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Abstract

Spatial or temporal aspects of neural organization are known to be important indices of how

cognition is organized. However, measurements and estimations are often noisy and many of

the algorithms used are probabilistic, which in combination have been argued to limit studies

exploring the neural basis of specific aspects of cognition. Focusing on static and dynamic func-

tional connectivity estimations, we propose to leverage this variability to improve statistical effi-

ciency in relating these estimations to behavior. To achieve this goal, we use a procedure based

on permutation testing that provides a way of combining the results from many individual tests

that refer to the same hypothesis. This is needed when testing a measure whose value is

obtained from a noisy process, which can be repeated multiple times, referred to as replications.

Focusing on functional connectivity, this noisy process can be: (a) computational, for example,

when using an approximate inference algorithm for which different runs can produce different

results or (b) observational, if we have the capacity to acquire data multiple times, and the differ-

ent acquired data sets can be considered noisy examples of some underlying truth. In both

cases, we are not interested in the individual replications but on the unobserved process gener-

ating each replication. In this note, we show how results can be combined instead of choosing

just one of the estimated models. Using both simulations and real data, we show the benefits of

this approach in practice.

KEYWORDS

dynamic functional connectivity, functional connectivity, hidden Markov model, hypothesis

testing, multiple replications, permutation testing, statistical testing, test combination

1 | INTRODUCTION

Suppose that we are interested in testing hypotheses about variables,

or set of variables, which we can observe on multiple occasions such

that we may obtain a number of noisy measures of the same underly-

ing (unobserved) feature or process. This can happen when we repli-

cate a measurement on multiple occasions for each subject, or if the

design of the experiment is such that the repetitions are independent

of each other (which would not be the case, for example, if there is a

strong effect of learning or habituation across runs). This can also

happen when we are modeling data using an approach that is complex

enough that inferences about the model parameters can be slightly

different every time we estimate the model, for example, with differ-

ent arbitrary initializations. This is the case, for example, for indepen-

dent component analysis (ICA, Hyvarinen & Oja, 2000; Beckmann,

DeLuca, Devlin, & Smith, 2005) and Hidden Markov models (HMM,

Rabiner, 1989; Vidaurre et al., 2016).

In nondeterministic approaches such as ICA and HMM, the

degree to which different initializations will lead to different estimates

(i.e., different local minima) of the model parameters depends on
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elements such as the signal-to-noise ratio, training parameters, and

amount of available data (Himberg, Hyvärinen, & Exposito, 2004).

Successive runs of the algorithm may find local minima that are

equally good or equally likely, or it may find suboptimal local minima.

While in some settings an appropriate figure of merit (e.g., residual

sum of squares or model evidence) can adjudicate between these

different estimates, sometimes no practical or definitive model com-

parison score is available; furthermore, even when a score is avail-

able, this is typically an approximation or a heuristic, and it is

possible that many models with very similar scores will be found.

Here we claim that all models are potentially useful and that an

effective combination can be more powerful than choosing a single

model. More specifically, in this work, we take up the issue of making

inference on these noisy replicate estimates, relating the estimates

on a group of subjects to variables such as demographics, behavior

or personality scores. For this, we are not interested in whether each

score relates to each individual replicate; rather, we aim to assess,

based on a single global test over the pool of estimates, whether

there is evidence that each score holds a significant association with

the estimated measure.

Based on the principles of permutation testing, this article presents

a simple approach where we use the non-parametric combination NPC

algorithm (Pesarin & Salmaso, 2010; Winkler et al., 2016) to combine

results from multiple functional connectivity (FC) estimations, regard-

less of whether the replications are at the level of data acquisition or

model inference. This approach is useful in estimating effects that

explain the underlying data that is the focus of the analysis. We demon-

strate the validity of this method on the HMM, using simulations and

data from the Human Connectome Project (Smith et al., 2013), where

we test a measure of (resting state fMRI) dynamic FC over 100 different

HMM runs against a number of behavioral variables measured across

hundreds of subjects.

