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Abstract
A quantitative understanding of aggregation mechanisms leading to the formation of composites of inorganic nanoparticles (NPs)

and proteins in aqueous media is of paramount interest for colloid chemistry. In particular, the interactions between silica (SiO2)

NPs and lysozyme (LZM) have attracted attention, because LZM is well-known to adsorb strongly to silica NPs, while at the same

time preserving its enzymatic activity. The inherent nature of the aggregation processes leading to NP–LZM composites involves

structural changes at length scales from few to at least hundreds of nanometres but also time scales much smaller than one second.

To unravel these we used in situ synchrotron-based small-angle X-ray scattering (SAXS) and followed the subtle interparticle inter-

actions in solution at a time resolution of 50 ms/frame (20 fps). We show that if the size of silica NPs (ca. 5 nm diameter) is

matched by the dimensions of LZM, the evolving scattering patterns contain a unique structure-factor contribution originating from

the presence of LZM. We developed a scattering model and applied it to analyse this structure function, which allowed us to extract

structural information on the deformation of lysozyme molecules during aggregation, as well as to derive the mechanisms of com-

posite formation.
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Introduction
A mechanistic understanding of aggregation in aqueous media

leading to the formation of composites of inorganic nanoparti-

cles and proteins is of paramount interest for colloid chemistry,

Earth sciences, or the design of protein-sensitized biomedical

devices and sensors [1-6]. In a broader perspective, many pro-

cesses involving the assembly of nanoparticles to higher-level

hierarchical structures are known to be directed by small

organic molecules and macromolecules [7-10]. Such funda-

mental interactions are the key to understand the crystallisation

of biominerals in living organisms (e.g., in bone formation), and

to manufacture better functional materials [11-15].

In particular, composites of amorphous silica (SiO2) nanoparti-

cles (NPs) and lysozyme (LZM) have attracted attention

because silica NPs readily form in many Earth surface environ-

ments (e.g., oceans, hot springs) where biological activity domi-

nates (e.g., diatom formation) but they are also key components

in numerous technological applications from electronics to paint

production. In turn, lysozyme adsorbs strongly to silica NPs

[16-18], while at the same time preserving its enzymatic activi-

ty, most notably antibacterial properties [19]. Over a wide range

of pH values (2 to ca. 10), the surface of silica NPs is nega-

tively charged, whereas the LZM molecule is positively charged

[20,21]. This way LZM can act as a bridge between silica NPs,

leading to aggregation and flocculation and thus to large silica

NP–LZM composites. In the SiO2–LZM model system, a num-

ber of studies investigating the relationship between silica NP

sizes, and adsorption modes of lysozyme revealed a correlation

between composite properties and the folding/structure of the

protein, its enzymatic activity and the exact protein localization

with respect to the silica NPs inside flocculated composites

[16,17,19,21-24]. The inherent nature of the aggregation pro-

cesses leading to silica–lysozyme composites, involves struc-

tural changes at length scales from a few to hundreds of

nanometres, which makes this system well-suited to be charac-

terized by scattering methods. In particular, recent advances

[25,26] in detector technology for synchrotron-based in situ and

time-resolved small-angle X-ray scattering (SAXS), now allow

one to follow all steps in the formation of SiO2–LZM compos-

ites from the individual components. Nevertheless, although

such scattering data will reflect the in situ state of a system

during measurement, the quantitative information related to any

changes in structural properties of the particles/species of

interest can only be accessed by developing, testing and vali-

dating relevant models and bespoke data analysis methods.

In this study we show step-by-step how a scattering model was

developed, verified and applied to time-resolved synchrotron-

based SAXS data in which we followed in situ the lysozyme-in-

duced aggregation of silica NPs (ca. 5 nm in diameter) at a time

resolution of 50 ms. It is important to note that at typical NPs

sizes and concentrations [17,24] and protein concentrations [27]

usually employed to make such SiO2–LZM composites, the

relative X-ray scattering contrast/intensity of lysozyme, in the

presence of silica, is insufficient to determine the protein contri-

bution to the overall scattering pattern (ratio of ca. 1:100 be-

tween LZM and NPs), and only the NP component can directly

be followed. However, through this study we demonstrate that

if the size of the silica NPs is matched with the dimensions of

lysozyme (ellipsoidal molecule [28] 3 × 3 × 4.5 nm3), the

evolving scattering patterns contain a unique structure-factor

contribution originating from the presence of lysozyme, and this

way this important contribution can be assessed. The analysis of

this structure function through the derived model then allowed

us to extract detailed structural information on the deformation

of the LZM molecules upon aggregation, and to determine the

mechanisms of the formation of SiO2–LZM composites.

Results and Discussion
This section of the manuscript is organised in the following

way: (1) data presentation and a discussion of general trends;

(2) derivation of a self-consistent mathematical model to fit the

timer-resolved scattering curves; (3) presentation of the quanti-

tative results from the model fits; (4) discussion of the quantita-

tive trends.

Evolution of SAXS patterns and derived
aggregation stages
Upon mixing of the silica NPs and the LZM solution we ob-

served very fast flocculation, which indicated the formation of

the composites. In Figure 1 we show an overview of these for-

mation processes based on SAXS data collected at a time reso-

lution of 50 ms and spanning ca. 300 s.

In a contour plot of the time-resolved scattering patterns

(Figure 1A), one can distinguish four characteristic time periods

(I–IV) and one region of interest (ROI V), which spanned

through periods II to IV. Period I corresponds to the initial ca.

24 s of the scattering patterns of silica NPs before the injection

of lysozyme. Based on this data we determined the initial form

factor (size distribution) of the silica NPs prior to mixing with

lysozyme (Figure 1B). The scattering pattern in a log–log repre-

sentation prominently flattens out at low q (i.e., ).

