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ARTICLE

Semiconductor nanostructure quantum ratchet for
high efficiency solar cells
Anthony Vaquero-Stainer1, Megumi Yoshida1, Nicholas P. Hylton1, Andreas Pusch1, Oliver Curtin1,

Mark Frogley3, Thomas Wilson1, Edmund Clarke 2, Kenneth Kennedy2, Nicholas J. Ekins-Daukes 1,

Ortwin Hess 1 & Chris C. Phillips1

Conventional solar cell efficiencies are capped by the ~31% Shockley–Queisser limit because,

even with an optimally chosen bandgap, some red photons will go unabsorbed and the excess

energy of the blue photons is wasted as heat. Here we demonstrate a “quantum ratchet”

device that avoids this limitation by inserting a pair of linked states that form a metastable

photoelectron trap in the bandgap. It is designed both to reduce non-radiative recombination,

and to break the Shockley–Queisser limit by introducing an additional “sequential two photon

absorption” (STPA) excitation channel across the bandgap. We realise the quantum ratchet

concept with a semiconductor nanostructure. It raises the electron lifetime in the metastable

trap by ~104, and gives a STPA channel that increases the photocurrent by a factor of ~50%.

This result illustrates a new paradigm for designing ultra-efficient photovoltaic devices.
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I
ntermediate band (IB) cells1,2 have recently been studied as a
way of beating the ~ 31% Shockley-Queisser (SQ) limit3. They
work by placing an IB level in the bandgap that introduces a

parallel excitation channel, allowing the sequential-two-photon-
absorption (STPA) of sub-bandgap energy photons. A number of
practical implementations based on well-established semi-
conductor nanostructure fabrication technologies, including
quantum dots4, and superlattices5 have been reported. However,
the short IB lifetime6 means they also induce high levels of
Shockley-Read-Hall interband recombination7 that lower the cell
voltage. The theoretical “quantum ratchet” (QR) concept8 has
been proposed to circumvent this problem.

This QR approach (Fig. 1) introduces two states6,8 lying in the
bandgap. The upper one (intermediate band, IB) is optically
coupled only to the valence band (VB) and the lower one (Ratchet
band, RB) is optically coupled only to the conduction band (CB).
A rapid irreversible scattering process links the two, so their
carrier populations are characterised by the same quasi-Fermi
level. In spite of the energy, ΔE, lost in the IB⇒ RB transition,
idealised global optimisation models8 predict limiting QR device
efficiencies of >46% (ΔE ~ 270 meV) at one sun and ~63% at full
concentration (ΔE = 0). Both are significantly better than the
corresponding SQ limits.

Our implementation (Fig. 1b) uses a quantum well (QW)
interband transition for the VB⇒ IB stage, transport through a
QW superlattice for the IB⇒ RB ratchet stage, followed by an
intraband bound-to-continuum intersubband (ISBT) transition
between two electron states for the RB⇒ CB stage. A test device
was designed in order to isolate the photocurrent contribution of
the STPA channel experimentally. The bandgap corresponding to
the VB⇒ IB transition (taking place in the 25 nm thick In0.05
Ga0.95 As layer adjacent to the QW’s), was designed to be the
lowest energy interband transition in the multilayer, so that it
could be driven without generating photocarriers anywhere else.
In order to optimise the fraction of IB electrons being scattered
into the metastable RB state, rapid IB⇒ RB scattering was
facilitated by designing the QW superlattice so that neighbouring
wells had confined state energies separated by an optical phonon
energy9. The device was packaged in a bevelled configuration to
allow the RB⇒CB transition to be driven with p-polarised light,
as is required by the dipole selection rules for ISBT’s10.

Using high speed, time resolved STPA photocurrent mea-
surements, we find here that the QR design increases the electron
lifetime in the RB state by ~104 to ~10 µs. It introduces an STPA
channel that increases the photocurrent by a factor of ~50%.