2 | METHODS

2.1 | Background

We refer to the noisy samples or parameter inference runs as R repli-

cations, to be distinguished from the P observed variables against which

we aim to test. (Replications are not to be confused with realizations,

which we will use to refer to the multiple instances of the synthetic

experimental scenario carried out below). We have one hypothesis

per observed variable and wish to combine the tests across multiple

replications, with no particular interest in assessing each replication in

isolation. For N subjects, let us denote replications as Y (N by R), and

observed variables as X (N by P). For reference, we will consider each

column of Y (referred to as yj) as a noisy sample of the certain unob-

servable variable of interest Y0.

For each column of Y and each column of X (referred to as xi),

we can use permutations (Nichols & Holmes, 2002) to test the

null hypothesis that there is no association between the model

and the observed data. From this procedure, we obtain a (1 by R)

vector of p values per observed variable, say pj. A simple approach

could combine these R values with a simple statistic such as the

mean or the median of pj to assess the significance: if the mean

p value is small (e.g., below 0.01), this would suggest that there is

a significant relationship between Y0 and xj. In what follows, we

will refer to this summarised p value as pmean, similar to Edging-

ton's p value combining method comprised of the sum of p values

(Edgington, 1972). A more effective approach is to use the geo-

metric mean, equivalent to exponentiating the average of the log

p values; this is related to Fisher's p value combining method

(Fisher, 1932) and amplifies the importance of values near zero.

Denoting the individual pvalues for a given observed variable of

interest as pi, we have

pgmean ¼ exp Σi log pið Þ=Rð Þ: ð1Þ

Again, if pgmean is below a certain level, we can state there is a sig-

nificant relationship between the replications and the examined

observed variable. Note that neither pmean or pgmean are p values

because they do not distribute uniformly in [0,1] under the null.

2.2 | Example case for a single pair of variables

Before coming to a complete description we consider a toy example

to make the point above more concrete. We wish to assess if there is

a linear relationship between two variables, a and b. The first one, a,

with values an, is Gaussian distributed (mean 0, standard deviation

[SD] 1); the second one, b, is a corrupted version of a by the introduc-

tion of random noise:

bn ¼ κ an + εn, forn¼1…N,

where εn are independent, Gaussian distributed random variables

(mean 0, SD = 1), and κ ≥ 0. We generate replicates of b based on

independent realizations of noise εn and κ, where κ is randomly sam-

pled from a uniform distribution between 0 and c. We choose c to

define the expected strength of the relationship between a and b. We

then run permutation testing on each data set. We evaluate the

power of the permutation combining method to detect a relationship

between a and b for different values of c > 0. Even when κ is randomly

small on some replicates, it may be large on others (allowing to detect

the underlying relationship in these cases).

For the purpose of illustration, we generated 1,000 data sets

using N = 100, each with a different value of κ sampled from a uni-

form distribution and performed permutation testing for each of

them. We repeat this for three different values of c: 0.0, 0.1, and 0.2.

Figure 1 shows histograms of correlation coefficients between a and

b across data sets (top), and histograms of p values (bottom). If the

empirical distribution of p values is basically flat, as is the case when

c = 0.0, then there is no evidence of a relationship between a and b.

However, when c = 0.1 or c = 0.2, then the distribution of p values

gets increasingly skewed toward zero despite the generally low cor-

relations. Therefore, if a and b were experimental replications of

some pair of unobserved processes, we could intuitively say that

there are signs of correlation between these processes in the c = 0.1

and c = 0.2 cases. However, neither pmean or pgmean (data not shown

in the figure) are below 0.05; they are higher than 0.2 in all cases,

emphasizing again the point that pmean or pgmean are not p values
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and, thus, the need for a permutation procedure to learn their null

distribution.