This shows that the initial silica NPs were not aggregated and

well-suspended. We derived a discrete size distribution (histo-

gram in the inset of Figure 1B) for the NPs from the Monte

Carlo fit implemented [29,30] in MCSAS under the a priori

assumption that the NPs were spherical in shape [31] (physico-

chemical parameters of amorphous silica given in Table S1,

Supporting Information File 1). The as-obtained histogram indi-
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Figure 1: Time-resolved and in situ SAXS patterns documenting the formation of silica–lysozyme aggregates from an experiment where data was re-
corded at a rate of 50 ms/pattern (20 fps); A) contour plot depicting the scattering intensity as a function of q and time. The changes in the data reveal
four distinct time periods; I – scattering from pure silica NPs, II – the moment of lysozyme injection, III – the growth of the aggregates/composites with
the original form factor of the silica NPs preserved, and IV – further growth of aggregates and a change in the original silica NPs. We further identified
a q-range as a region of interest “ROI V” indicating a local maximum due to interparticle correlations; B) the initial silica NP form factor with a Monte
Carlo (MC) fit and the derived discrete particle size distribution (inset); C) the scattering data for period II showing the time frames spanning the injec-
tion of the LZM solution between 24.25 s and 27.50 s of the experiment, with the first 1.25 s (blue) dominated by the formation of large aggregates,
followed by ca. 2 s (pink) during which the local maximum related to the interparticle interactions (ROI V) clearly developed; D) selected patterns
spanning periods III and IV highlighting the differences in the form factor of the silica particles (q > 1.5 nm−1). In C) and D) the data uncertainties are
not shown for clarity.

cated that the size distribution was relatively narrow with a

mean radius of 2.53 ± 0.01 nm (distribution statistics given in

Table S2, Supporting Information File 1). The total integrated

volume fraction for the NPs obtained from the fit, was 0.040%

± 0.001%, which matches very closely the expected value of

0.041% calculated for silica NP precipitated from a 1000 ppm

SiO2 solution at pH 7.5 and 21 °C (Table S1, Supporting Infor-

mation File 1, calculated with PHREEQC [32]).

Period II (ca. 25–30 s) in Figure 1A represents scattering

patterns during and soon after the injection of the LZM solu-

tion and its mixing with the silica NPs. Period II is hence

preceded by a dead-time period of 500 ms (see Experimental

section). Period II (Figure 1C) can be divided into multiple

steps. The first 1.25 s were primarily characterized by a rapid

and significant (ca. 11-fold) increase in intensity at low q

(q < 0.3 nm−1). During the following 2 s, the low-q part still

kept increasing (to ca. 15-times of the initial intensity) but less

rapidly, and at q ≈ 1 nm−1 a characteristic local maximum de-

veloped (ROI V in Figure 1A). The intensity increase at low q

originated from the formation of large aggregates constituting

the composites, with sizes outside the minimum q-range, where-

as the local maximum (the correlation peak q ≈ 1 nm−1) indicat-

ed the presence of interparticle correlations within those aggre-

gates.

The intensity increase at low q associated with the aggregation

continued throughout period III (between ca. 30 and 150 s), yet

the correlation peak in ROI V did not change significantly

(Figure 1D). Note that up to 150 s (periods I–III) the high-q part

of the data (q > 1.5 nm−1, Figure 1C,D) did not change, indicat-

ing that the original form factor of silica NPs remained the same
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after the injection of lysozyme. Therefore, as a first approxima-

tion the observed electron-density scattering contrast in these

periods (I–III) can be interpreted to originate solely from the

silica NPs and not from the combination of silica and lysozyme

(Figure S1, Supporting Information File 1). Hence, we could

treat the system as a system with two different electron densi-

ties (silica NPs and solvent matrix). However, because our

silica nanoparticles were smaller (ca. 5 nm) compared to silica

NPs in previous scattering studies (ca. 20 nm) on silica–protein

composite formation [16,17,23,24] and because the lysozyme

addition dramatically changed the silica aggregation state, the

contributions of the lysozyme scattering can be accounted for

indirectly from the interparticle correlations observed in ROI V.

This is key here, because it allows us to extract the changes in

lysozyme structural properties as the composites evolve over

time, without deriving circumstantial models for a system with

three electron densities (silica, lysozyme, and the solvent

matrix).

In period IV (150–300 s, Figure 1A and Figure 1D), we ob-

served a further intensity increase at low q (three-times higher

at 300 s than at 150 s), which indicated a continuous increase in

aggregate size from periods II and III. In time period IV the in-

tensity of ROI V (Figure 1A) started to increase together with

the silica form factor at high q (q > 1.5 nm−1, Figure 1D). This

suggests that as aggregation continued between 150 and 300 s,

the silica NPs themselves started to grow, e.g., due the coales-

cence of NPs or similar processes (under an assumption that the

particles remained spherical in shape).

Scattering model
In the considered silica–LZM composites, the scattering

contrast originating from the lysozyme itself can be mostly

disregarded (see Figure S1, Supporting Information File 1).

Hence, the scattering contrast of the primary silica particles,

(Δρp)2, – expressed as the difference in scattering length densi-

ty, SLD – is equal to the squared difference in the SLDs of

silica and the surrounding water matrix (Table S1, Supporting

Information File 1). Consequently, using such an approxima-

tion allows us to deal with a two-electron-density system, where

the scattering intensity, I(q) is a product of the scattering

contrast, (Δρp)2, the form factor of the silica NPs, Pp(q),

weighted by a volume fraction of silica NPs, , and their

volume, Vp, together with an effective structure-factor function

describing the spatial arrangement of silica NPs within the

aggregates, Seff(q) (Equation 1). We use subscript “p” to em-

phasize that the parameters and functions concern the primary

silica NPs.

