing technologies, it is now 10 
becoming feasible to measure stress levels in a non-intrusive manner – wearable wristbands and 11 
smartphone technologies that can detect stress levels from pitch and intervals of voice 12 
conversations (Sharma and Gedeon, 2012). Given the steep growth rate of wearables and 13 
smartphones, as well as advent of semi-autonomous cars (which have a wide range of sensors for 14 
inferring the surrounding traffic conditions), it is likely to be possible in near future to establish 15 
sophisticated models to sense stress levels of the driver and correlate it with potential influencing 16 
factors. Such prediction models for stress levels in real-world conditions will be very useful in 17 
widespread applications of the proposed model. This, coupled with the advances in the field of 18 
artificial emotional intelligence (Emotion AI) which has made it possible to device interventions 19 
to reduce stress (Hernandez et al., 2014), can make a significant contribution in increasing road 20 
safety. The proper value addition of such novel technologies requires quantification of the safety 21 
impacts of stress. Our models can be used for such evaluations and/or subsequent willingness-to-22 
pay.  23 
 24 
Applications may be also extended in the field of microsimulation to better reflect driver 25 
heterogeneity. For example, there are emerging microsimulation models that combine activity 26 
models with traffic microsimulation (e.g. SimMobility (Adnan et al., 2016)). In these new types 27 
of tools, it is possible to include schedule delays in the traffic simulation component and our 28 
models can contribute to more realistic representation of driving behaviour in such simulation tools 29 
and hence increase their accuracy. 30 
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Appendix A 1 
 2 
A.1 Base car-following models (no sociodemographic variables) equations 3 
 4 
A.1.1 No events model 5 
 6 
Acceleration regime 7 

an
cf,accሺtሻ = 0.1λγ

1
ǻTnሺtሻ0.ζ00  |ǻVn(t - Ĳn)|0.707 + İn

cf,accሺtሻ 8 

 İn
cf,accሺtሻ~N(0, 0.4472) 9 

 10 
Deceleration regime 11 

an
cf,decሺtሻ = -0.β1λ

1
ǻTnሺtሻ1.1λβ  |ǻVn(t - Ĳn)|0.78θ + İn

cf,accሺtሻ 12 

 İn
cf,decሺtሻ~N(0, 0.7702) 13 

 14 
 15 
A.1.2 Aggressive drivers model 16 
 17 
Acceleration regime 18 

an
cf,accሺtሻ = 0.1γλ

1
ǻTnሺtሻ0.0θγ  |ǻVn(t - Ĳn)|0.818 + İn

cf,accሺtሻ 19 

 İn
cf,accሺtሻ~N(0, 0.6342) 20 

 21 
Deceleration regime 22 

an
cf,decሺtሻ = -0.17ζ

1
ǻTnሺtሻǤ଼ହ  |ǻVn(t - Ĳn)|ଵǤଽ + İn

cf,accሺtሻ 23 

 İn
cf,decሺtሻ~N(0, 0.9852) 24 

 25 
 26 
A.1.3 Slow traffic model 27 
 28 
Acceleration regime 29 

an
cf,accሺtሻ = 0.γζ7

1
ǻTnሺtሻ0.β7η  |ǻVn(t - Ĳn)|0.θ7ζ + İn

cf,accሺtሻ 30 

 İn
cf,accሺtሻ~N(0, 0.3372) 31 

 32 
Deceleration regime 33 

an
cf,decሺtሻ = -0.βηη

1
ǻTnሺtሻ0.ζ8θ  |ǻVn(t - Ĳn)|0.70λ + İn

cf,accሺtሻ 34 

 İn
cf,decሺtሻ~N(0, 0.6942) 35 

  36 
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A.2 Car-following models with sociodemographic variables (no latent stress variable) 1 
 2 
A.2.1 No events model 3 
 4 
Acceleration regime 5 

