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Abstract

Osteoporotic hip fractures are a major healthcare problem. Fall severity and bone strength are important risk factors of hip

fracture. This study aims to obtain a mechanistic explanation for fracture risk in dependence of these risk factors. A novel

modelling approach is developed that combines models at different scales to overcome the challenge of a large space–time

domain of interest and considers the variability of impact forces between potential falls in a subject. The multiscale model and

its component models are verified with respect to numerical approximations made therein, the propagation of measurement

uncertainties of model inputs is quantified, and model predictions are validated against experimental and clinical data. The

main results are model predicted absolute risk of current fracture (ARF0) that ranged from 1.93 to 81.6% (median 36.1%)

for subjects in a retrospective cohort of 98 postmenopausal British women (49 fracture cases and 49 controls); ARF0 was

computed up to a precision of 1.92 percentage points (pp) due to numerical approximations made in the model; ARF0

possessed an uncertainty of 4.00 pp due to uncertainties in measuring model inputs; ARF0 classified observed fracture status

in the above cohort with AUC�0.852 (95% CI 0.753–0.918), 77.6% specificity (95% CI 63.4–86.5%) and 81.6% sensitivity

(95% CI 68.3–91.1%). These results demonstrate that ARF0 can be computed using the model with sufficient precision to

distinguish between subjects and that the novel mechanism of fracture risk determination based on fall dynamics, hip impact

and bone strength can be considered validated.

Keywords Osteoporotic hip fracture · Multiscale model · Verification · Uncertainty quantification · Validation

1 Introduction

By 2020, in the UK, the annual cost of hip fracture treatment

will exceed £2 billion with over 100,000 new hip fractures

per year (Burge et al. 2001). Hip fractures are associated with

excess mortality that lasts up to several years after the surgery

required to stabilize the fracture (Abrahamsen et al. 2009).

Thus, the prevention of osteoporotic hip fractures is a high-

priority healthcare problem. In designing effective strategies

for hip fracture prevention, a key question has remained

unanswered: which specific factors most strongly determine

fracture risk?
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A person’s risk of hip fracture is dependent on a several

factors (Cummings et al. 1995). Frequency of falling is a

known risk factor, with 73–83% of hip fractures in elderly

women resulting from a fall (Costa et al. 2013). Fall severity

also independently influences fracture risk, which explains

why only 3% of falls result in a hip fracture (Greenspan et al.

1994; NICE 2013). Fracture risk depends on bone strength as

well, which is the minimum load required to fracture a bone

from a given impact orientation. In the current standard-of-

care for predicting fracture risk using FRAX™ (Kanis et al.

2009), dual-energy X-ray absorptiometry scan-based areal

bone mineral density (DXA-aBMD) measured at the femoral

neck is used as a surrogate measure of bone strength. Age-

ing is another risk factor, as it leads to progressive losses

in bone strength (Paggiosi et al. 2011) and in neuro-motor

control (Larsson and Ramamurthy 2000) which can cause

fall frequency to increase. Ensrud (2013) recently described

in detail the epidemiology of hip fracture risk with advanc-

ing age. Currently, significant challenges exist in developing

mechanistic models that capture the role of ageing and can
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accurately predict hip fracture risk (Christen et al. 2010).

Statistical regression models such as FRAX™ account for

ageing by considering age as a determinant of 10-year frac-

ture risk (Kanis et al. 2008).

This paper focusses on the current absolute hip fracture

risk ARF0, which is defined as the risk of sustaining a fracture

over a period just short of a year. Ageing-related changes are

measurable only over periods spanning several years because

these are controlled by processes at the cellular level such as

bone remodelling (Raggatt and Partridge 2010) and muscle

hypotrophy (Larsson and Ansved 1995). Therefore, in quan-

tifying ARF0, the effect of ageing may be neglected, and only

the risk factors associated with fall severity and bone strength

need to be accounted for.

Mechanistic models are well suited to analyse the depen-

dence of fracture risk to different risk factors, and especially

for ranges of risk factor values for which observational data

is not available. The aim of this study is to validate a mech-

anistic model to predict ARF0 that accounts for whole-body

dynamics during a fall, hip impact with the ground following

the fall and femur strength loaded in a side-fall configuration.

Validity of the ARF0 model is quantified by its accuracy in

classifying hip fracture status in a retrospective cohort of

postmenopausal elderly British women. Once validated, the

model will allow one to quantify how fracture risk (ARF0)

changes when parameters corresponding to fall dynamics,

hip impact and side-fall strength are modified by one or more

risk factors.

Validation of a mechanistic model for hip fracture risk has

been identified as a grand challenge (Christen et al. 2010;

Viceconti et al. 2008). This is because the variables that

determine fall dynamics, hip impact and side-fall strength

(and thus quantify the risk factors) occupy a large space—

time domain. Experimental measurement of bone strength

requires features down to 10−4 s to be captured (Schileo

et al. 2014), while experimental measurement of whole-body

dynamics variables—which determine fall severity—require

observation periods of ~ 103 s (Terrier and Reynard 2015).

There is no experimental modality that spans the entire

domain from 10−4 to 103 s. With current computing capabil-

ities, modelling this domain accurately is also prohibitive.

To overcome this challenge, a multiscale modelling

approach is used in this study to compute ARF0. Compo-

nent models are developed to predict peak fall impact force,

force-transfer between the ground and skeleton at the point

of impact and bone strength under side-fall loading config-

uration. These models correspond to whole-body dynamics,

hip impact and femur fracture experiments. The component

models are coupled to form the multiscale model.

The present approach to compute ARF0 is novel in sev-

eral aspects compared to previous approaches to mechanistic

multiscale modelling of hip fracture (Bouxsein et al. 2007;

Dufour et al. 2012; Sarvi and Luo 2015). First, the full

range of potential impact force magnitudes and orientations

to which a subject may be exposed are considered. This

approach differs from previous studies where fractures were

considered to occur only under one specific fall scenario

(Bouxsein et al. 2007; Sarvi and Luo 2015). It allows the

analysis of sensitivity of ARF0 to changes in distribution of

impact force magnitude and/or orientation, which can cap-

ture the effect of a fracture risk reduction intervention.

Second, bone strength is determined using a computed-

tomography (CT)-based finite-element (FE) modelling

pipeline. The CT-FE method predicts bone strength more

accurately than DXA-based FE models or DXA-aBMD-

based statistical models used in previous work (Bouxsein

et al. 2007; Dall’Ara et al. 2016; Falcinelli et al. 2014; Sarvi

and Luo 2015; Viceconti et al. 2018). The accuracy of the

CT-FE pipeline used in the current work has been detailed

elsewhere (Schileo et al. 2014; Viceconti et al. 2018) and

is comparable to other similar approaches reported in litera-

ture (Bessho et al. 2004, 2007, 2009; Keyak 2001; Keyak

et al. 2005; Keyak and Rossi 2000; Keyak et al. 1997,

2011; Nishiyama et al. 2014). Specifically, failure strength

and strains in cadaver bones are predicted using this CT-

FE pipeline with 15% and 7% standard error of estimate,

respectively. Accuracy in predicting bone strength underpins

the accuracy of fracture prediction in live subjects using this

CT-FE pipeline, as reported in Falcinelli et al. (2014), Qasim

et al. (2016) and Viceconti et al. (2018). This accuracy is sim-

ilar to other fracture prediction models that also use CT-FE

(Adams et al. 2018; Keyak et al. 2011; Panyasantisuk et al.