(1)

Equation 1 is valid only for a system of ideally monodisperse

particles (i.e., the distribution is a delta function), which is actu-

ally not the case for the silica NPs used here (Figure 1B). This

is an important consideration when including the interparticle

interactions from the structure factor. There are several ap-

proaches to consider the polydispersity of particles together

with a structure factor [33], but because the fitted size distribu-

tion (histogram in Figure 1B) is discrete with a finite number of

n bins a local monodisperse approximation (LMA) [34] is used

in our models:

(2)

where Pp(q,ri) is the form factor of a sphere of radius ri.

The discrete size distribution (Figure 1B) has the form of Equa-

tion 3, where for each size contribution (ri) the corresponding

volume fractions, , are known:

(3)

Since the partial i-th structure factor, Seff(q,ri), includes the

interparticle correlations between silica NPs and lysozyme (the

local maximum at qmax ≈ 1 nm−1, ROI V in Figure 1), it is also

dependent on ri of the primary silica NPs. Additionally, the

structure factor expression has to account for the aggregation of

the silica NPs to large objects (the low-q increase), yet the size

of these aggregates, in turn, does not necessarily depend on the

size of the primary silica NPs.

The interparticle correlations and the local
maximum
Under the considered physicochemical conditions the inorganic

silica NPs and the protein molecules are oppositely charged

[21], and hence they interact through the attractive potential.

This, in turn, leads to the formation of aggregates/composites in

which NPs behave closely to adhesive hard spheres. The afore-

mentioned interactions and the arrangement of particles in space

lead to the occurrence of a broad maximum in the scattering

pattern (Figure 1, ROI V). We simulate these effects by imple-

menting the adhesive hard-sphere structure factor, SSHS(q) [35-

37]. The interaction between particles at the distance x is ap-

proximated by the following potential U(x):

(4)
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(14)

where RHS is a hard sphere radius of particles, Δ is the width of

a potential well, and τ is a stickiness parameter. The structure

factor expression, SSHS(q), is defined through the following set

of equations (Equations 5–14). The structure factor is a func-

tion of four parameters in Equation 5, whereas the remaining

variables and the associated expressions in Equations 6–14 are

merely auxiliary by convention, so that we avoid writing a very

long single expression. They should be consequently substi-

tuted into each other where suitable to obtain the final expres-

sion.

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

In this study, the stickiness τ is calculated from Equation 4,

based on the literature data for silica–LZM composites

synthesized under similar physicochemical conditions [24]:

U(2RHS < x < 2RHS + Δ) = −2.5 kBT; Δ = 0.1·(2RHS) under the

restriction that Δmin ≥ 0.15 nm (i.e., the average H-bond

length). The value of U in our study may slightly differ from lit-

erature values, because for constant pH value and salinity, the

surface charge of NPs increases with decreasing size [38]. How-

ever, it is unlikely that U > −3kBT, and within the considered

range, the value of U will not affect our fitting results. ν is a

local packing parameter, i.e., a local volume fraction within the

aggregate, and for the random packing of polydisperse spheres

it does not exceed 0.65 [39-42]. Figure 2 shows the scattering

patterns at 0 and 100 s (Figure 1D) together with simulated

curves based on Equation 2, in which the contributions of the

silica NPs were taken from the Monte Carlo-fitted form factor

(Figure 1B), while the contribution of Seff(q,ri) was included

from Equation 5 (and Equations 6–14).

The simulations show the important effects that polydispersity

has on the structure factor and the position of the correlation

peak in ROI V. Typically, for correlations originating

from (sticky) hard-sphere interactions, one considers the

following dependence, for the approximated position of the

peak at qmax:

(15)

Equation 15 infers that the expected average hard-sphere radius,

RHS, would be equal to the mean radius of a silica particle

<r> ≈ 2.5 nm (Figure 1B, Table S2, Supporting Information

File 1). This, in turn, suggests that silica NPs on average touch

each other without any LZM molecules in between, or that the

protein molecules, if present within the aggregates and among

individual silica NPs, are very strongly deformed, likely to a

point that they barely contribute to the determined RHS. Never-

theless, the simulation in Figure 2A clearly shows that if the

size distribution of silica NPs is actually correctly accounted

for, then in order to fit the peak position accurately, an addition-

al “spacer”, aReHS (additional effective hard sphere radius) has

to be included in Equation 2 and Equations 5–14:

(16)
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Figure 2: Comparison of the measured (black) and simulated (coloured) scattering patterns to illustrate the contribution of SSHS(q) from Equations
5–14, plugged into Equation 2 as the only structure-factor expression. It was the aim to represent the correlation peak at q ≈ 1 nm−1, whereas the
effects at low q are further discussed in the text and in Figure 3. A) The position of the correlation peak at q ≈ 1 nm−1 (arrow) is reproduced more
accurately by SSHS(q) for the polydisperse silica NPs (Figure 1B), only if one considers an additional effective hard sphere radius, aReHS
(Equation 16); B) the effect of the local volume fraction ν onto the intensity of the correlation peak (arrow). The data uncertainties are not shown for
clarity.

By setting merely ri = RHS,i (i.e., aReHS = 0) the position of the

simulated peak visibly shifts towards higher q values with

respect to the measured peak. Here, aReHS is associated with the

presence of a single LZM molecule located in between indi-

vidual silica NPs with the diameter of the LZM molecule repre-

sented by 2aReHS. The simulation in Figure 2B also shows that

the packing factor ν within the aggregates, which directly corre-

lates with the intensity of the broad peak around q ≈ 1 nm−1, has

to be relatively high (ν above ca. 0.4) in order to be able to

simulate the intensity profile at q ≈ 1 nm−1 in the later stages

(ca. 100 s).