2.3 | The NPC algorithm

Given a data set with N subjects, we are interested in the relationship

between the underlying variables (of which the replications are noisy

observations), and not on the individual replications. Since pmean or

pgmean cannot be interpreted as p values, we require a method to esti-

mate actual p values, that is, distributed uniformly under the null

hypothesis. For this, we use the NPC algorithm on pgmean (Pesarin &

Salmaso, 2010; Winkler et al., 2016). In the case when there is only

one variable in the model (p = 1), referred to as x, NPC (on pgmean) pro-

ceeds as follows:

I. Run statistical tests (e.g., t tests) between each replication yj

and x to obtain an (R by 1) vector of p values p0. We summa-

rise p0 using the geometric mean, which, using Equation (1),

yields pgmean. This corresponds to the first-level permutation

testing.

II. Under the null hypothesis that each replication yj and x are not

associated, we randomly permute x a number of times K. For each

permutation k, we produce an (R by 1) vector of parametric

p values pk analogously to the previous step. We summarise pk

using the geometric mean, obtaining a surrogate p value pkgmean

per permutation.

III. At the second level, we obtain a final value by computing the pro-

portion of surrogate p values pkgmean that are equal to or lower

than the unpermuted summary p value pgmean:

pNPC ¼ #k pgmean ≥ p
k
gmean

� �

+1
� �

= K +1ð Þ: ð2Þ

For the p > 1 case, that is, when there is more than one observed

variable of interest, this procedure can be repeated for each variable,

using Equation (1) on the xi separately. Crucially, we would use the

same exact same permutations—that is, with the permutations hap-

pening in synchrony for all observed variables. This way, the depen-

dence between the tests across variables is implicitly accounted for; in

Winkler et al. (2016), this is referred to as “multiple models”. This will

yield a final p value per observed variable, say pNPC,j. We can obtain a

summary, family-wise error corrected p value (Nichols & Hayasaka,

2003) for each variable of interest j by computing

pFWE
NPC, j ¼ #k pgmean, j ≥ minj p

k
gmean, j

� �� �

+1
� �

= K +1ð Þ, ð3Þ

where pkgmean,j is the null surrogate p value obtained with Equation (1)

for the jth variable of interest and kth permutation. Alternatively, we

can use false-discovery rate (FDR; Benjamini & Hochberg, 1995;

Nichols & Hayasaka, 2003) on the uncorrected p values pNPC,j to

obtain FDR-corrected p values pFDR
NPC,j.

In summary, this procedure draws statistical power from both

working in logarithmic space (i.e., promoting the importance of

p values closer to zero), and simultaneously relaxing the alternative

hypothesis from the highly conservative “all of the replications bear a

relationship with the corresponding observed variable” to the less

conservative “at least some of the replications bear a relationship with

the corresponding observed variable”. In the above example, for

instance, this scheme of permutation testing produced a p value

higher than 0.5 when c = 0.0, and p values lower than 0.001 for both

the c = 0.1 and c = 0.2 cases, exhibiting both sensitivity and

FIGURE 1 Distribution of correlation and (first-level) p values for the toy example. Simulated examples where we generated 1,000 data sets,

where maximum regression coefficient, c, is systematically varied. When c > 0.0, the mean correlation across data sets is higher than zero (top),

and the distribution of p values is skewed toward 0.0 (bottom). However, both pmean and pgmean are higher than .05 [Color figure can be viewed at

wileyonlinelibrary.com]
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robustness to nonnormality (given that no distributional assumptions

are made).