Results
STPA photocurrent spectral characteristics. The 100 µm dia-
meter device was cooled to ~14 K and illuminated with two
independently tuneable laser pulse trains at a 100 kHz repetition
rate. The VB⇒ IB transition was resonantly driven with a λ = 850
nm, ~150 ps pulse filtered out from an optical fibre super-
continuum source, with a bandwidth of 2.5 nm and a pulse
power/energy up to 2.5W/0.4 nJ. The RB⇒CB transition was
driven with a bank of tuneable quantum cascade laser (QCL)
diodes, giving 6 µm< λ< 10 µm pulses ~100 ns long and ~800
µW CW power. This corresponded to a mean pulse power/energy
of up to approximately 80 mW/8nJ.

The two pulse trains could be mechanically chopped (at ~465
Hz for the VB⇒ IB supercontinuum beam and ~535 Hz for the
RB⇒CB QCL beam) to measure their single photon contribution
to the photocurrent with independent lock-in amplifiers. The
QCL beam generated no detectable single photon photocurrent,
whereas the supercontinuum beam generated a photo current I–V

curve with a pronounced low-current plateau in the 0.4–0.8 V
bias range, indicative of the QR action (Supplementary Note 1).

In common with IB cell devices based on semiconductor
heterostructures the electronic transport in our device is
temperature sensitive and so the STPA measurements must be
done in a way that avoids artefacts due to sample heating. STPA
experiments presented in the literature have used either CW
sources4,5,11, or ones that are chopped at a low fixed frequency,
and thermal effects have been shown to give changes in
photocurrent at the 10’s % level (see ref. 12 and supplementary
material therein). These thermal artefacts are avoidable by
modulating the illumination sources at rates that are fast
compared with the systems’ thermal time constant. The fact that
this has been achieved can be checked by verifying that the STPA
signal is independent of the modulation frequencies. One of the
unique aspects of the present work is that we used a frequency
mixing circuit to drive a third lock-in amplifier at a frequency
corresponding to the difference between the modulation
frequencies of the two laser beams. This is done in order to
isolate the fast contribution to the photocurrent that originates
from the STPA excitation process.

In the lower-noise, mechanically chopped experimental con-
figuration, the frequency mixing was achieved with a custom
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Fig. 1 Schematic of the “quantum ratchet” concept. a The absorbing section

of a photovoltaic (PV) device is structured to allow both direct interband

absorption (blue arrows) between the conduction (CB) and valence bands

(VB), and an additional “sequential-two-photon-absorption” (STPA)

channel that is designed to add to the photocurrent without sacrificing the

cell voltage. It achieves this by having two reversible optically allowed

transitions denoted by the green arrow (VB to intermediate band (IB)) and

the red arrow (ratchet band (RB) to CB) that are separated by an

irreversible IB to RB ratchet transition (grey arrow to the right). b Quantum

ratchet device implementation used here. A QW superlattice provides the

ratchet, as photoelectrons cascade to the right down a series of confined

electron states. The device is designed so that the lowest energy interband

transition pumps carriers into states at the left hand end of the ratchet, and

an intersubband transition, (red arrow) is required to lift them out or the

trapped state at the right hand end of the ratchet to contribute to the

photocurrent
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made digital electronic circuit. However, we also checked that the
signal was unchanged when we took the experiment to the
highest frequency available. This was achieved by mixing the
(fixed) 100 kHz modulation frequency of the supercontinuum
source with an 80 kHz pulse train from electronically triggered
QCL’s in an analogue diode mixer, and lock-in detecting at the
~20 kHz difference frequency. This gave a STPA signal that was
the same to within experimental error as the much slower
mechanically chopped experiment. However, for technical
reasons the mechanically chopped setup gave a better signal-to-
noise ratio and was used for all the data presented here. At all
times, the STPA signal disappeared when either laser was
blocked, and no STPA signals were found with a control device
that was grown with a large bandgap layer inserted into the QW
superlattice in a way that was designed to block the IB⇒ RB
transport.

The 14 K photocurrent I–V curve (Fig. 2) shows an almost
zero-current plateau on the 0.4–0.8 V bias range, consistent with

efficient charge-trapping in the RB state, (Supplementary Note 1).
Only samples showing this plateau gave an STPA photocurrent
signal and it was only ever non-zero within this bias range. At
lower forward biases the field is enough to extract electrons from
the RB state into the CB one (as signified by a pronounced
increase in the VB⇒ IB single photon photocurrent at this bias,
see Supplementary Note 1). At higher forward biases, the IB⇒ RB
ratchet is too shallow to scatter the IB electrons quickly enough
into the RB state to collect a significant fraction of them before
they recombine back into the VB state.