Low-q intensity increase, aggregation, and
the structure factor expression of aggregates
with internal correlations
The structure factor from Equations 5–14 does not reproduce

the observed intensity increase at low q (Figure 1 and

Figure 2A), because the sticky hard-sphere structure factor is

derived under the assumption that the interactions extend to an

infinite length scale, with respect to the probed volume. Howev-

er, in our experiments, we initially have a finite number of

“loose” silica NPs that are then rearranged to large aggregates

upon mixing with lysozyme. Hence, microscopically such

aggregates must have a finite size, even if their size (radii of

gyration) cannot be determined directly from our scattering

data, due to the used q range (see Experimental section). How-

ever, ultimately, to obtain a good fit an expression for Seff(q)

(Equation 2) has to account for both the fine structure within the

aggregates causing the interparticle correlations (as in Equa-

tions 5–14) and also the low-q intensity increase due to the

presence of the interface between the aggregates/composites

and the solvent matrix.

A general expression for such an effective structure factor for

particles within an aggregate/droplet was proposed originally by

Hashimoto and co-workers [43]. Several variations and applica-

tions of this concept are furthermore known [37,44]. For the

purpose of the analysis of our data, we further extended the

expressions originating from Hashimoto et al. as we show

below in a final form. In the Appendix section the complete

derivation and the rationale are presented. Our derivation is

essential here, because it allowed us to quantify indirectly the

changes in the size of the aggregates, although the direct mea-

surement of their radii of gyration was not possible. The

so-derived general expression for Seff(q,ri) (Equation 17) is

expressed as the sum between the structure function of an

aggregate (“template”), Sagg(q), and the structure factor of the

internal arrangement of the aggregate, Sint(q), which in our case

becomes subsisted by SSHS(q) (Equations 5–14):

(17)

where D is a fractal dimension describing the arrangement of

primary particles within the composites, and A is a single

collective fitting parameter in our model, which is proportional

to the number density of aggregates, Nagg, and their specific

surface area, SSAagg. Hence, it expresses indirectly the size/
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Figure 3: Fitting of the structure-factor contributions to a scattering curve measured at 100 s during the composite-formation processes. A) Compari-
son between the effect of the unsmeared (monodisperse aReHS, red line) SSHS(q) from Equations 5–14 and the smeared (polydisperse, green line)
<SSHS(q)> from Equation 18. Fits yielded ν = 0.454 ± 0.008, aReHS = 0.979 ± 0.036 nm, <aReHS> = 0.930 ± 0.000 nm, and σ = 0.533 ± 0.050 nm; the
complete structure factor fit (pink line), which includes the unsmeared SSHS(q), illustrates that the form of the function affects only the correlation peak
at q ≈ 1 nm−1 (arrow), and not the low-q scattering intensity of the aggregates; B) the final fit to the data (pink line) with each structure-factor contribu-
tion plotted separately (green and orange lines). Parameters for <SSHS(q)> are the same as in panel A, whereas for the Sagg(q) from Equation 17, we
obtained A = 0.0437 ± 0.0001 and D = 2.37 ± 0.00. The data uncertainties are not shown for clarity.

extent of the aggregates. In Figure 3, we show that the fits with

the introduced expressions for the partial structure-factor contri-

butions indeed represent the structural features present in the

selected scattering pattern (example @ 100 s).

However, as is evident from Figure 3A, the SSHS(q) from Equa-

tions 6–14 has to be further improved, because in Figure 3A the

correlation peak is relatively broad (“smeared out”), yet still

intense. Typically one would expect such a broadened shape if

the local volume-fraction parameter, ν, was smaller than derived

from the best fit (i.e., below ca. 0.4). However, this would also

inevitably yield a smaller relative intensity of this peak (see

Figure 2B). Hence, in order to explain this contradiction, one

has to remember that the position of the maximum and its shape

are predominantly related to aReHS. The shape of the peak can

be modelled substantially better if one allows for a distribution

of this parameter in the fitting routine. The need for such mathe-

matical treatment is in fact a manifestation of the actual physi-

cal effects, if we consider that aReHS represents a radius of a

LZM molecule. A LZM molecule can become, at least partially,

heterogeneously deformed (on average, in a global sense)

within an aggregate, e.g., due to the variation of local forces,

which, in turn, is a consequence of polydispersity of the

silica NPs and the random character of the packing of the

silica NPs. More importantly, since lysozyme is a small prolate

ellipsoidal protein, with its principal semi-axes being

1.5 nm × 1.5 nm × 2.25 nm, the polydispersity in aReHS may

account for the fact that the protein molecules can be different-

ly orientated during adsorption to the NPs. Yet, so far we tried

to represent their contribution through a (hard) spherical model.

To overcome this, we used a Gaussian distribution to define the

average structure factor <SSHS,i(q)> in Equation 18. The appli-

cation of this structure factor ultimately leads to smearing of the

maximum at a constant value of ν and hence yields significant-

ly improved fits (Figure 3B):

(18)

(19)

In Equation 18, the mean of the distribution (Equation 19) is

<aReHS>, whereas σ denotes the standard deviation. This is the

final expression used to represent Sint(q) in Equation 17 and to

fit all the scattering curves from regions II and III in Figure 1.

The numerical integration was performed for each i-th bin of

the discrete size distribution characterizing the form factor

(Figure 1B). The complete source code and selected data sets

are deposited at GitHub.com [45].
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Figure 4: Evolution in the crucial parameters of the fitting model plotted as a function of the time. A) Mean additional hard sphere radius <aReHS>; B)
the corresponding standard deviation σ; C) local volume fraction ν; parameters characterising <Sagg(q)>: D) A, relative product of the number density
of the aggregates Nagg and their specific surface area SAAagg; E) dimensionality of the aggregate D; F) correlation A vs ν, with inset showing the
same as the main Figure 4F, but for a wider range; axes legends in the inset correspond to those in the main figure.