MATLAB scripts for the NPC algorithm and the simulations below

can be found in Github.1

2.4 | Regression-based permutation testing

For comparison with the NPC, we briefly outline here an alternative

also based on the principles of permutation testing, but where we use

multivariate regression in order to integrate over replications. That is,

instead of performing univariate statistical testing between each repli-

cation and each behavioral variable and then combining the resulting

first-level p values using the geometric mean (Step I in the NPC algo-

rithm outlined above), now we use multivariate regression where we

predict each behavioral variable using all replications as predictors; we

used regularised ridge regression (using a minimal penalty) to alleviate

overfitting in the regression and to avoid algebraic indeterminacies

when R > N. Instead of a p value combining function with NPC, an F-

test is used to summarise all the regression coefficients (i.e., to inte-

grate across replications), and this F score is converted to a p value

parametrically. We embed this estimation into a standard permutation

testing procedure. The final p value is eventually computed as in Step

III. We shall refer to it as pregr.

3 | SIMULATIONS

To illustrate the power of combining FC estimations using NPC, we

simulated synthetic data sets emulating a scenario in which we are

interested in testing whether FC between a pair of brain regions holds

a relation to certain behavioral trait in a set of N subjects. In this situa-

tion, we have the following variables:

• A subject-specific FC coefficient β, which we cannot observe

directly.

• A behavioral variable hypothesized to be related to FC and

encoded by a (N by 1) vector x, that can be observed directly.

• Some neural process modulated by β denoted as S, which we can-

not observe directly. We can consider S to be some archetypical,

noiseless brain activity controlled by β.

• The observed (e.g., neuroimaging) data sets D, which are noisy

measurements of S and have a dimension (T by 2). This measure-

ment can be repeated up to R times per subject.

• An (N by R) matrix Y, such that Ynj contains the estimated FC

value for the nth subject and jth experimental replication (i.e., the

correlation coefficient between the channels of the corresponding

measured data D).

A schematic of this experimental case is presented in Figure 2 for

clarity. As explained in detail below, the value of β is specific for each

subject, and its mean over subjects is zero by design. The hypothesis

that we are here testing, therefore, is not whether β is different from

zero, but whether there is an association between β and behavior

(represented by x). The objective of this simulation is then to assess

whether the proposed approach can uncover such relationship, mir-

roring real data situations often found in the literature where the

interest is relating functional connectivity to subject phenotypes

(e.g., Smith et al., 2015). Note that, regardless of the generating model

for Y, the final goal is to test the relation between x and Y, and the

NPC algorithm could have been applied similarly to other generative

models.

We next provide details about the generating process for x and Y.

In this specific context, the noise in the observations (or replications)

stems from the imperfect measurement of S, which we can measure

multiple times (R). Therefore, there is a relation between FC (β, which

we cannot observe but we can estimate) and behavior (x), but this

relationship is noisy and weak for some replications. In detail, we gen-

erated data from this setting as follows.

We have N = 200 subjects. We uniformly sampled a value βn

between −0.2 and + 0.2 for each subject n. For each subject, also, we

sampled two vectors with 10,000 values each: the first, sn1, is Gauss-

ian distributed (mean = 0, SD = 1), whereas the second is set as

sn2 ¼ βnsn1 + εn,

where εn is also Gaussian-distributed. The vectors sn1 and sn2 con-

stitute the unobserved neural process S. The correlation between sn1

and sn2 can be analytically computed from βn as

cn ¼ βn= βn
2 +1

� �1=2

We set the value of the observed behavioral variable for each

subject to be

χn ¼ cn +0:5ηn,

where ηn is Gaussian distributed (mean = 0, SD = 1). Now, to sam-

ple the observed data sets Dn for each subject, we randomly sam-

pled T = 100-time points from Sn (whose columns are sn1 and sn2)

and added some Gaussian noise with mean = 0 and SD = σ. We did

this R times per subject, obtaining one (100 by 2) noisy data set

Dn = [dn1, dn2] each time. We then set the observed replication

values to

Ynj ¼ z−transformation corr dn1,dn2ð Þð Þ,

where we applied the z-transformation on the resulting correlation to

make appropriate for parametric testing.

FIGURE 2 Schematic of the model used for the simulations analysis.