Tuning the QCL’s revealed a peaked spectral response (Fig. 2b)
in the STPA photocurrent, centred at λ ~ 6.5 µm, with a
wavelength full-width-half-maximum of Δλ ~ 1 µm. Rotating
the polarisation plane of the QCL revealed the transition to be
p-polarised at a level of more than 28:1 (limited by measurement
noise), and it’s energy corresponded well with the λ ~ 6.4 µm
modelled transition energy of the RB⇒CB transition.

Intensity dependence of the STPA photocurrent. The STPA
photocurrent was linear in RB⇒CB QCL intensity over the
accessible range (Fig. 3), but it saturated readily, and even
decreased with ~30% of the laser intensity that was available for
the VB⇒ IB excitation. Order of magnitude estimates (Supple-
mentary Note 2) indicate that at this stage electron space charge
accumulation in the RB state would start to generate enough field
to flatten the IB⇒ RB ratchet potential. This would reduce its
ability to quickly separate electron-hole pairs generated by the
VB⇒ IB laser before they have time to recombine.

Time resolved measurements of the RB level lifetime. Time
resolved studies were initially done with an optical delay line
capable of generating a delay of up to 2 ns between the pulse
trains, but no time dependence in the signals could be detected on
these timescales. All the results reported here were obtained by
electronically varying the delay between the pulse trains on a
much longer timescale, one that was limited by the 10 µs pulse
repetition rate.

The lifetime measurements (Fig. 4) showed a decay time that
was comparable with the 10 µs laser repetition rate, i.e., a ~104

fold enhancement over the approximately nanosecond values
typical of interband recombination in direct-gap QW materials.
Its bias (Fig. 4a) and temperature (Fig. 4b) dependencies both
showed an approximately reciprocal relationship with those of
the STPA photocurrent, furthering the argument that the lifetime
enhancement in the RB state is key to achieving effective two-
photon absorption. As the device temperature is raised from 14 to
50 K, (by which time the RB lifetime reduces from ~10 to ~0.8
µs), the time averaged STPA photocurrent has dropped by a
factor of ~3 before becoming lost in the measurement noise. The
thermally activated lifetime reduction correlated with the
disappearance of the current plateau in the I–V curves.

Discussion
The modelled 10−9–10−10 quantum mechanical overlap factor
between the IB and RB wave functions is approximately six
decades less than the inverse of the measured ~104 lifetime
enhancement factor. This suggests that the measured lifetimes are
limited by a thermally activated process. Estimates of the effects
of carrier screening, and band filling (Supplementary Note 2)
suggest that the former flattens out the ratchet potential at carrier
densities roughly a decade lower than those when the Fermi
energy starts to rise significantly in the RB, so we surmise
screening it is the dominant contribution to the saturation effect
in Fig. 3a. When the saturation sets in (at ~0.25 nJ/pulse) we
estimate a RB occupancy of ~1.3 × 1011 cm−2, which compares
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Fig. 2 STPA photocurrent. a Filled squares: 14 K photo current–voltage

curve for the quantum ratchet device, showing the 0.4–0.8 V current

plateau where carriers are effectively trapped in the RB state. Circles, bias

dependence of the STPA photocurrent, peaking at ~0.62 V. At lower biases

the field in the QW superlattice is insufficient to separate the photocarriers

into the RB state, and at higher biases the carriers can tunnel out of the RB

state without two photon excitation. b Spectral dependence of the 14 K

STPA signal on mid-IR wavelength when pumped with a fixed a λ= 850 nm

interband excitation beam. Error bars correspond to the standard error of

the mean of 10 consecutive measurements
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with the ~6 × 1011 cm−2 needed to completely screen out the
ratchet potential (Supplementary Note 2).

At the optimum bias (0.63 V) the STPA channel increases the
time-averaged photocurrent by 0.5% of the single photon current
generated by the interband pumping alone, (Supplementary
Note 3). However, ISBT lifetimes lie typically in the sub-ps
range13, so it is likely that all the STPA photocurrent occurs
within the ~100 ns QCL pulse; correcting for the 100:1 duty cycle
in the QCL pulse train implies an actual STPA photocurrent that
is ~50% of the single photon value.