Application of the scattering model
We used the above described scattering model to fit the time-

resolved data set and to derive the fitting parameters as a func-

tion of the time (Figure 1, Period II, III and beginning of IV,

3010 curves). Figure 4 shows the time dependence of the five

model parameters obtained by fitting the scattering data be-

tween 24.5 and 175 s.

During the first ca. 5 s after mixing, the values of <aReHS> and

σ lie way outside reasonable error margins (Figure 4A,B). This

is to be expected, because the corresponding local volume frac-

tion, ν, is very low (well below 0.1, Figure 4C) at the beginning

of the composite-formation process (i.e., the beginning of

period II in Figure 1). Consequently, the contribution of

<SSHS(q)> to the structure factor during this period is mostly
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negligible with respect to Sagg(q). As ν reaches ca. 0.1 after

about 30 s (transition between regions II and III in Figure 1) the

actual evolution of <aReHS> and σ begin: <aReHS> starts at a

value of ca. 0.7 nm and rapidly increases to ca. 0.9 nm after 50 s

and then more gradually to ca. 1.1 nm after 150 s (period III in

Figure 1). The associated standard deviation σ follows a similar

trend as <aReHS>, growing from 0.35 to 0.5 nm after 50 s, and

then levels off at ca. 0.5 nm after 150 s (end of period III in

Figure 1A) within the fitting uncertainty. These initial rapid

changes after up to 50 s are also reflected in the evolution of pa-

rameter ν (Figure 4C), where the parameter rapidly increases to

ca. 0.45 and then remains constant within the fitting uncertainty

after up to 150 s. Because <aReHS> directly relates to the size of

lysozyme within the silica aggregate, we can link the changes in

<aReHS> to possible changes in the structure/folding/shape of

the protein. Between ca. 30 and ca. 50 s, where the LZM mole-

cules rapidly induce the aggregation of the silica NPs, the LZM

molecules appear to undergo a deformation (compression).

However, as this process approaches equilibrium, through the

internal densification of the aggregates, the molecules gradu-

ally return to their native dimensions. This result is in agree-

ment with findings concerning the activity of lysozyme within

composites with silica, showing that smaller silica NPs (as those

used for our experiments) promote higher enzymatic activity of

lysozyme, and that this, in turn, depends on the preservation of

the native shape of the molecule upon composite formation

[22].

Furthermore, the formation of the silica–LZM composite is

dominated, from the very moment of mixing for the initial 20 s,

by a rapid, 4.5-fold increase of parameter A (Figure 4D). This is

best explained by the increasing number density of the aggre-

gates, Nagg, and the associated increasing specific surface area,

SSAagg (see Equation 17 and Equation 29 in the Appendix).

After t = 40 s, parameter A further increased, albeit at a slower

rate. The concurrent evolution of the fractal dimension (parame-

ter D; Figure 4E) suggests that initially (up to 50 s), the aggre-

gates have a relatively open morphology with D < 2.4 and char-

acterized by a limited contribution of <SSHS(q)> due to ν < 0.1

(Figure 4C). Afterwards (after more than 50 s), the aggregates

reached an internally denser state, as reflected by the steadying

of both values for D (ca. 2.4) and ν (ca. 0.45). In other words,

since these two parameters, D and v, reflect the internal struc-

ture of the aggregates from the perspective of the two structure-

factor contributions (Equation 17), their evolution clearly indi-

cates no further internal changes in the aggregates between 50

and 150 s. If such an internal densification processes had

occurred, one would expect that it would have contributed to

the decrease of the specific surface area of the aggregates,

SSAagg. Interestingly, however, parameter A (Figure 4D) keeps

increasing after 50 s, i.e., after the internal dense structure is

established, meaning that the product of number density of the

aggregates and their specific surface area actually increased.

This is possibly a result of secondary processes involving the

“breakup” of larger aggregates into smaller units. Indeed, if we

correlate the changes in A and ν (Figure 4F), we observe three

stages of such secondary processes. In the first stage for ν < 0.1

(up to 25.5 s), A grows as a function of ν in a bound exponen-

tial mode, which translates into an increasing number of low-

dimensional aggregates with hardly any internal correlations,

forming an extended network of particles of low dimension-

ality D (Figure 4E). In the second stage, as ν increases from

0.1 to ca. 0.45 (25.5 to 70 s), A as a function of ν (Figure 4F)

shows a linear dependence, indicating that as the number densi-

ty of aggregates increases they also gradually densify, and that

the growth of the aggregates occurs at the same rate as their

internal densification. Finally, in the third stage, once ν remains

relatively constant at ca. 0.45 (after 70 s), the product of the

number density and the specific surface area of the aggregates

continues to increase as documented by the increasing value of

A, yet without any further dramatic changes to the internal

structure/arrangement (i.e., constant values of D and ν),

implying the aforementioned breakup of the larger aggregates

into smaller units. These processes can be best explained as

the initial rapid flocculation/clumping of NPs and LZM

together into an extensive network just after mixing as the

system is out of equilibrium, followed by the gradual evolution

towards a steady state, in which smaller aggregates are more

favourable.

During period IV (after more than 150 s), the time evolution of

the three parameters (<aReHS>, ν and σ; Figure 4A–C) exhib-

ited a characteristic discontinuity from the trends observed

during periods II and III. This is because at times greater than

150 s, the scattering intensity at high q (which corresponds to

the form factor, Figure 1D) changed significantly, so that the

original form factor of pre-mixing silica NPs from Figure 1B

was not representative for silica particles after 150 s. Thus, we

could no longer use the fitted size distribution in our model, and

any trends of these three parameters (Figure 4A–C) were not

valid any more after 150 s. On the other hand, due to the fact

that the low-q part of the data by definition is practically inde-

pendent from the form factor, in fact the evolution of parame-

ters A and D (trends in Figure 4D,E), even after 150 s are repre-

sentative for the processes at the length scales corresponding to

entire aggregates. However, due to the fact that in period IV our

scattering model is no longer self-consistent, we did not analyse

those trends.