The dotted arrow represents the correlation we are testing

1https://github.com/vidaurre/HBM2018/blob/master/README.md.
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Note that, as illustrated in Figure 2, the (unobserved) value βn is

involved in both the generation of Yn and xn. With both Yn and xn in

hand, we ran the described permutation testing algorithm on the nois-

ily estimated FC matrix Yn and the behavioral variable xn. By control-

ling σ (which defines how noisy are individual time series samples dn1

and dn2), we could make the detection more or less difficult.

We used a range of 30 values for σ between 0.25 and 1.5, and

repeated the experiment, that is, data generation and testing,

100 times per value of σ. For each repetition of the experiment, stan-

dard permutation testing resulted on R = 100 p values (one per repli-

cation). Since p = 1, there was no need to control for familywise error

rate across observed variables (Equation (3)).

Alongside the NPC, we also ran for comparison the regression-

based permutation testing approach described above, denoted as

pregr. Figure 3a shows pmean/pgmean/pregr/pNPC (respectively from left

to right) averaged across the 100 realizations of the experiment as a

function of σ, together with 95% confidence intervals (minus/plus

twice the standard error). We ran 10,000 permutations in each case.

Thanks to the effect of the logarithm, the pgmean values are lower than

pmean values, but neither of them ever reached significance provided

the weak and volatile relationship between Y and x. The individual per

replication p values (shown in Figure 3b for one example repetition,

per value of σ, together with the corresponding correlation coeffi-

cients) illustrate this point: although there were some significant

p values, the average is condemned to fail due to the frequent bad

p values associated to some too noisy replications. The pregr values did

not reach significance either, probably because of a loss of statistical

power due to overfitting in the regressions (given that N = 200 is not

much higher than R = 100). However, most of the p values from the

NPC permutation approach turned out to be significant despite the

low magnitude of the signal across replications, with the average of

pNPC across realisations of the experiment leaving the zone of signifi-

cance only for the highest values of σ (i.e., for the hardest instantia-

tions of the problem).

Supporting Information Figures S1 and S2 show additional simula-

tions for N = 50 and N = 1,000 subjects, respectively. In the most dif-

ficult case, N = 50, both pmean and pgmean were far from any level of

statistical significance, and pNPC, although exhibiting lower p values

than pmean and pgmean, reached significance only occasionally (but

more often than pregr). In the easiest N = 1,000 cases, pmean was under

0.05 for the lowest levels of noise, and pgmean reached values under

0.05 for half of the range of σ; pNPC, however, stayed most of the time

at the minimum levels allowed by the number of permutations

(i.e., 1/10,001), clearly outperforming pmean and pgmean. Comparatively,

pregr also reached significance for the entire range, but less strongly

than pNPC. As observed, the NPC outperformed this alternative in

every case. This was expected because univariate calculations are

more robust to overfitting that multivariate regression, which hinders

the latter's statistical power.

Next, we repeated the same analysis but forcing a fixed value of

βn for all subjects (in particular, we set βn = 0). In this case, there is not

a relationship between behavior and FC. Figure 4 shows that NPC, as

well as the other methods, is robust to Type I errors.

4 | DYNAMIC FUNCTIONAL

CONNECTIVITY IN REAL DATA

Having demonstrated the utility of the NPC approach to relate FC to

behavior in a synthetic scenario where the estimation was very noisy,

FIGURE 3 Results from the simulated data with N = 200, where there is a relationship between the tested variables: FC and behavior.

(a) p Values obtained from combining tests using the mean (pmean and pgmean), p values from the regression-based permutation testing approach

(pregr), and p values from the described permutation testing approach (pNPC), as a function of σ, which controls the noise in the replications