A quantitative analysis (Supplementary Note 3) implies a
reasonable IB-RB scattering efficiency of ~57%. The low overall
power conversion rates are predominantly due to combination of
a low (~7.4 × 10−5) optical coupling factor to the RB-CB transi-
tion in the present experimental geometry, and to a low escape
probability into the CB (~3.9 × 10−5) for electrons excited into the
upper level of the RB QW. Based on the literature on QW

infrared detectors (QWIP’s), both of these can be increased
towards unity. A variety of surface patterning techniques have
been demonstrated14 that couple normally incident mid-IR light
with efficiencies up to ~90% to the vertically polarised ISBT. The
escape probability has been shown to be exponentially dependent
on field15, and QWIPs routinely achieve values close to 100% by
utilising fields that are ~40 times higher than the ~4 × 106Vm−1

present in the RB region of this test device.
The present design uses a materials system chosen because of

its mature growth technology, and it operates with transition
energies which are lower that would be needed to beat the SQ
limit in practice. Future experiments, with wider bandgap semi-
conductor materials9 would be needed to match the transition
energies on the ratchet device to the spectral content of the solar
spectrum. At the same time, this would increase the trapping
energy for the RB level, to give higher temperature operation.

In conclusion, we believe that this proof-of-principle result,
and the dramatic (×104) lifetime enhancements achieved, argue
the case for the quantum ratchet concept having an important
role in a new family of ultra-efficient PV devices.

Methods
Device design and fabrication. The device was grown by Molecular Beam Epitaxy
on an undoped GaAs substrate (Fig. 5), chosen to be transparent to the QCL laser
beam. The QR portion (Table 1, layers 4–15) consists of an Al,(GaAs)/GaAs QW
superlattice structure embedded in a p–n junction. It is capped with a 25 nm layer
of In0.05 Ga0.95 As, which has the lowest bandgap in the whole structure (appearing
as the λ ~ 850 nm eV PL peak in Supplementary Figure 1(b)), so that a suitably
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tuned laser can excite electron hole pairs only in this layer. The excited electrons
are then scattered down through a cascade of coupled states that are confined in
successive wells of the QW superlattice, into the “Ratchet Band” (RB) state in the
final QW. The holes are extracted from the In0.05 Ga0.95 As layer into the p-GaAs
capping layer.

The cascade scattering rate is maximised by designing each confined electron
state to be separated from its neighbour by an optical phonon energy. Towards the
end of the cascade, the Aluminium fraction in the barriers is increased to 0.7 to
increase the electron trapping in the RB state and thereby increase the likelihood of
STPA. From the RB state a second, mid-infrared, photon is required to excite the
electron into the continuum of intrinsic bulk Al0.3 Ga0.7 As to register a photo-

current. The threshold energy for this transition was designed at 0.195 eV so as to
be attainable with the available quantum cascade laser sources. This corresponds
closely to the λ ~ 6.7 µm/0.185 eV peak of the measured spectral response of the
STPA signal seen in the inset of Fig. 2.

The cascade was optimised for efficient electron transport using an annealing
genetic optimisation algorithm, as described in ref. 9. A control sample was also
grown, with the GaAs in one of the wells (layer 9 in Table 1) replaced with
Al0.3Ga0.7 As so as to create a 7 nm thick layer to block the QR operation. No STPA
photo-current could be detected with this sample.

The grown wafer was processed into devices for opto-electronic characterisation
and for the spectroscopy experiments. In order to be transparent to the mid-IR
radiation, both the buffer layer and substrate were nominally undoped GaAs. Both
the p- and n-contacts had to be formed on the top of the devices, by exposing the
n-type layers for metallisation (In–Ge, 20 nm/Au 200 nm) with a partial etch of the
wafer. For the p-type metallisations (Au 5 nm/Zn 10 nm/Au 200 nm) we chose to
use a series of ring-shaped Ohmic contacts ranging in diameter from 50–400 µm
(Fig. 6a). The centres of each of the circular mesas were positioned to align with the
centre of the mid-IR beam after it had been refracted by the bevelled substrate. A
mesa etch was performed to isolate individual devices and bond pads for both the
p- and n-contacts were then formed using Ti, 20 nm/Au, 200 nm. In the case of the
bond pad for the p-contacts, an insulating layer of 200 nm silicon nitride was
deposited first to prevent shorting of the device (Fig. 6b).