Implications
The analysis of the evolution of the fitting parameters (Figure 4)

draws a clear image of the four-step sequence of events during
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Figure 5: Schematic of the selected steps in the formation of silica–LZM composites as derived from the fast in situ and time-resolved SAXS data.
Period I – unaggregated silica NPs (spherical in shape blue objects) before LZM addition. Following the LZM addition (cloud-like purple and yellow
objects) occurs period II – fast aggregation to low-dimensionality fractal networks constituting the internal structure of large composite particles
(primarily Sagg(q) contribution); period III – internal densification of the network in the process of which the interparticle correlations develop (evolution
of <SSHS(q)> and Sagg(q)). At the early stages of densification the lysozyme molecules are strongly deformed within the aggregates; during further
densification the protein molecules appear to relax to a more native structure.

aggregation induced by the interaction between the protein

LZM and amorphous silica NPs (Figure 5).

Immediately upon mixing, aggregation is induced due to the

opposing surface charge of the silica NPs and the protein. An

infinitely extensive and open (D = 1.8–2.2) aggregate network,

from the point of view of the SAXS measurement, forms within

ca. four data frames (ca. 200 ms). The so-formed network

initially has no internal correlations, as is expected for a clas-

sical mass fractal [46]. However soon after (ca. 1 s), areas of

correlated NPs–LZM domains start forming within the network

and the increase in the internal volume fraction, ν, indicates an

internal densification and ordering. This is also reflected by the

fact that parameter D reaches a stable and relatively high value

of ca. 2.4, which is characteristic for denser mass fractals. Such

a fractal dimension for silica–lysozyme aggregates was previ-

ously reported [16,23] and can be associated with the diffusion-

limited particle–cluster aggregation (DLPCA) mechanism [47-

52]. The DLPCA growth mode is also evidenced not only by

the plateau value of D, but also through the fact that the value of

D increases with the size/extent of the aggregates [47,49]

expressed indirectly by the parameter A (see region II in

Figure 4D–E). This means that aggregates grow through the

accretion of individual primary particles to larger aggregates

[52], where aggregates as such become denser as their size in-

creases, which in consequence favours the eventual occurrence

of the correlated domains (which are the ultimate dense regions

in the aggregate composed of smaller particles).

The parameters characterizing the interparticle correlation

effects carry information about the size of the LZM molecules

bridging the silica NPs. From Figure 4A–B it is clear that in this

network the dimensions of the protein molecules are consider-

ably smaller than the native dimensions of lysozyme in any

possible orientation. Hence, this suggests that initially the

binding of silica NPs by lysozyme involves a severe deforma-

tion/unfolding of the protein molecules, followed in time by a

relaxation and increase in the protein dimensions towards a

(more) native state (Figure 5). The final value of the radius of

1.1 ± 0.5 nm for the protein, which is reached before 150 s, is

close to a radius of the protein in a side-on orientation

(ca. 1.5 nm), rather than in the end-on orientation (ca. 2.25 nm).

Our ex situ analysis of the dried composite samples (see Experi-

mental section) showed that at 1000 ppm lysozyme, 32.7 wt %

of the protein was incorporated into the composites. This

means that for silica NPs precipitated at the concentration of

0.8737 g/L (calculated from the volume distribution in the

SAXS patterns), the concentration of lysozyme in the compos-

ite was 0.4245 g/L. This is valid under the assumption that all

available silica NPs were bound in aggregates with lysozyme.
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Hence, the number density of the protein molecules was

NLZM ≈ 1.8·1019 L−1
, and for silica NNP ≈ 1.8·1019 L−1 (from

SAXS by converting the volume distribution to a number distri-

bution). This directly suggests that the silica–lysozyme aggre-

gates are near almost stoichiometric, with one protein molecule

associated with one silica NP. Such a stoichiometric relation-

ship is actually expected for small silica particles of the size

close to that of the protein molecule [22,53]. Su et al. [54]

found that at small surface coverage the lysozyme attaches to

silica NPs in a side on orientation, and recently the molecular

dynamics simulations by Hildebrand et al. [55] also further con-

firmed that the side-on orientation of lysozyme with respect to

silica constitutes the configuration of the highest attraction. This

together with the relatively low dipole moment and the positive

surface charge of the protein surface, potentially accounts for

the bridging of the NPs by the LZM molecules, as the protein

does not show a favoured orientation of the opposite active sites

in the side-on orientation (i.e., both active sites show similar

binding properties). In such a case one should indeed expect the

DLPCA mode of aggregation, with the binding of the protein to

the silica NP surfaces taking place through specific amino acids

at the opposite sides of the molecule [24,55-57]. The densifica-

tion of the internal structure of the aggregates reaches a steady

point, when the LZM molecules relax to their native-like

dimensions. Yet, at the same time the actual network consti-

tuting the composite, appears to break up into smaller aggre-

gate units. The morphological changes of the composites further

continue beyond 150 s. This is documented through the change

in the form factor of the silica NPs that appear to grow in size,

compared to the pre-mixed initial NPs. Although we cannot use

our model to explain this last stage, we can speculate that the

observed change is caused by a partial coalescence or Ostwald

ripening of NPs inside of the aggregates. It is well documented

that silica NPs synthesized from monosilicic acid are internally

highly disordered and hydrated at their surfaces [31]. Previous

studies found that the initially formed NPs if aggregated

continued their growth, resulting in some cases in larger homo-

geneous silica spheres [31,58,59], and this may explain why

silica is such a persistent scaling material in hydrothermal

systems.

Conclusion
The analysis of in situ scattering data collected at 20 fps from

the formation of silica–lysozyme composites showed that the

processes included the formation of large aggregated structures

in which individual silica NPs were bridged by LZM molecules.