(i.e., higher values of σ produce more difficult instantiations of the problem); 95% confidence intervals are computed across realizations of the

experiment. (b) p Values before test combination for a given repetition (per value of σ), together with the estimated correlation coefficients [Color

figure can be viewed at wileyonlinelibrary.com]
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we next evaluated it using real data by applying the Hidden Markov

model (HMM) to resting state fMRI data from the Human Connec-

tome Project (HCP). The HMM assumes that the data can be

described using a finite number of states. Each state is represented

using a probability distribution, which in this case is chosen to be a

Gaussian distribution (Vidaurre, Smith, & Woolrich, 2017a); that is,

each state is described by a characteristic pattern of BOLD activation

and a certain FC profile (we use the same configuration as in Vidaurre,

Smith, and Woolrich (2017a), to which we refer for further details). As

the HMM is applied at the group level, the estimated states are shared

across subjects; however, the state time courses that indicate the

moments in time when each state is active are unique to a given indi-

vidual. For the purposes of this analyses, we set the HMM to have

12 states. Note that, as discussed in former work (Vidaurre et al.,

2018), there is no specific biological significance in the chosen number

of states, and a different number of states just provide different levels

of detail in the HMM decomposition. Here, we chose 12 states simply

to be consistent with our previous work on this data set (Vidaurre,

Smith, & Woolrich, 2017a). Using the inferred state time courses, the

amount of state-switching for each subject was calculated, which cor-

responds to a metric of how frequently subjects transition between

different brain states (more specifically, given that the state time

courses are probabilistic assignments, we compute the mean deriva-

tive of the state time courses for each subject). We used state-

switching as a summary metric of dynamic functional connectiv-

ity (DFC).

In order to infer the HMM at reasonable cost in spite of the large

amount of data (820 subjects by four sessions by 15 min, TR = 0.75 s),

we used a stochastic learning procedure (Vidaurre et al., 2017b),

which involved performing noisy, yet economical, updates during the

inference. Since stochastic inference brings an additional layer of ran-

domness into the HMM estimation but is not costly to run, we

repeated the HMM inference 100 times and computed state-

switching for each run. In this context, each HMM estimation consti-

tutes a replication. Following the paper notation, we denote the state-

switching measure for subject n and replication j (averaged across the

four sessions) as Ynj.

Although stochastic inference adds additional randomness to the

estimation, the HMM has have previously been reported to perform

very robustly in this data set (Vidaurre, Smith, & Woolrich, 2017a),

possibly as a consequence of the large number of subjects (N = 820),

the length of the scanning sessions, and the general high quality of

the data. For this reason, the different HMM runs were quite consis-

tent, which in turn means that the tests produce relatively similar

results across replications (as shown below). To illustrate the effect of

greater noise, we created a second set of replications where we per-

muted the state-switching measure between subjects randomly for

half of the HMM runs (i.e., half of the HMM runs, or replications, are

potentially related to behavior whereas the other half are noise, and

all of them are included in the analysis). We refer to this as the per-

turbed data, as opposed to the original data where the HMM estima-

tions are left intact.

Furthermore, each subject has a number of behavioral measures,

including psychological and sociological factors and several health-

related markers. We used a total of 228 behavioral variables, after dis-

carding those with more than 25% of missing values, to test against

DFC as measure by state-switching. We included age, sex, motion,

and body-mass-index (the latter two usually considered as confounds).

We also discarded those subjects without family information and

those with a missing value in any of the behavioral variables. We

denote the (N by P) matrix of subject traits as X.

We tested for significance in the correlation between switching

rates across replications (Y) and each of the subject traits, contained in

the columns of X, for both the original and the perturbed data set. We

FIGURE 4 Results from the simulated data, where there is not a relationship between FC and behavior. The description of the panels is

equivalent to Figure 3. In this case, however, the 95% confidence intervals do not overlap with the region of statistical significance no relation

was found between FC and behavior, that is, there was no Type I errors [Color figure can be viewed at wileyonlinelibrary.com]
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used 10,000 permutations, respecting the family structure of the HCP

subjects (Winkler, Webster, Vidaurre, Nichols, & Smith, 2015).