2018; Qasim et al. 2016). Yet, it must be noted that fracture

risk prediction based on bone quality only cannot provide

insight into the role of fall mechanics on fracture risk, which

is the key objective of the present paper. Thus, a comprehen-

sive review of the prediction of fracture risk based on bone

strength is not attempted, and we point the interested reader

to a recent exposition by Viceconti et al. (2018).

Third, ARF0 is defined as a purely frequentist probabil-

ity measure and can therefore be compared directly to an

observable risk quantity such as ARF10 (Siris and Delmas

2008). This was not possible in past studies (Bouxsein et al.

2007; Sarvi and Luo 2015) where the ratio of a single-valued

fall force to a single-valued bone strength was used. The fre-

quentist approach can also naturally account for a variable

fall rate.

Finally, the accuracy of prediction is evaluated in terms

of classification of observed fracture status, thus fulfilling a

stricter requirement than association reported in past work

(Bouxsein et al. 2007; Dufour et al. 2012; Sarvi and Luo

2015). To the best of our knowledge, similar probabilistic

modelling approaches have recently gained attention in the

prediction of hip fracture risk (Jiang et al. 2015; Viceconti

et al. 2012). In these studies, the deterministic prediction

of bone strength based on FE modelling was augmented by
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applying a statistical distribution of loads accounting for the

variability of falls. Similar to the present study, Viceconti

et al. (2012) investigated the sensitivity of fracture risk to

various factors, but did not validate the predicted fracture risk

in the sense of association with or classification of observed

fracture status. Jiang et al. (2015) solved an optimization

problem for classification accuracy, but in doing so, obviated

the possibility of independently validating the choice of load-

ing distribution. The FE model used by Jiang et al. (2015)

was not validated against cadaver experiments unlike the FE

model used in this paper.

The following sections detail the multiscale model for

ARF0 along with the component models comprising it, and

the results of verification, uncertainty quantification and val-

idation analyses of all models.

2 Materials andmethods

The multiscale model used to calculate ARF0 comprises three

component models: a model at the whole-body scale that

predicts the impact force on the body applied by the floor

during a fall; a model situated between the body and the

organ (bone) scales that predicts the fraction of impact force

transferred to the skeleton; and an organ-scale FE model that

predicts bone strength.

The orchestration of these three models is considered

a multiscale model because the three models are defined

and identified at three different space–time scales, although

partially overlapping. The model at the whole-body scale

possesses, to use the terminology proposed in Bhattacharya

and Viceconti (2017), an extent of 101 m (distance covered

in treadmill tests) and a grain of 10−2 m (spatial resolution in

treadmill tests) over space, and an extent of 103 s (duration

of treadmill tests) and a grain of 10−2 s (temporal resolution

in treadmill tests) over time. The organ-scale model has an

extent of 100 m (dimension of femur fracture test appara-

tus) and grain of 10−3 m (strain gauge resolution in femur

fracture tests) over space, and an extent of 100 s (duration of

fracture tests) and a grain of 10−4 s (temporal resolution of

fracture tests) over time. The body–organ relation model has

a scale somehow intermediate to these two.

All three component models are detailed below, followed

by a description of the multiscale model. A list of all abbre-

viations and symbols used is provided in Table 1.

2.1 Body–floor impact model

The body–floor impact model at the whole-body scale deter-

mines the magnitude of impact force due to a fall. Here, a

fall is idealized as a rotation of the whole body on any plane

containing the vertical axis (fall plane). The rotation occurs

around a spherical joint (hinge) fixed to the floor and located

near the foot on the side of impact. Factors which may reduce

the impact, such as knee flexion or partial interruption of the

fall, are not modelled dynamically, but accounted for empir-

ically.

The model considers the body mass (m) to be concen-

trated at the moving end of an inverted pendulum, the static

end of which is located at the hinge (Fig. 1). The pendulum

length (h) equals the body centre-of-mass (COM) elevation

from the ground in the upright position. It is taken to be a

fixed proportion (c �0.554) of the subject’s standing height

(H) (Croskey et al. 1922). This description is underpinned

by the fact that the instantaneous centre of rotation of the

COM remains close to the ground during level walk (Herr

and Popovic 2008).

In this model, the body coordinate axis system (Bx,

By, Bz) originates at the COM with axes perpendicular to

anatomical planes (Fig. 1a). The relative orientation of the

body with respect to the ground (G) is given by angles ψ and

θ , where θ (measured from Gz�vertical in the fall plane)

varies from θ i to θ f . Figure 1b shows the femoral coordinate

axis system (Fx, Fy, Fz), with the centre of the femoral head

as the origin and with respect to two other femoral anatomi-

cal landmarks. At the instant of impact, the orientation of the

femur in relation to the body is specified by the angles α and

β, which are the rotations of the femur axis perpendicular

to the frontal and transverse planes of the body, respectively.

The angles α and β are commonly known as hip abduction

and internal hip rotation, respectively.

In these calculations, a fall is considered to ‘end’ at the

moment the hip impacts the floor. For an inverted pendulum

that initially possesses angular velocity θ̇i and angular accel-

eration θ̈i , the conservation of energy principle implies that

the total kinetic energy per unit body mass available at the

end of the fall is

e � c2 H2θ̈i

(

θ f − θi

)

+
1

2
c2 H2θ̇2

i + gcH
(

cos θi − cos θ f

)

(1)

The rotation of joints of the lower limbs during fall causes

work to be done by the associated muscles. This work reduces

the kinetic energy available at the end of the fall compared

with the COM remaining at a fixed distance from the hinge,

as is assumed in Eq. (1). Reduction in kinetic energy at the

end of the fall is also possible if there is partial interrup-

tion, such as by impact with other anatomical sites during

the fall. Such reductions are termed here as postural reflex

attenuation. Thus, the velocity of hip impact (u) is given by:

u �
√

2(1−ηP)e (2)

whereηP is the postural reflex attenuation coefficient. Dimen-

sional considerations and experiments show that the peak
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Table 1 List of abbreviations

and symbols in their order of

usage in the text

Abbreviation/symbol Meaning

ARF0 Current absolute risk of hip fracture

m Whole-body mass

COM Centre of mass

h Elevation of whole body COM from the ground when standing in an upright position

H Whole body height

c Ratio of COM elevation to whole body height

Bx, By, Bz Body coordinate system with origin at COM

Gx, Gy, Gz Ground coordinate system with origin at hinge

Fx, Fy, Fz Femur coordinate system with origin at femoral head centre

ψ Angle between Bx and fall plane (plane containing Gz and Bz)

θ Angle between the vertical axis (Gz) and the line joining COM and hinge (Bz)

θ i Value of θ when fall initiates

θ f Value of θ when fall completes (impact)

α Hip abduction angle at impact

β Internal hip rotation angle at impact

θ̇i Rate of change of θ with respect to time when fall initiates

θ̈i Second-derivative of θ with respect to time when fall initiates

e Kinetic energy per unit body mass at impact

g Acceleration due to gravity

u Velocity of impact at the hip

ηP Impact energy attenuation due to postural defence

F* Unattenuated impact force

k Factor of proportionality

Δt Duration of impact at the hip

F Attenuated impact force

ηI Impact force attenuation due to all factors except passive trochanteric soft-tissues

ηST Impact force attenuation due to passive trochanteric soft-tissues

ηfloor
I Impact force attenuation due to flooring

ηext
I Impact force attenuation due to hip protectors

ηact
I Impact force attenuation due to active trochanteric soft-tissues

BMI Body mass index

S Femur strength

G Discretized geometry of proximal femur

E Discretized elasticity of proximal femur

α′ Angle between Fy and direction of impact force projected on Fy–Fz plane

β ′ Angle between Fy and direction of impact force projected on Fx–Fy plane

χ Fracture outcome linked to a fall

px Probability density function for variable x

P Probability that a fall will lead to a fracture

N Sample-size of Monte–Carlo simulation

n Annual fall rate

a Lower truncation limit

b Upper truncation limit

STT Trochanteric soft tissue thickness

μ, μ* Mean of truncated normal distribution

σ 2 Variance of truncated normal distribution

εμ Errors in mean estimated from Monte–Carlo sample

εσ Errors in variance estimated from Monte–Carlo sample
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Table 1 continued
Abbreviation/symbol Meaning

εARF0 Error in estimating ARF0 of a subject from a Monte–Carlo sample of falls

Si First-order sensitivity index

T i Total sensitivity index

p Level of statistical significance

r Correlation coefficient

AUC Area under the Receiver Operating Characteristic curve

Fig. 1 a The inverted pendulum abstraction of the body during a fall.