We developed and applied a new scattering model to underpin

the changes of the morphology of the composites as a function

of time. This model allowed us to unravel that the formation

follows a diffusion limited particle–cluster aggregation

(DLPCA) mechanism, which results in relatively densely

packed mass-fractal-like aggregates within which non-fractal

correlated domains of particles evolve. Furthermore, we used

the scattering model to link the evolution in the measured struc-

ture factor to the lysozyme molecule, and we found that the

aggregation processes involve severe deformation of the pro-

tein molecules, which is then followed by the relaxation

towards the original dimensions.

Appendix
Derivation of Equation 17
The contribution of Sint(q) in Equation 17 has a rather simple

form. However, the actual meaning of the parameter A extends

beyond this short representation. Below, we present the deriva-

tion of the equation and we indicate the approximations we

make on the way to the final form of the equation.

First we consider a structure factor function describing an

arrangement of primary particles of a certain scattering length

density (SLD), ρp, within an aggregate. The SLD of the space

between the particles within the aggregate (the “template”) is ρt,

while the SLD of the surrounding (“solvent”) is ρs. The aver-

age scattering contrast of the aggregate, Δρagg, is then:

(20)

where ν is a local volume fraction of particles within the aggre-

gate (as in Equation 5). We also define any contrast fluctuation

within an aggregate as:

(21)

If we write the structure function of an aggregate (“template”)

as Sagg(q) and the internal arrangement within this aggregate as

Sint(q), then similar to Hashimoto et al. [43] and Lin et al. [44],

we can express the scattering intensity by the generalized Equa-

tion 22, in which “ ” denotes a convolution operation of the

functions:

(22)

where Vagg and  represent the volume and the volume

fraction of aggregates in the solution, respectively. Here,

Sint(q) = SSHS(q) from Equations 5–14, whereas the Sagg(q) con-

tributes to the increase in intensity at low q in the course of the
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formation of aggregates. The approximation in Equation 22 is

valid when the overall radii of the aggregates, ξ, are significant-

ly larger that the interparticle correlation distance from Equa-

tions 5–14 (ξ >> RHS). Furthermore, we must re-normalize

Seff(q) in a different way than Hashimoto et al. and Lin et al. in

order to combine it with the form factor defined in Equation 1

as for our scattering data the intensity for q→0 in a log–log

representation does not level off to a finite value (Figure 2 and

Figure 3). Consequently, it is impossible to determine Vagg. On

the other hand the radii of the primary particles and, conse-

quently, their volume, Vp, are known, and therefore it is reason-

able to normalize Seff(q) with respect to the primary particle

volume rather than the aggregate volume:

(23)

Now let us assume that the aggregates follow mass-fractal be-

haviour and that the correlation function of mass fractals is de-

scribed [60,61] by Equation 24:

(24)

where D is a fractal dimension, d is the Euclidean dimension

(d = 3) and K is a normalization constant that is proportional to

the mass and surface area of an aggregate. We do not include a

cut-off function since in our case the intensity did not level off

at low q as mentioned above. For the sake of simplicity let us

assume again that the electron density of the aggregates is ho-

mogeneously distributed and its corresponding correlation func-

tion only involves a two-phase system. In this case the specific

surface area of aggregates (SSAagg) is proportional to the deriv-

ative of the correlation function at the near-zero length scale

r→0:

(25)

This is valid for the considered small volume fractions

( ). The limit in Equation 25 exists essentially only

for D = 4, and since D < 4, SSAagg becomes increasingly larger

for decreasing length scales, yielding an infinite surface area at

an infinitely small length scale r. However, since the aggre-

gates are composed of primary particles with a typical radius,

RHS, we can say that the aggregate does not contain smaller fea-

tures than those primary particles (i.e., r ≥ RHS). Therefore, we

find a finite specific surface area for mass fractal aggregates for

lim(r→RHS):

(26)

This way this newly derived K constant in Equation 26 substi-

tutes the K constant from Equation 24 and thus, we can use the

correlation function from Equation 24 to calculate the structure

factor. Please note the Hashimoto et al. described the structure

factor in such a way that it is normalized as a form factor, i.e., it

is normalized by the total volume. This is in line with the struc-

ture factor of mass-fractal aggregates as described by Sorensen

and Wang [60], yet it is different from a better-known deriva-

tion by Teixeira [62]. Both Sorensen and Wang’s and Teixeira’s

approaches are valid as long as one considers normalizations

explicitly. The structure factor is described by the rotation-aver-

aged Fourier transform:

(27)

where Nagg is the number density of aggregates and SSAagg is

their specific surface area. By substitution of Equation 27 into

Equation 23, we obtain:

(28)

For spherical primary particles Vp is known and a final form of

the equation for the effective structure factor could be derived:

(29)

In Equation 29 we introduced several simplifications. Firstly,

Nagg, SSAagg, Δη and Δρagg are essentially unknown, and it is

impossible to determine any one of these parameters indepen-

dently. They have to be combined into a collective parameter.



Beilstein J. Nanotechnol. 2019, 10, 182–197.

194

This is necessary as Equation 29 was derived for a system char-

acterized by a monodisperse particle distribution with only a

single value of  for a given RHS and the resulting Nagg. For a

polydisperse distribution, as in our study, although a population

of primary particles is described by D(ri) (Equation 2), the re-

sulting distribution of aggregate sizes will be totally indepen-

dent from this initial distribution, and it will also be unpre-

dictable. Secondly, the RHS
1−D component in Equation 29 could

be important, since it determines the high-q cut-off at which the

contribution of the structure to the intensity lessens, and the

form factor dominates. In Equation 29 this very transition point

is dominated by a Sint(q) contribution and its strong correlation

peak. Hence, we assume that RHS
1−D ≈ 1. Thirdly, the

remaining part of the expression depending on parameter D is

practically constant at a value of ca. 1.2, and although we could

introduce it explicitly in the model it does not affect the final

trends. Hence, as a result of the above approximations, we use A

as a single collective fitting parameter in our model. Changes in

A therefore should be interpreted primarily as the average

change of the product of the number density of aggregates and

their specific surface area, and these two physical parameters

are related to the size (or “extent”) of the aggregates.