Figure 5 compares the results of applying the NPC approach

described above with the mean and geometric mean of the p values

(pmean and pgmean) as well as with the alternative regression-based per-

mutation testing outlined above (pregr). Figure 5a shows the mean

p value (averaged across replications) reflecting the subject-wise cor-

relation of state-switching (as measured by the HMM) with the differ-

ent behavioral variables, with the behavioral variables being ordered

from more to less significant; for purposes of illustration, dots repre-

sent individual p values for some randomly chosen replications. On

the left, the p values obtained from standard permutation testing on

the original HMM runs are quite consistent across replications; on the

right, for the perturbed set of HMM runs, given that half were ran-

domly ordered over subjects, the mean p value reflects the reduced

effect strength.

In Figure 5b, we examine the histograms of p values for each of

the four alternatives (with a loose use of the term “p value” when

referring to pmean and pgmean). On top, where all the HMM runs were

used normally, the difference between methods is somewhat subtle.

At the bottom, no variable was under significance level for pmean, and

only 30 variables were under significance level for pgmean; in contrast,

over 60 variables turned out to be significant for pregr and pNPC. The

difference between pmean and pgmean conveys the benefits of working

on logarithm space, whereas the difference between pgmean and pNPC

reflects the transformation needed to convert pgmean to quantities

interpretable as conventional p values. According to the small differ-

ences between pregr and pNPC, the latter factor seemed to make the

biggest difference in this data set. Regarding the regression-based

permutation method (pregr), given that we have 100 replications in this

case and a large number of good-quality subjects, the regressions did

not suffer from overfitting as much as in the simulations above.

Figure 5c shows, for each of the methods, the (combined across

replications) p values for the original data versus the perturbed data,

reflecting that only the NPC approach was robust to having corrupted

replications (i.e., the p values are almost identical between the original

and the perturbed data set).

Figure 6 presents the behavioral variables for which we found sig-

nificance using the NPC procedure. Interestingly, although motion is a

significant predictor it does not explain the greatest variance in this

analysis, suggesting that DFC on resting state fMRI, as estimated by

HMM, can be meaningfully related to behavior beyond the influence

FIGURE 5 Analysis of the relation between behavior and DFC (state switching) as measured by the HMM, where replications correspond to

HMM runs. (a) Mean p values (averaged over replications, with dots representing p values for a randomly chosen subset of 10% of the individual

replications), reflecting the subject-wise correlation of DFC with the different behavioral variables. On the X-axis, behavioral variables are ordered

from more to less correlated. On the left, this is shown for the original data set; on the right, this is shown for the perturbed data set (a noisier

version of the original data set). (b) Histograms of p values, indicating that pNPC and pregr generally outperform pmean and pgmean. (c) The p values

are robust to perturbation only for NPC, where the correlation between perturbed and original p values is close to 1.0

1240 VIDAURRE ET AL.



of motion. Most of the traits that were found significant were health-

related, with fewer higher-level psychological traits than were found

by Smith et al. (2015), which focused on functional connectivity

instead of any dynamic aspects of the data (such as the state-

switching rate). Due to the relatively large number of observed vari-

ables, only a few were found to be significant after FWE correction

(i.e., in Equation (3), the minimum of the surrogate p values across

observed variables can be small if there are many observed variables

to choose from). In contrast, FDR (Nichols & Hayasaka, 2003), allowed

the identification of up to 25 variables. When we randomly corrupted

the entire data set (instead of half of the subjects as in the perturbed

data set), all methods, including NPC, were able to satisfactorily con-

trol for Type I errors (data not shown).

5 | DISCUSSION

In this article, we show that the stochastic nature of FC estimations

often considered a hindrance, can be effectively integrated to provide

valid and sensitive inferential procedures. If the differences between

the estimations are not only due to random noise but contain differ-

ent elements of information, such integration can be largely beneficial.

If these differences are just pure noise, the presented procedure can

approximate the accuracy of a single, noise-free estimation.