Coordinate systems for the ground and the body are shown in red and

blue arrows, respectively. The origins of the ground and body coordi-

nate systems are identified with the hinge and the body centre of mass,

respectively. b The femoral coordinate system (green arrows), with ori-

gin located at the centre of the femoral head. Fz points in the direction

out of the plane of the paper

impact force applied on the femur depends linearly on u and

m (Laing and Robinovitch 2009; Robinovitch et al. 1991).

Impact tests using a synthetic pelvis and a rigid floor (Laing

and Robinovitch 2008, 2009; Robinovitch et al. 1995) show

that impact force is a triangular function of time, reaching a

peak at the middle of the total impact duration Δt. Hence,

the peak impact force is modelled as:

F∗ � k · 2mu/�t . (3)

Here, k is a factor of proportionality accounting for the

complexity of the interaction that is not modelled explicitly.

The average experimental values m �61.2 kg, u �3 m/s, Δt

�0.09 s and F* �2.05 kN (Laing and Robinovitch 2008,

see Fig. 4b in their paper) suggest k ~ 0.5. This results in the

simplification

F∗ � mu/�t . (4)

2.2 Ground–skeleton force-transfer model

The body–organ relation model is henceforth referred to

as the ground–skeleton force-transfer model. It predicts the

fraction of peak impact force F transferred to the skeleton.

The total peak impact force F* determined above consid-

ers the body to possess average passive soft tissue damping

properties and to impact a rigid floor without a hip protector.

In reality, the presence of various damping effects mean that

the peak impact force will only be partially transferred to the

skeleton. In the ground–skeleton force-transfer model, such

effects are lumped into two force attenuation coefficients.

The first coefficient (ηI ) accounts for damping due to floor-

ing elements (i.e. carpets) (Laing and Robinovitch 2009), hip

protector devices (if present) (Laing and Robinovitch 2008),

and all active soft tissues (muscles) that contract at the instant

of impact (Robinovitch et al. 1991). The second coefficient

(ηST ) accounts for damping due to all passive soft tissues

interposed between the point of impact on the skin and the
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lateral aspect of the greater trochanter (which includes also

the passive component of the muscular tissues) (Robinovitch

et al. 1995). Thus, the attenuated peak impact force magni-

tude applied to the greater trochanter is:

F � (1 − ηI )(1 − ηST )F∗ � (1 − ηI )(1 − ηST )mu/�t

(5)

The factor (1−ηI ) is composed as the product (1−
ηfloor

I )(1−ηext
I )(1−ηact

I ) where ηfloor
I , ηext

I and ηact
I are atten-

uation coefficients due to floor material, hip protectors and

active soft tissue damping, respectively. The coefficient ηST

is considered to be a function of the body mass index BMI�
m/H2. All attenuation coefficients are defined relative to the

synthetic hip, rigid floor and no hip protector impact scenario

(Laing and Robinovitch 2008).

2.3 Femur strengthmodel

The femur strength model at the organ scale determines

the strength (S) of the femur given a fall loading direc-

tion. The three-dimensional bone geometry is discretized

with 10-noded quadratic tetrahedral elements with a typi-

cal edge length of 3 mm; the discretization is referred to by

the function G. Linear elastic isotropic properties are speci-

fied element-wise; this spatial heterogeneity is referred to by

the function E.

Compared to other similar models, the CT-based subject-

specific finite model used here relies on two major simplifica-

tions: local isotropy and fragile failure. The subject-specific

modelling method we used captures the bone tissue hetero-

geneity with spatial resolution of around 2–3 mm (average

finite element size); by assigning a different elastic module

to each finite element based on the local mineral density,

the model captures the spatial anisotropy at this charac-

teristic length scale. Of course, bone is anisotropic also at

much smaller scales, which one should homogenize into an

anisotropic constitutive equation within each finite element.

However, the improved accuracy of this refinement is mostly

wasted by the fact we do not have reliable subject-specific

measurements of such small-scale anisotropy. Since the mod-

elling method we use, which account only for long-range

anisotropy, was found to predict measured principal strains

with a root-mean-squared error less than 7.2% (Schileo et al.

2008), we believe this simplification is acceptable. While in

general bones fail with significant post-elastic work, in the

particular case of proximal femur fractures produced under

side-fall conditions all ex vivo experiment show that initial

cracks fully propagate within a few milliseconds and with-

out showing any appreciable post-elastic work. Thus, is this

particular case a fragile failure criterion (maximum strain) is

perfectly suitable, as confirmed by the excellent predictive

Fig. 2 a In the fall configuration, a concentrated force is applied at the

femoral head centre and in a direction specified by the angles α′ and

β ′ measured with respect to the femoral axes Fz and Fx, respectively.

b The surface shown in blue is the region of interest (ROI) where the

strain-based fracture criteria are evaluated. The surface outside the ROI,

in grey, contains nodes where the solution is judged to be affected either

by contact interaction (on the right) or by boundary constraints (at the

bottom)

accuracy of this model when compared to cadaveric strength

measurements (Schileo et al. 2014).

Briefly, loading in the fall configuration implies: (1) a

concentrated force is applied at a node at the centre of the

femoral head and in a direction specified by rotations α′ and

β ′ (Fig. 2a) taken, respectively, about the Fz and Fx axes;

(2) hard, frictionless contact interaction is defined between

the greater trochanter surface of the femur and a rigid static

plane that is oriented normally to the direction of force; (3)

nodes at the distal end of the proximal femur model are suit-

ably constrained to remove any artificial motion arising from

numerical discretization. For any pair of (α′, β ′), the strength

S is defined as the smallest magnitude of force required to

cause the maximum principal strain to exceed + 0.73% or the

minimum principal strain to fall below – 1.04% anywhere in

a region of interest (ROI) (Fig. 2b) where the near totality

of these low-energy impact fractures is initiated (Bayraktar

et al. 2004; Qasim et al. 2016).

2.4 Multiscale model for ARF0

The current absolute risk of fracture ARF0 is defined as the

probability that the subject will suffer a fracture in the period

of under a year. The qualifier ‘current’ distinguishes ARF0

from the more clinically relevant quantity ARF10, which is

the risk of sustaining a fracture over a 10-year period (Siris

and Delmas 2008). ARF0 is computed as the probability that

at least one out of n mutually independent falls will lead to a

fracture, where n is the fall rate (in falls per person per year).

Thus, if P is the probability that a random fall will lead to a

fracture, then
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α ′ β′  η I m H θ f θ i  η P

S

χ

G, E
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l

Femur-strength model

F ≥ S ?

Body-floor

impact model

F*Ground-skeleton

force-transfer model

F

θ i θ i

Fig. 3 Orchestration of the multiscale model with input parameters mea-

sured at scales from whole body to organ (bone)

ARF0 � 1 −(1 −P)n (6)

following the binomial theorem. Note that ARF0 ≤1�
100%. ARF0 is expressed henceforth in percentage units (%).