Experimental
Synthesis of amorphous silica–lysozyme
composites
Sodium metasilicate (Na2SiO3·5H2O, technical grade), hen egg-

white lysozyme (crystalline, powdered, >90% pure, residual so-

dium acetate and chloride) and HCl (37%, analytical grade)

were purchased from Sigma-Aldrich. Separate stock solutions

of dissolved silica (SiO2 = 1000 ppm, pH 12.5) and lysozyme

(5 wt %, pH 3.5) were prepared by dissolving the required

amount of sodium metasilicate or lysozyme in ultrapure

deionised water (18.2 MΩ·cm). Silica NPs were prepared in a

500 mL plastic reactor by neutralizing the silica stock solution

through titration with HCl until pH 7.5 was reached. This neu-

tralized solution was left to polymerize and age for 16 h.

Silica–protein composites were obtained by mixing the silica

NP solution with a pre-measured amount of the lysozyme stock

solution under rapid stirring (500 rpm) to yield a SiO2 NPs

solution with 1000 ppm lysozyme (final pH 6.9, salinity

20 mM).

Scattering experiments
The formation process and the development of the structure of

the silica–LZM composites was studied in situ and in a time-

resolved manner by using synchrotron-based small-angle X-ray

scattering (SAXS) at the BioSAXS beamline [63] P12 of the

EMBL at PETRA III (DESY, Germany) using a monochro-

matic X-ray beam at 10 keV. Two-dimensional scattered inten-

sities were collected at small angles with a Dectris Pilatus 2M

(2D large-area pixel array detector) using an acquisition time of

50 ms per frame. Transmission was measured by means of a

photodiode installed in the beam stop of the SAXS detector. A

sample-to-detector distance of ca. 3 m allowed for a usable

q-range of 0.04 < q < 4.5 nm−1. The scattering-range at small

angles was calibrated against silver behenate, and the intensity

was calibrated to absolute units against water. For the in situ ex-

periment, first, the starting silica NP solution was continuously

circulated between the reactor (where the suspension was stirred

at 500 rpm) and the flow-through cell with embedded quartz

capillary (ID 1.7 mm, wall thickness 50 µm; aligned with the

X-ray beam) using a peristaltic pump (Gilson MiniPuls 3, flow

ca. 500 mL/min; tubing: ID 2 mm, total length 2 m; reactor-to-

cell-distance: 0.7 m of tubing). All experiments were con-

ducted at 21 °C. Once a SAXS baseline for the silica NP solu-

tion was recorded, the pre-measured amount of lysozyme stock

solution was pumped into the reactor at a fast rate. This injec-

tion was done remotely from the operator hutch via a 10 m long

PTFE tube (ID 4 mm) that was routed into the reactor located in

the experimental hutch. The tube was filled in such a way that

the LZM solution was located in the last ca. 40 cm of the tube

on the reactor side. The other end of the tube in the operator

room was equipped with a 50 mL syringe filled with air. Thus

the experiment started with recording of 24 s (480 × 50 ms)

SAXS patterns of the silica NP solution circulating through the

capillary, prior to the fast injection of the entire content of the

tube containing the lysozyme with a single rapid push of the

syringe plunger that lasted ca. 200–400 ms. This fast injection

rate in combination with the fast stirring in the reactor

(500 rpm), pumping (500 mL/min) and fast data acquisition

(50 ms per SAXS pattern) provided the best possible conditions

for the characterisation of all the steps leading to the formation

of the silica–LZM composites. The used experimental set up

introduced an unavoidable dead-time of ca. 500 ms between the

injection moment and the first actual measurement of the mixed

solution, i.e., the time required for the mixed solution to reach

the capillary where the SAXS pattern was recorded. In order to

be able to analyse and model the silica–LZM composite scat-

tering patterns we also acquired a series of backgrounds and

reference samples including an empty capillary and a capillary

filled with water, silica stock solution, LZM solutions at differ-

ent concentrations. The initial SAXS data processing and reduc-

tion included a series of automatic post-data-collection steps in-

cluding masking of undesired pixels, normalizations and correc-

tion for transmission, instrumental background subtraction and

data integration of the collected 2D data to 1D. Further data

processing and water background subtraction, model fitting,

validation and analysis, were performed through a custom-made

script developed in GNU Octave [64,65]. The script we de-

veloped as well as all the documentation and the selected

scattering curves are available at [45]: https://github.com/

https://github.com/tomaszstawski/SilicaLysozymeSAXS
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tomaszstawski/SilicaLysozymeSAXS. In a first instance for the

model, we obtained the size distribution of the initial silica NPs

from a Monte Carlo fitting implemented [29,30] in MCSAS

under the assumption that the silica NPs particles were spheri-

cal [31].

Characterization of dry samples
To cross-correlate the in situ SAXS data, the silica–lysozyme

suspensions were dried in an oven at 40 °C for ca. 48 h. The re-

sulting powders were washed five times with MilliQ water to

remove excess lysozyme and salts followed by a 2nd drying

step at 40 °C. The amount of lysozyme associated with the

composites was quantified by determining the total carbon

content in solids by mass spectrometry (DELTAplusXL

ThermoFisher) with a Carlo-Erba NC2500. From these

analyses the lysozyme content was calculated using the

molecular formula C613H959N193O185S10 and the molecular

weight of 14313 g/mol for lysozyme [66] (ProtParam based on

UniProtKB entry P00698).

Supporting Information
Supporting Information File 1
Additional experimental data.

[https://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-10-17-S1.pdf]
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