On these grounds, we describe a permutation testing approach

based on previous work (Pesarin & Salmaso, 2010; Winkler et al.,

2016) that can be used to test for the relationship between a set of

observed variables and an unobserved (FC-based) variable for which

we have a number of noisy estimations. The crucial point is that we

are not interested in finding the relationships as described by a partic-

ular FC estimation, but instead would like to understand the relation-

ship of the true FC with the observed variables. We took as a

concrete example the relationship between covert patterns of intrinsic

brain connectivity, as they occur at rest, and patterns of cognitive and

demographic variables measured outside of the scanner, using data

from the Human Connectome Project.

Although we focused on univariate observed variables and replica-

tions, the described method can straightforwardly be extended in a num-

ber of ways. First, although we focused on linear relationships between

variables, it can easily be extended to multivariate statistics, such as mul-

tivariate linear regression, or canonical correlation analysis. This is impor-

tant in that it allows studies in which the mapping between cognitive

function and the data is not univariate in nature. It can also be extended

to situations when we have replications on both sides of the correlation,

such as when both the observed and nonobserved behaviors are mea-

sured on multiple occasions. In this case, each pair of replications could

be tested individually (for each element of the corresponding Cartesian

product), and we would proceed similarly.

FIGURE 6 For the observed variables considered to be significant (out of 228), (a) p values using the NPC on pgmean approach (pNPC), with FWE

significance indicated on the top left; and (b) FDR-corrected p values (pFDR
NPC) [Color figure can be viewed at wileyonlinelibrary.com]
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Moving forward, these types of approaches are likely to be partic-

ularly important in the domain of neuroscience given recent shifts

toward the use of intrinsic connectivity at rest as a method of evaluat-

ing structural features of cognition. Intrinsic connectivity, as measured

at rest, is a powerful tool for exploring the structure of neural organi-

zation since it is able to reveal similar patterns of neural organization

as emerge during tasks (Smith et al., 2009). In addition, the simple

noninvasive nature of the use of resting state as a method for asses-

sing neural function means that it can be applied to multiple different

populations, even those for whom task-based measures of neural

function or psychological measurements may be problematic (such as

children or populations with cognitive problems). Measuring neural

organization at rest is also easy to implement across centers making it

amenable to the creation of large multicentre data sets, a shift that is

likely to be increasingly important as neuroscience faces up to the

challenges of reproducible science.

Despite the promise that assessing neural function at rest holds,

many of the same features that make it an appealing tool for the cog-

nitive neuroscience community are also at the heart of many of its

limitations. For example, the power that is gained by the unobtrusive

nature of the measure of neural function at rest also leads to concerns

regarding what the measures actually represent: it is unclear which

aspects of the neural signal reflect the intrinsic organisation of neural

function, which reflect artefacts that emerge from physiological noise

or motion (Power et al., 2012), and which reflect the patterns of ongo-

ing experience that frequently emerge when individuals are not occu-

pied by a demanding external task (Gorgolewski et al., 2014;

Vatansever et al., 2017). In this context, because the underlying

ground truth is unknown, an effective way to integrate estimations

will help the researcher to identify which aspects of a given neural

pattern are expressed in a robust way in relation to neurocognitive

function.

Although dynamic approaches to understanding functional con-

nectivity space are growing in popularity (Chang & Clover, 2010;

Vidaurre, Smith, & Woolrich, 2017a), different approaches have spe-

cific limitations. For example, sliding window approaches depend upon

an apriori selection of the window length, which limits the granularity

of neurocognitive states that can be identified. While approaches such

as HMM circumvent this problem by allowing the data to determine

the temporal duration of the underlying states, these analyses are

inherently probabilistic and parameter inference can introduce noise

into the analysis. In this context, NPC allows dynamic approaches to

cognition to be compared to observed data in a systematic manner.

This could help pave the way to formally evaluate how different

descriptions of the underlying dynamics at rest best predict variables

with well-described links to cognitive function. This way, NPC can

become a useful tool in resolving the state–trait dichotomy that cur-

rently hinders the development of the science of how neural function

evolves at rest.
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