The difference between any two ARF0 values is expressed

as percentage points (pp).

The probability P that a random fall will lead to a frac-

ture is determined in two steps. In the first step, the fracture

outcome of a specific fall is determined. In the second step,

P is determined by accounting for the variability of fracture

outcomes over a distribution of falls.

The fracture outcome of a specific fall is denoted by the

binary variable χ . We set χ �1 (fracture occurs) when a fall

occurs with impact force magnitude exceeding bone strength

(F ≥S), and χ �0 (fracture does not occur) otherwise. A

fall is specified by the variables controlling the whole-body

dynamics (θ i, θ f , θ̇i , θ̈i ), the postural and impact attenuation

variables (ηP, ηI ) and the impact orientation angles (α′, β ′).
χ also depends on the subject-specific properties of the femur

and the body in which the femur is embedded. The femur is

specified by its (discretized) geometry and elasticity proper-

ties (G, E), and the body is specified by its mass and height

(m, H). Note that, the angles α′ and β ′ depend on α, β, ψ (at

impact), G, H and θ f . However, here α′ and β ′ are considered

as independent variables because α, β and ψ vary indepen-

dently of G, H and θ f . As described below, χ is computed

by using the ground–skeleton force-transfer model to bridge

the models for body–floor impact and femur strength (Fig. 3).

Given (m, H, θ i, θ f , θ̇i , θ̈i , ηP, ηI ), the fall-specific impact

force F is obtained by sequentially executing the body–floor

impact and the ground–skeleton force-transfer models. Given

(G, E, α′, β ′), the femur strength model is executed in parallel

to obtain the fall-specific strength S. The determination of χ

is complete as soon as F and S are known.

Next, P is determined by holding fixed the subject-specific

variables (m, H, G, E) and accounting for the variability of

fall-specific variables across falls. Let px denote the proba-

bility density function (PDF) of any input variable x in the

set (α′, β ′, θ i, θ f , θ̇i , θ̈i , ηP, ηI ). Then the probability that a

random fall will lead to a fracture is given by:

P �
∫

α′

∫

...

∫

ηI

pα′
pβ ′

pθi pθ f pθ̇i pθ̈i pηP pηI

χdηI dηP dθ̈i dθ̇i dθ f dθi dβ ′dα′ (7)

Admissible limits for each variable of integration specify

the ranges of integration in Eq. (7). These limits are detailed

in the next section, along with the PDFs px . M nominally

uniformly spaced angle pairs (α′, β ′) are considered within

the limits of α′ and β ′. N samples of the vector (θ i, θ f , θ̇i , θ̈i ,

ηP, ηI ) with PDFs pθi , …, pηI are drawn using inverse-

transformed Latin Hypercube (LH) sampling. Corresponding

to the M pairs of (α′, β ′) values and N samples of the (θ i,

θ f , θ̇i , θ̈i , ηP, ηI ) vector, M×N values of χ are obtained by

repeated executions of the first step described above. Monte

Carlo (MC) integration method is applied over the (θ i, θ f ,

θ̇i , θ̈i , ηP, ηI )-domain. Thus, the M×N values of χ are aver-

aged N at a time, leading to M averaged-χ values. Finally,

P is computed using numerical quadrature over the (α′, β ′)-
domain. Thus, averaged-χ values and PDFs pα′

and pβ ′
at

any location in the (α′, β ′)-domain are linearly interpolated

using a triangular grid connecting the M discrete (α′, β ′)
points. Given a fall rate n, ARF0 is known from Eq. (6) as

soon as P is determined.

2.5 ARF0model input data

The subject-specific inputs—body mass m and height H,

discretized geometry G and discretized elastic properties E

of the proximal femur—were obtained from a retrospective

cohort (validation cohort; Table 2) comprising 98 post-

menopausal British women; the details of the cohort and of

data acquisition are given in Qasim et al. (2016) and Yang

et al. (2014). Briefly, one half of the cohort (fracture group)

had been diagnosed with low-energy trauma fractures in the

proximal femur; the other half (non-fracture group) were

pair-matched for age, weight, and height with subjects in

the fracture group. G and E are obtained using proximal

femur CT image data. Distributions of body height, body

mass and bone mineral density in the validation cohort reflect,

by design, the distribution of osteopenia in the population

referred to an osteoporosis specialist in a secondary care set-

ting.
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Table 2 Fixed, subject-specific

and stochastic parameters of the

multiscale model

Fixed parameters

c �0.554 (Croskey et al. 1922) Δt �0.09 s (Laing and

Robinovitch 2008)

n �0.65 (Gillespie et al. 2012)

Parameter (unit) Fracture group (n�49) Non-fracture group (n�49)

Subject-specific parameters: mean (SD) (Qasim et al. 2016; Yang et al. 2014)

m (kg) 62.6 (14.3) 64.9 (12.1)

H (m) 1.58 (0.0653) 1.58 (0.0592)

Age (years) 75.4 (9.44) 74.7 (8.86)

Parameter (Unit) Truncation values Justifications and references

Fall stochasticity parameters

θ i (°) a �0 Falls from upright position (Robinovitch et al. 2013)

b �30 Minimum inclination from which fall recovery is not

possible (Smeesters et al. 2001; Thelen et al. 1997;

Wojcik et al. 1999).

θ f (°) a �60 Falling on stairs with feet downward (Talbot et al.

2005); typical inclination from the vertical of stairs in

the UK (HM Government 2013)

b �120 Falling with feet on chair and hip on ground (Talbot

et al. 2005); seat height of standard chair: 44 cm

(Wheeler et al. 1985); COM distance from feet for

average subject: h �c*1.58 m�87.5 cm; inclination

of pendulum with horizontal�arcsin (44/87.5) ~ 30°

cH θ̇i (ms−1) a �0.00 Falls from a state of rest (Robinovitch et al. 2013)

b �1.40 Falls initiated with highest linear COM velocity

achieved during level walk (Robinovitch et al. 2013;

Terrier and Reynard 2015)

cH θ̈i (ms−2) a �0.00 Falls initiated during unaccelerated and the most

accelerated phases of gait (Hernandez et al. 2009)

b �5.10

ηP (–) a �0.500 Based on dynamical models of falling (Sandler and

Robinovitch 2001; van den Kroonenberg et al. 1995)

b �0.800

ηI (–) a � − 2.55 (1−a) ≡ (1−min ηfloor
I )(1−min ηext

I )(1−min ηact
I )

(1−b) ≡ (1−max ηfloor
I )(1−max ηext

I )(1−max ηact
I )

ηfloor
I : 0–0.870, based on experiments of Laing and

Robinovitch (2009) using synthetic hips without hip

protectors (ηact
I �0, ηext

I �0) impacting various

flooring materials

b �0.914 ηext
I : 0–0.338, based on experiments of Laing and

Robinovitch (2008) considering synthetic hips

impacting rigid floors (ηact
I �0, ηfloor

I �0) with

various hip protector designs

ηact
I : –2.55–0, based on experiments of Robinovitch et al.

(1991) conducted on rigid floors without hip protectors

(ηfloor
I �0, ηext

I �0) with live subjects contracting or

relaxing trunk and back muscles during fall

The fall parameters θ i, θ f , θ̇i , θ̈i , ηP, and ηI are described

by normal distributions truncated symmetrically at ±3 stan-

dard deviations (SDs) from the mean. Thus, the truncated

distributions are fully specified by truncation points a and

b, and the mean and SD of the non-truncated distribution

are given by (a + b)/2 and (b – a)/6, respectively. Truncation

points do not vary across subjects and are listed in Table 2.