Finally, the GaAs contacting layer (layer number 1 in Table 1) was removed
from the optical window of each mesa with another etch.

Quantum mechanical selection rules for excitation of the 2-dimensional
intraband transition require a component of the beam with its electric field
polarisation normal to the QW planes, so they cannot be driven in a simple normal
incidence illumination geometry. For this reason, the wafer was cleaved along a line
~300 µm away from the ring mesas (i.e., a distance roughly equal to the substrate
thickness) and a 45 °C chamfered edge was polished into the rear side of the
substrate (Fig. 6b). The high (n = 3.3) refractive index16 of the substrate means that
on entering the sample from the reverse, the refracted beam travels at an angle
close to 45 °C through the substrate and impinges on the QW’s in the device at this
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Table 1 Layer structure of the quantum ratchet device

Layer number Thickness (nm) Material Doping (cm−3)

1 150 GaAs contact 1018 p-type

2 50 GaAs ud

3 25 In0.05 Ga0.95 As ud

4 1.1 Al0.3 Ga0.7 As ud

5 4.6 GaAs ud

6 1.1 Al0.3 Ga0.7 As ud

7 4.6 GaAs ud

8 1.2 Al0.3 Ga0.7 As ud

9 4.6 GaAs ud

10 1.2 Al0.3 Ga0.7 As ud

11 4.6 GaAs ud

12 1.3 Al0.7 Ga0.3 As ud

13 4.4 GaAs ud

14 1.2 Al0.7 Ga0.3 As ud

15 3.2 GaAs ud

16 100 Al0.3 Ga0.7 As ud

17 200 Al0.3 Ga0.7 As 2 × 1018 n-type

18 400 GaAs contact 2 × 1018 n-type

19 buffer GaAs ud

20 wafer GaAs ud
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Fig. 6 Device structure. a Photolithography schematic used for device

fabrication. Green, lower n-type contact pad; blue, upper p-type contacting

pad, pink, GaAs window etch. b Illumination scheme used to couple the

mid-IR radiation in to the intraband optical transition
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angle. Provided the incident mid-IR is p-polarised, then it can couple to the
intraband excitations in this geometry.

A standard TO8 header was modified by drilling a hole through its centre. The
devices were mounted and wire bonded with the wedge overhanging the hole in a
way that allowed optical access to its rear.

STPA spectroscopy experimental details. Two independently tunable pulsed
laser sources were used for the experiment (Fig. 7). Interband excitation was
provided by a supercontinuum fibre laser, (Fianium SC450-8-PP). It had a variable
repetition rate of 100 kHz–1MHz. It had a typical maximum pulse energy of 0.4 nJ,
a temporal width of 150 ps and bandwidth of 2.5 nm FWHM.

A mid-IR quantum cascade laser (QCL) (Block Engineering “LaserTune”) was
used to excite the ISBT transitions. It could be tuned over the wavelength range
6–10 µm, and its repetition rate could be varied in the range 0−100 kHz. The QCL
pulse was ~100 ns in duration and had a maximum energy of 8 nJ.

Both beams were focused down using 25 mm, f/6 lenses, which generated a spot
size which just over-fills the 100 µm device.

The transimpedence amplifier used was a Femto DHPCA-100. It gave a current
gain of 107 V/A, and had a bandwidth of 1.8 MHz (−3 dB) and rise time of 0.2 µs
(10–90%).

The digital mixing circuit was built around a logical AND gate that multiplies
the digital values in the square-wave digital frequency reference waveforms
generated by each of the optical choppers. It was followed by a third order
Butterworth low pass filter chosen for its ability to deliver strong suppression of the
fundamental frequencies. It had a −3 dB frequency cutoff at 50 Hz and a −18 dB/
octave slope.

Data availability. Data for this report is available from dataenquir-
yEXSS@imperial.ac.uk.
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