an
cf,accሺtሻ = 0.1λ0

1
ǻTnሺtሻ0.γ8λ  |ǻVn(t - Ĳn)|0.λζβ-0.1λβ×Female-0.008×Age+0.17θ×Frequency  + İn

cf,accሺtሻ 6 

 İn
cf,accሺtሻ~N(0, 0.4472) 7 

 8 
Deceleration regime 9 

an
cf,decሺtሻ = -0.100

1
ǻTnሺtሻ1.801  |ǻVn(t - Ĳn)|1.θλη+0.η0γ×Female-1.0η0×Accident-0.γ87×Frequency  + İn

cf,accሺtሻ 10 

 İn
cf,decሺtሻ~N(0, 0.7272) 11 

 12 
 13 
A.2.2 Aggressive drivers model 14 
 15 
Acceleration regime 16 

an
cf,accሺtሻ = 0.1γͻ 1

ǻTnሺtሻ0.0ͷͷ  |ǻVn(t - Ĳn)|0.81η + İn
cf,accሺtሻ 17 

 İn
cf,accሺtሻ~N(0, 0.6342) 18 

 19 
Deceleration regime 20 

an
cf,decሺtሻ = -0.1θ͵ 1

ǻTnሺtሻ0.λ07  |ǻVn(t - Ĳn)|0.λͷ0+0.βͺͻ×Female + İn
cf,accሺtሻ 21 

 İn
cf,decሺtሻ~N(0, 0.9792) 22 

 23 
 24 
A.2.3 Slow traffic model 25 
 26 
Acceleration regime 27 

an
cf,accሺtሻ = 0.γγβ

1
ǻTnሺtሻ0.ββ͵  |ǻVn(t - Ĳn)|1.ζζͻ-0.ζ͵θ×Female-0.01ʹ×Age + İn

cf,accሺtሻ 28 

 İn
cf,accሺtሻ~N(0, 0.3372) 29 

 30 
Deceleration regime 31 

an
cf,decሺtሻ = -0.βη0

1
ǻTnሺtሻ0.ͷͲͶ  |ǻVn(t - Ĳn)|0.λζͳ-0.1ͷʹ×Accident-0.β0͵×Frequency + İn

cf,accሺtሻ 32 

 İn
cf,decሺtሻ~N(0, 0.6862) 33 

  34 
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A.3 Car-following models with latent stress variable (no sociodemographic variables) 1 
 2 
A.3.1 No events model 3 
 4 
Stressn(t)= -0.0ζ1×ǻTn + Șn(t) 5 
Șnሺtሻ~N(0, 12) 6 
 7 
Acceleration regime 8 

an
cf,accሺtሻ = 0.1λ0

1
ǻTnሺtሻ0.ζ0λ +0.018×Stressn(t)൨  |ǻVn(t - Ĳn)|0.7γ1 + İn

cf,accሺtሻ 9 

 İn
cf,accሺtሻ~N(0, 0.4462) 10 

 11 
Deceleration regime 12 

an
cf,decሺtሻ = -0.β1λ

1
ǻTnሺtሻ1.1λ0  |ǻVn(t - Ĳn)|0.787 + İn

cf,accሺtሻ 13 

 İn
cf,decሺtሻ~N(0, 0.7702) 14 

 15 
A.3.2 Aggressive drivers model 16 
 17 
Stressn(t)= -0.0γθ×ǻTn + Șn(t) 18 
Șnሺtሻ~N(0, 12) 19 
 20 
Acceleration regime 21 