Past studies have reported a strong correlation between

trochanteric soft tissue thickness (STT ) and BMI (Dufour
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et al. 2012; Schacter and Leslie 2014). For example in female

subjects,

ST T (cm) � 0.23415 ∗ B M I (kg m−2) − 3.3444 (8)

According to Eq. (8), a subject with a BMI of 14.3 pos-

sesses zero soft tissue thickness at the trochanter. The BMI

range in the validation cohort is 14.4–36.4. Hence the pre-

dicted STT ranges from 0.0284–5.19 cm. Robinovitch et al.

(1995) measured the impact between hard floors (ηfloor
I �

0) and cadaver pelvic regions (ηact
I �0) in the absence of

hip protectors (ηext
I �0). These conditions simplify Eq. (5)

to F � (1 –ηST ) F*. Robinovitch et al. (1995) reported the

following dependence between F and STT

F(k N ) � 7.2 − 0.71 ∗ ST T (9)

In their experiments, F* was constant because Robi-

novitch et al. (1995) fixed the mass and the energy of the

fall. Thus, for any STT, the ratio (7.2−0.71*STT )/(1−ηST )

is a constant. Defining ηST �0 as the attenuation when STT

�0, the constant above is found to be 7.2, which gives ηST �
0.0986*STT for arbitrary STT. Using Eq. (8) it follows that:

ηST � 0.0231 ∗ B M I− 0.330 (10)

The expected range of ηST in the validation cohort is

0.00264–0.511. If a subject possesses a very small BMI such

that ηST is predicted to be negative using Eq. (10), it is reset

to zero.

It was found that varying (α′, β ′) in the domain [−30°,

+ 30°]× [0, + 30°] resulted in the contact to initiate at points

which, for all the subject-specific bone geometries analysed,

covered nearly the entire greater trochanter surface. For a

given fall, all (α′, β ′) in the above range are assumed to have

an equal probability of occurrence.

The fall rate n �0.65 is considered fixed for all subjects

and is close to the median value reported in the literature for

the community-dwelling elderly population (Gillespie et al.

2012, see Appendix 8).

3 Results

This section presents results from verification, uncertainty

quantification and validation analyses of all four models

detailed above. Verification relates to analysing the depen-

dence of model predictions on numerical approximations

made in model implementation. Uncertainty quantification

relates to analysing the dependence of model predictions to

measurement errors in model inputs. Validation relates to

analysis of the differences between model predictions and

clinical or experimental observation.

3.1 Verification

The models for body–floor impact and for ground–skele-

ton force-transfer do not involve numerical approximations.

Thereby, verification of these models is not required. In the

femur strength model, numerical approximations arise due

to FE discretization. Helgason et al. (2008) showed that for

the mesh density used in the present model (average element

edge length, 3.3 mm) the effect of further refinement leads

to less than 1% change in predicted strains. The predicted

strength, which depends on the predicted strains, is there-

fore independent of the FE mesh. Hence, the femur strength

model is also considered verified.

For the multiscale model, the only numerical approxima-

tion made is in the computation of P in Eq. (7). In particular,

MC integration over the variables θ i, θ f , θ̇i , θ̈i , ηP, and ηI

and numerical quadrature over the variables α′ and β ′ require

verification. This is performed in three steps. In the first step,

samples of the vector (θ i, θ f , θ̇i , θ̈i , ηP, ηI ) of different sizes

(N) are drawn using inverse-transformed LH sampling as

previously described. Estimates of mean and variance of x

in dependence of sample size N are obtained, where x is any

variable in (θ i, θ f , θ̇i , θ̈i , ηP, ηI ). This establishes a nominally

verified LH sample size. In the second step, this nominally

verified LH sample size is held fixed for the integration in

Eq. (7) over the (θ i, θ f , θ̇i , θ̈i , ηP, ηI ) domain. The integration

in Eq. (7) over the (α′, β ′) domain is carried out for different

numbers (M) of discrete orientation pairs. The dependence

of ARF0 on M is determined, and the number of orientation

pairs needed to ensure that a verified numerical quadrature is

obtained. In the third step, keeping the number of orientation

pairs fixed, the integral in Eq. (7) is computed for different

LH sample sizes N, thus verifying the MC integration.

For the first step, the errors in the mean and variance of

finite LH samples are quantified by εμ � |μ*−μ|/
√

σ 2 and

εσ � |(σ*)2 −σ 2|/σ 2. Here, μ and σ 2 are the theoretical

mean and variance of the truncated normal distribution for

each input, and the symbols with asterisk denote correspond-

ing estimates based on the finite sample (size N). Figure 4a,

b shows that εμ, εσ < 0.001 for N ≥104. This verifies LH

sampling on each variable individually.

For the second step, we consider subject-specific bone

strength at M discrete orientations in the (α′, β ′) domain.

The greatest difference in bone strength between any two

orientations is a measure of variability in strength in the sub-

ject. This variability is found to be the highest for subject #50

of the validation cohort. Thus, it is expected that the error in

evaluating the integrals over the (α′, β ′) domain in Eq. (7)

using numerical quadrature will be largest for the ‘worst-case

scenario’ of subject #50. It is found that ARF0 �31.0% for

subject #50, when using N �104 for MC integration and M

�231. In comparison, ARF0 is modified by 3.54 pp, 2.32 pp,

1.92 pp and 0.0503 pp when M �4, 15, 33, and 66 respec-
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Fig. 4 Dependence of ARF0 on Latin Hypercube sample size. Nor-

malized errors in (a) sample mean and b sample variance of input

parameters of multiscale model; c median and maximum absolute error

in model prediction ARF0 (expressed as percentage points, pp) over

the validation cohort. For the input parameters, errors are defined with

respect to the theoretical mean and variance values of the truncated nor-

mal distribution. For the model output, errors are defined with respect

to the ARF0 values for the largest sample size N�105. Errors in model

output for N�105 are zero by definition and hence omitted

tively. Thus, numerical quadrature over the (α′, β ′) domain

is verified to a tolerance of 1.92 pp when using M �33.

In the third step, εARF0 (i, N)� |ARF0 (i, N)−ARF0 (i,

105)| is used to define the error in estimating ARF0 for sub-

ject i using Eq. (7) with LH sample size N, compared to

with LH sample size N �105. Figure 4c shows that as N

increases, both the median and maximum (taken over the

validation cohort) of εARF0 decrease; becoming negligibly

small (0.0658 pp and 0.316 pp, respectively) for N �104

when compared to the minimum, median and maximum val-

ues of ARF0 (1.93, 36.1 and 81.6%, respectively) computed

using N �105.

In summary, ARF0 can be determined to a numerical pre-

cision of 1.92 pp when using N �104 and M �33.