an
cf,accሺtሻ = 0.1γ7

1
ǻTnሺtሻ0.0ζβ +0.0βγ×Stressn(t)൨  |ǻVn(t - Ĳn)|0.8βλ + İn

cf,accሺtሻ 22 

 İn
cf,accሺtሻ~N(0, 0.6332) 23 

 24 
Deceleration regime 25 

an
cf,decሺtሻ =-0.17γ

1
ǻTnሺtሻ0.8ηθ  |ǻVn(t - Ĳn)|1.011 + İn

cf,accሺtሻ 26 

 İn
cf,decሺtሻ~N(0, 0.9852) 27 

  28 
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A.4 Car-following models with both sociodemographic and latent stress variables 1 
 2 
A.4.1 No events model 3 
 4 
Stressn(t)= -0.0ζ1×ǻTn + Șn(t) 5 
Șnሺtሻ~N(0, 12) 6 
 7 
Acceleration regime 8 

an
cf,accሺtሻ= 0.188

1
ǻTnሺtሻ0.γλζ +0.01θ×Stressn(t)൨ |ǻVn(t-Ĳn)|0.ληθ-0.188×Female-0.008×Age+0.171×Frequency+İn

cf,accሺtሻ 9 

 İn
cf,accሺtሻ~N(0, 0.4462) 10 

 11 
Deceleration regime 12 

an
cf,decሺtሻ = -0.0λλ

1
ǻTnሺtሻ1.800  |ǻVn(t - Ĳn)|1.θλθ+0.η0β×Female-1.0η0×Accident-0.γ87×Frequency  + İn

cf,accሺtሻ 13 

 İn
cf,decሺtሻ~N(0, 0.7272) 14 

 15 
A.4.2 Aggressive drivers model 16 
 17 
Stressn(t)= -0.0γθ×ǻTn + Șn(t) 18 
Șnሺtሻ~N(0, 12) 19 
 20 
Acceleration regime 21 

an
cf,accሺtሻ = 0.1γ 1

ǻTnሺtሻ0.0γγ +0.0β͵×Stressn(t)൨  |ǻVn(t - Ĳn)|0.ͺʹ + İn
cf,accሺtሻ 22 

 İn
cf,accሺtሻ~N(0, 0.6332) 23 

 24 
Deceleration regime 25 

an
cf,decሺtሻ =-0.1θγ

1
ǻTnሺtሻ0.ͻͲ  |ǻVn(t - Ĳn)|0.λͷͷ+0.βͻͲ×Female + İn

cf,accሺtሻ 26 

 İn
cf,decሺtሻ~N(0, 0.9792)  27 
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Appendix B 1 
 2 
B.1 Base “σo events” model sensitivity analysis considering sociodemographic characteristics 3 
 4 

 5 
Figure B.1: Gender sensitivity analysis 6 

 7 

 8 
Figure B.2: Age sensitivity analysis 9 

  10 
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 1 

 2 
Figure B.3: Driving frequency sensitivity analysis 3 

 4 
 5 

 6 
Figure B.4: Accident involvement sensitivity analysis 7 

 8 
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B.β Base “Aggressive drivers” model sensitivity analysis considering sociodemographic 1 
characteristics 2 

 3 

 4 
Figure B.5: Gender sensitivity analysis 5 

 6 
A.γ Base “Slow traffic” model sensitivity analysis considering sociodemographic characteristics 7 
 8 

 9 
Figure B.6: Gender sensitivity analysis 10 

 11 
 12 
 13 
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 1 
Figure B.7: Age sensitivity analysis 2 

 3 

 4 
Figure B.8: Driving frequency sensitivity analysis 5 

 6 

 7 
Figure B.9: Accident involvement sensitivity analysis 8 
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Appendix C 1 
 2 
C.1 δatent variable “σo events” model sensitivity analysis considering sociodemographic 3 
characteristics  4 
 5 

 6 
Figure C.1: Time headway sensitivity analysis 7 

 8 

 9 
Figure C.2: Relative speed sensitivity analysis 10 

 11 
  12 
 13 
  14 
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C.β δatent variable “Aggressive drivers” model sensitivity analysis considering sociodemographic 1 
characteristics  2 
 3 

 4 
Figure C.3: Time headway sensitivity analysis 5 

 6 

 7 
Figure C.4: Relative speed sensitivity analysis 8 