3.2 Uncertainty quantification

The uncertainty of the body–floor impact model prediction

F* for any input vector x � (m, H, θ i, θ f , θ̇i , θ̈i and ηP) is

(Fornasini 2008)

sF∗ �

√

√

√

√

∑

x

s2
x

(

∂ F∗

∂x

)2

(11)

where x is an element of x, s2
x is the uncertainty (variance) in

the measurement of x and the partial derivative is evaluated at

the point of the input parameter domain where the uncertainty

sF∗ is to be computed. In the following, instead of using

Eq. (11), the approximation

s̃F∗ �

√

√

√

√

(

∑

X

s2
X

)(

F∗
max − F∗

min
∣

∣Xmax − Xmin

∣

∣

)2

(12)

is used, where X is a location in the domain of input vari-

ables to which F* is highly sensitive (see below), X is an

element of X, 〈F*〉 denotes average of F* taken at X by vary-

ing the remaining inputs over their full ranges, 〈F*〉max and

〈F*〉min are the extreme values of 〈F*〉 over all X, and Xmax

and Xmin are respectively the locations where these extrema

occur. Thus, s̃F∗ provides a location-independent quantifica-

tion of uncertainty. To determine the input variables to which

F* is highly sensitive, the global first-order sensitivity indices

Sx are computed for each input variable x (Sobol 2001). The

variables for which Sx (ordered from largest to smallest) sum

to just over 80% are chosen as the ones to which F* is highly

sensitive. Following Saltelli et al. (2010), Sx are determined

by computing the impact force magnitude F* for samples of

input parameters drawn from uniform distributions in the fol-
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Table 3 First-order sensitivity indices (Sx) of F* (body–floor impact

model), F (ground–skeleton force-transfer model) and ARF0 (multi-

scale model) to various model input. Key: m, body mass; θ f , final angle

of fall; ηP , postural attenuation coefficient; H, body height; ηI , impact

attenuation coefficient; 〈S〉, bone strength averaged over all impact ori-

entations

m θ f ηP

F*

Sx (%) 66.0 14.6 10.6

m H ηI

F

Sx (%) 17.1 2.39 75.7

F* m H 〈S〉

ARF0

Sx (%) 1.06 0.220 84.1

All sensitivity indices are based on sample sizes of 105

lowing ranges: m, 31.0–101 kg; H, 1.45–1.73 m; and for the

remaining parameters, in the ranges given by truncation val-

ues (Table 2). By using a sample size of N �105, it is ensured

that sensitivity indices (Table 3) are determined correct to

0.670 pp. It is found that F* is highly sensitive only to m and

θ f . From literature sources, measurement uncertainties in m

and θ f are found to be sm �4.10 kg (inter-observer error, Uli-

jaszek and Kerr 1999) and sθ f
�3.70° (inter-examiner error,

Della Croce et al. 2005), respectively. The extreme average

values 〈F*〉max �3650 N and 〈F*〉min �809 N are computed

by binning the sample of F* (used to compute the sensitivity

indices) over a 10×10 regular grid in the domain of m and

θ f . These correspond to Xmax � (m, θ f )max � (101 kg, 30°)

and Xmin � (m, θ f )min � (31.0 kg, −30°). Using Eq. (12),

the uncertainty in the prediction of F* is then found to be s̃F∗

�166 N.

The uncertainty of the ground–skeleton force-transfer

model was evaluated in a similar manner, with m, H, ηI and

F* as the input variables. As F* is not independent of m and

H, an LH sampler is used to draw independent samples of

m, H, θ i, θ f , θ̇i , θ̈i and ηP as above, and of ηI from a uni-

form distribution given by its truncation values (Table 2). Sx

are obtained corresponding to m, H and ηI (Table 3) which

converge for samples of size N �105, beyond which sen-

sitivity indices change by less than 0.130 pp. Based on the

80% threshold for sum of first-order indices, it is found that

F is highly sensitive to m and ηI . Literature sources give

the measurement uncertainties in m and ηI as sm �4.10 kg

and sηI
�0.342 (Hurkmans et al. 2003), respectively. 〈F〉max

�5040 N, 〈F〉min �277 N, Xmax � (m, ηI )max � (66.0 kg,

−2.55) and Xmin � (m, ηI )min � (31.0 kg, 0.568) are com-

puted by binning the sample of F over a 10×10 regular grid

in the domain of m and ηI . Using Eq. (12), the uncertainty in

the prediction of F is found to be s̃F �558 N.

The uncertainty in determining femur strength S depends

on the variable to which bone strength is more sensitive

(bone geometry G or bone elasticity E) over the range of

variation of these variables in the population. To the best

of our knowledge, there is no study that has developed a

parameterization for G and E which satisfactorily captures

the variation in the elderly female population. Here, we con-

sider DXA–aBMD as a surrogate measure of the volumetric

bone density (which in turn determines bone elasticity E)

and body height H as a surrogate measure of bone geometry

G. For the subjects in the validation cohort, the variations in

the minimum and maximum subject-specific bone strengths,

i.e. respectively min(α′,β ′) S
(

α′, β ′) and max(α′,β ′) S
(

α′, β ′),

are explained up to 24.8% and 42.3% by the variations in

DXA-aBMD, but only up to 7.38% and 8.14% by varia-

tion in body height H. The level of explanatory power of

DXA–aBMD in relation to bone strength is similar to that

reported elsewhere (Muehleman et al. 2000) and is expect-

edly higher than that of body height. Hence, we only consider

the uncertainty in predicting S due to uncertainties in mea-

suring E. (Qasim et al. 2016) reported that uncertainties in

determining E, due to using three different tube-current levels

(100, 150 and 200 mA) when scanning the off-line phantom,

resulted in femur strength uncertainties below 3%. In the val-

idation cohort, this uncertainty is the largest (s̃S �190 N) for

the maximum predicted strength of 6329 N.

The uncertainty of ARF0 is determined with respect to

the uncertainty in m, H and S. In the validation cohort, m

and H are normally distributed (Table 2). In order to numer-

ically evaluate the sensitivity of ARF0, a parameterization

is required that captures the variation of bone strength in

the elderly female population as represented by the vali-

dation cohort. In this cohort, strength values are normally

distributed at 26 of the 33 orientations (Anderson–Darling

test, p �0.05). Hence, mean and standard deviation spatial

distributions of bone strength offer a potential parameteri-

zation. This is confirmed by the fact that in 86 of the 98

subjects, the spatial distribution of strength for subject j,

denoted S j
(

α′, β ′), is at least moderately correlated (coeffi-

cient of correlation, r ≥0.5) with the strength distribution

averaged over subjects mean j S j
(

α′, β ′). It is also found

that in the validation cohort, distributions of body mass m,

body height H and strength averaged over all orientations

S � mean(α′,β ′) S j
(

α′, β ′) are weakly, but non-negligibly,

correlated: r (m, H)�0.429, r (m, 〈S〉)�0.264 and r (H,

〈S〉)�0.294. Hence, the synthesized Fourier amplitude sen-

sitivity testing (SFAST) method (Xu and Gertner 2008) was

applied to obtain first-order sensitivity indices (also denoted

Sx) of ARF0. The variables m, H and S(α′, β ′) are sampled

from normal distributions with the mean and SD identical

to those of the validation cohort, truncated symmetrically

at ±3SD; the samples possess the correlations mentioned

above (Iman and Conover 1982). For populations with N
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(c)(b)(a)

Fig. 5 The variation of ARF0 in a virtual population of 105 subjects

in dependence of subject-specific parameters: a body mass, m; b

body height, H; and c bone strength averaged over all orientations,

S � mean
(α′,β ′)

S
(

α′, β ′). Percentage values on the horizontal axes are with

respect to the range of the corresponding parameter. In each box, the

red horizontal line denotes the median value, the top and bottom edges

of the box denote the 25th and 75th percentiles, whiskers dots denote

values at 1.5 times the interquartile range beyond the box edges and red

dots denote outliers

≥105 individuals, SFAST-computed Sx change by less than

0.0209 pp; converged indices are reported in Table 3. It is

found that ARF0 is highly sensitive to S only (again based

on the 80% threshold), seen in Fig. 5 as the much smaller

variation in ARF0 within subjects possessing a fixed bone

strength than the variation in ARF0 within subjects possess-

ing a fixed body mass or a fixed body height. Uncertainties in

determining S were found to be less than s̃S �190 N above.

〈ARF0〉max �93.8%, 〈ARF0〉min �4.83%, Xmax � (S)max �
393 N and Xmin � (S)min �4420 N are computed by binning

the sample of ARF0 over a 10 regularly spaced points in the

range of S. Using Eq. (12) the uncertainty in the prediction

of ARF0 is found to be s̃ARF0 �4.00 pp.

3.3 Validation

Hip impact velocity predicted by the body–floor impact

model averaged 2.82 m s−1 (SD 0.335 m s−1) which com-

pares with 3.01 m s−1 (SD 0.83 m s−1) (Feldman and

Robinovitch 2007), 2.75 m s−1 (SD 0.42 m s−1) (van den

Kroonenberg et al. 1996) and 1.16–2.73 m s−1 (predicted,

Lo and Ashton-Miller 2008) in previous studies. The out-

put F of the ground–skeleton force-transfer model averages

2.66 kN (SD 0.925 kN) which compares with 0.475–2.5 kN

(Laing and Robinovitch 2009) and 1.23–5.57 kN (predicted,

Lo and Ashton-Miller 2008) reported previously. For the

femur strength model, Schileo et al. (2014) used a similar

FE modelling methodology to predict the strength of cadav-

eric bones and compared these with experimentally measured

strength. The standard error of estimate of the FE predicted

bone strengths was found to be 15% of the average measured

strength value. When the minimum bone strength across

all 33 distinct orientations in each subject was considered,

it was found to classify the fracture and non-fracture sub-

jects with an area under the receiver operating characteristic

(ROC) curve (AUC) was found to be 0.82 (Viceconti et al.

2018).

The multiscale model was validated as follows. A Man-

n–Whitney test falsified the null hypothesis that the average

ARF0 for the fracture group (48.4%) was equal to the average

ARF0 for the non-fracture groups (24.6%) up to a signif-

icance level of 0.001. A Hosemer–Lemeshow test showed

no evidence of poor fit (p �0.328) when using a univariate

logistic regression model to predict current fracture status

based on ARF0. The ROC curve analysis (Fig. 6) shows that

the most optimal classification at the ARF0 �37.4% thresh-

old, with 77.6% specificity (95% CI: 63.4%–86.5%) and

81.6% sensitivity (95% CI: 68.3%–91.1%). The area under

the ROC curve AUC�0.852 (95% CI, 0.753–0.918) was sig-

nificantly higher for ARF0 when compared to AUC�0.750

corresponding to the standard-of-care predictor which is the
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Fig. 6 Receiver operating characteristic (ROC) curve for the classifica-

tion of current fracture status in the postmenopausal cohort using ARF0.

The cross corresponds to ARF0�37.4% where specificity is 77.6% and

sensitivity is 81.6% (error bars denote the respective 95% confidence

intervals). AUC refers to area under the ROC curve

DXA-based T-score at the femoral neck (Qasim et al. 2016),

and also when compared to AUC�0.82 corresponding to the

CT-FE based minimum bone strength predictor (Viceconti

et al. 2018). The classification by ARF0 was found to be sig-

nificant after adjusting for femoral neck T-score (p < 0.001).

4 Discussion

The multiscale prediction ARF0 described here was verified

with respect to all numerical approximations and achieved an

overall error tolerance (1.92 pp). An additional uncertainty

of 4.00 pp in predicted ARF0 was ascribed to the uncertainty

in determining bone strength. This was due to high sensi-

tivity of ARF0 to bone strength, which is in line with the

strong dependence of fracture risk indices on DXA-aBMD

(Bouxsein et al. 2007; Sarvi and Luo 2015) and the excellent

classification of current fracture status using CT-FE based

bone strength measures (Qasim et al. 2016). Nevertheless,

errors in ARF0 due to numerical approximations and propa-

gated uncertainties are much smaller than the median ARF0

(36.1%) in the cohort. Hence, differences in predicted ARF0

between two typical subjects in the cohort are expected to

remain statistically significant even in the presence of these

errors.

Previous mechanistic models that predicted fracture risk

based on fall dynamics and bone strength (Bouxsein et al.

2007; Sarvi and Luo 2015) reported an association between

the fracture risk predictor and fracture status. In compari-

son, ARF0 is not only found to be associated with fracture

status, but is found to additionally classify fracture status

with satisfactory sensitivity and specificity. This is possibly

because ARF0 includes the variability in hip impact forces

across falls in the same subject, which was not captured in

Bouxsein et al. (2007) and Sarvi and Luo (2015). The classifi-

cation of fracture status, compared head-to-head on the same

cohort, is significantly higher using ARF0 (AUC�0.852)

than using bone strength alone (AUC�0.82) or using DXA-

aBMD alone (AUC�0.75) (Qasim et al. 2016; Viceconti

et al. 2018). This additional predictive power is made possible

by including subject-specific fall dynamics and hip impact

mechanics, which are excluded from mechanistic models

based only on bone quality (Adams et al. 2018; Keyak et al.

2011; Panyasantisuk et al. 2018; Qasim et al. 2016). Thus,

the main new insight from the present study is that fracture

status in postmenopausal women is determined by the com-

petition between the impact force (applied at the hip during a

fall to the side) and the strength of the femur (under a side-fall

loading condition) and the variability in impact force across

potential falls. Note that it is not possible gain such ‘mecha-

nistic’ insights from models employing statistical regression

for fracture risk predictions (Hippisley-Cox and Coupland

2009; Kanis et al. 2008).

For the component models, predicted velocities of

approach at the instant of fall and peak impact force trans-

ferred to the skeleton were found to agree excellently with

a large number of experimental studies. The uncertainties in

determining impact force on the body (166 N) were much

smaller than the standard deviation of its entire variation

(770 N). This uncertainty is significantly influenced by the

uncertainties in the measurements of body mass and final

angle of fall, which may be considered acceptable for the

purpose of determining the impact force on the body. The

relatively small sensitivity of impact force on the body to

the parameter corresponding to postural attenuation implies

that reduced-order models (of lower accuracy) of postural

attenuation can be applied without significantly affecting the

accuracy of impact force prediction. The uncertainty in deter-

mining hip impact force (558 N) was not much smaller than

the standard deviation of its entire variation (925 N). This

uncertainty depended most strongly on the uncertainty in the

measurements of impact attenuation coefficient. This under-

lines the importance of developing better models to account

for the role of agents such as flooring materials, muscle acti-

vation state and hip protectors.

The fall dynamics model and the ground–skeleton force-

transfer model, leading up to the determination of attenuated

hip impact force magnitude F in Eq. (5), are substantial sim-

plifications of past model development in this area (Laing and

Robinovitch 2008, 2009; Lo and Ashton-Miller 2008; Robi-

novitch et al. 1991, 1995; Sandler and Robinovitch 2001; van

den Kroonenberg et al. 1995). The model reductions made

here reflect the fact that the objective of the present models
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was simpler, which was to determine the variation of peak

attenuated impact force magnitude across falls. Thus, it was

justified to omit those features in the present model that are

required only to predict quantities such as the motions and

torques at lower limb joints, the motion of and the impact

at upper extremities, the rotation of the body about its own

axis, the transient response of the pelvis–femur joint. The

model also omits those features that are required only to

predict peak impact force magnitude in a fall-specific man-

ner. However, the present model includes features such as

postural attenuation coefficient ηP that determine the vari-

ability in peak impact force magnitude across falls in the

same subject; features such as body mass m that determine

the subject-specificity of peak impact force magnitudes; and

features such as proportionality factor k and impact dura-

tion Δt that determine the complexity of fall but are constant

across subjects and falls. This model reduction is novel to the

best of our knowledge.

Differences between the FE modelling pipeline used here

and the approaches used by Bessho et al. (2007), Keyak et al.

(1997, 2005) and Nishiyama et al. (2014) have been discussed

extensively in Falcinelli et al. (2014), Qasim et al. (2016) and

Schileo et al. (2014), where the FE modelling pipeline used

was identical to that in the present paper. Briefly, the material

model (stress–strain relationship) used in our pipeline is lin-

ear elastic, while a nonlinear model was used by Bessho et al.

(2004, 2007, 2009). The FE models used by Keyak (2001),

Keyak et al. (2005), Keyak and Rossi (2000), Keyak et al.

(1997, 2011) and Nishiyama et al. (2014) use voxel meshes

and the failure load is computed based on strains throughout

the volume of the bone, as opposed to tetrahedral meshes used

in the present modelling pipeline and failure load defined

by strains on the surface of the femur. In the present mod-

elling approach, the anisotropy at the organ scale is captured

by allowing the elastic modulus to vary element-wise. This

has been shown to be adequate in predicting failure load in

cadaveric femurs accurately under various loading conditions

Schileo et al. (2014). Falcinelli et al. (2014) and Qasim et al.

(2016) showed that the same modelling pipeline as Schileo

et al. (2014) and including only organ scale anisotropy yields

bone strength values under different loading conditions in liv-

ing subjects which classify fracture status in these subjects

with high accuracy.

Our study has several limitations. In its guideline for clini-

cal assessment of fracture risk, NICE (2013) assumes that 3%

of all falls in the elderly lead to fracture. Although the basis

for this estimate is not clear to the authors, for an annual

fall rate of 0.65, this estimate leads to an ARF0 of 1.96%

(= 1 – (1− 0.03)0.65). This is much smaller than the median

ARF0 of 36.1% in our entire cohort. Our cohort was drawn

from a population of elderly women with osteopenia who

are referred to an osteoporosis specialist in a secondary care

setting. As such, the distribution of bone strength in this pop-

ulation is expected to be significantly lower than that in the

general population considered in the NICE (2013) report. As

bone strength predicts nearly 84% of the variation in ARF0,

it is expected that for the general population the multiscale

model will predict a much lower average ARF0 consistent

with the findings of the NICE (2013) report. Indeed, this is

indicated by Fig. 5c where the median ARF0 at 95% of the

strength range is found to be 4.32%. It would of course be

interesting to directly perform the computational prediction

of ARF0 in the general population, but that is outside the

scope of the current work. Moreover, by design, half (50%)

of the cohort had sustained a hip fracture. Thus, it is expected

that the population represented by the cohort will possess

ARF0 close to 50%.

Fall risk is expected to vary from one subject to another.

Thus, ideally, a measurement of some subject-specific quan-

tifier of fall risk is needed. Such a quantifier could not be

identified among the variables measured on the validation

cohort considered in this study. Fall rate is an accepted mea-

sure of fall risk that is often reported at the population level

in observational studies and is readily interpreted within the

frequentist definition of ARF0. Thus all subjects in our val-

idation cohort were assumed to possess the same fall rate

observed in a population similar to the cohort (Gillespie et al.

2012). Nevertheless, the lack of a subject-specific measure

of fall risk could have influenced the results.

Soft tissue attenuation (ηST ) directly determines peak

impact force at the hip. Hence the lack of an accepted stan-

dard for measuring ηST in vivo may affect the determination

of peak impact force magnitudes and thereby affect the pre-

diction of ARF0. We developed a regression model for ηST

based on soft tissue thickness (STT) using the experimental

data of Robinovitch et al. (1995) and used a regression model

to determine STT from body mass index (BMI) (Dufour et al.

2012). The sources of error in determining ηST in this manner

are: errors in the regression models and uncertainties in clini-

cal measurements of body mass (4.10 kg, Ulijaszek and Kerr

1999) and body height (0.0140 m, DiMaria-Ghalili 2006).

The coefficients of determination and the variances of the

outcome variables of the regression models reported in past

studies provide the error estimates of the regression mod-

els (Bouxsein et al. 2007; Robinovitch et al. 1995). These

known sources of measurement uncertainties lead to a net

13.2% uncertainty in the predicted value of ηST . Being much

smaller than the coefficient of variation of ηST across the

cohort (43.5%), the influence of these sources of uncertainties

on ARF0 is somewhat limited. The evidence in the literature

regarding the role of soft tissue attenuation in determining

fracture risk is also inconclusive (Compston et al. 2011; De

Laet et al. 2005). Note that we considered STT only at the

greater trochanter, similar to past studies (Dufour et al. 2012;

Nielson et al. 2009; Schacter and Leslie 2014) and did not

include the heterogeneity of STT within the hip region. To
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the best of our knowledge, there is no quantification of this

heterogeneity in the literature, and its effect on the predicted

ARF0 merits further investigation.

The probability distributions of fall parameters were con-

sidered fixed in the present study. In doing so, the epistemic

uncertainty therein is ignored. It is likely that the distri-

bution(s) are modified by disease or intervention. Thus,

currently the model cannot be used to investigate ‘what-if’

scenarios, such as how ARF0 distribution in a population is

modified in response to a disease or an intervention. Further

empirical studies that can close the epistemic uncertainties in

the fall parameters are needed to investigate such ‘what-if’

scenarios.

Another related shortcoming of the present model is the

assumption of independence between various parameter dis-

tributions. This is also an area that requires careful empirical

research to clarify epistemic uncertainties. One particularly

weak assumption is that the fall energy attenuation param-

eter accounting for postural defence ηP is independent of

the impact force attenuation parameter accounting for mus-

cle activation ηact
I , as both attenuation mechanisms depend

heavily on the activation of muscles in the lower limbs. It is

likely that as muscle activation increases, ηP increases while

ηact
I decreases—a dependence that was not included in the

present study due to lack of quantitative information.

The definition of ARF0 in the present paper can readily

be extended to ARF10, the absolute risk of fracture over a

10-year period, a measure of risk that is more prevalent in

the clinical setting (Kanis et al. 2009). This would require

accounting for, within a 10-year period, (a) a higher number

of falls, (b) changes to fall severity and fall impact parameters

due to ageing and (c) loss of bone mineral density due to

remodelling. The methodological framework presented here

is currently being extended to enable ARF10 prediction.

5 Conclusion

In this study, a multiscale model was developed to predict the

current absolute risk of fracture ARF0. The model accounted

for fall rate, stochasticity of fall scenarios including fall kine-

matics, postural reflex and fall impact attenuation conditions,

and bone organ geometry and elasticity. The predictions of

the multiscale model and its component models were veri-

fied to be independent of the numerical approximations made

therein. In particular, it was found that ARF0 can be deter-

mined using the model with an error much smaller than its

variation across subjects. Uncertainties in the predictions of

the multiscale model and its component models were quan-

tified in dependence of uncertainties in the measurement of

model inputs. In particular, it was found that predicted ARF0

possessed an uncertainty that was mainly dependent on the

uncertainty in the determination of bone strength, but was

also much smaller than inter-subject variation. Predictions of

multiscale model and its component models were validated

against experimental and clinical observations. Specifically,

predicted ARF0 could classify the current fracture status of

subjects in a postmenopausal cohort with high accuracy, sen-

sitivity and specificity. In a head-to-head comparison on the

same cohort, the accuracy of classifying current fracture sta-

tus using ARF0 was found to be significantly higher than

predictors representing the standard-of-care (DXA-aBMD)

and the state-of-the-art (based on CT-FE bone strength only).

In conclusion, the ARF0 model developed in this study pro-

vides a validated mechanistic explanation for fracture risk in

dependence of fall severity and bone strength.
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