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Cloud computing is an emerging paradigm which provides a flexible and diversified trading market for Infrastructure-as-a-Service
(IaaS) providers, Software-as-a-Service (SaaS) providers, and cloud-based application customers. Taking the perspective of SaaS
providers, they offer various SaaS services using rental cloud resources supplied by IaaS providers to their end users. In order to
maximize their utility, the best behavioural strategy is to reduce renting expenses as much as possible while providing sufficient
processing capacity to meet customer demands. In reality, public IaaS providers such as Amazon offer different types of virtual
machine (VM) instances with different pricing models. Moreover, service requests from customers always change as time goes
by. In such heterogeneous and changing environments, how to realize application auto-scaling becomes increasingly significant
for SaaS providers. In this paper, we first formulate this problem and then propose a Q-learning based self-adaptive renting plan
generation approach to help SaaS providers make efficient IaaS facilities adjustment decisions dynamically. Through a series of
experiments and simulation, we evaluate the auto-scaling approach under different market conditions and compare it with two
other resource allocation strategies. Experimental results show that our approach could automatically generate optimal renting
policies for the SaaS provider in the long run.

1. Introduction

With the rapid development of cloud computing technologies
such as virtualization and service-oriented architectures,
large numbers of agile and scalable cloud-based applications
are delivered across the Internet. Their providers, i.e., SaaS
providers, take advantage of commercially available cloud
facilities provided by IaaS providers to run these applications
cost-effectively. From the perspective of SaaS providers, one
remarkable benefit of such a market pattern is that they are
allowed to rent virtualized resources flexibly from IaaS ven-
dors based on their actual demands. For most SaaS providers,
they derive their profits from themargin between the revenue
obtained from customers and the expense of renting cloud
resources from IaaS providers. Therefore, how to allocate
appropriate resources to balance application performance
and operating cost is a crucial issue for them.

On the one hand, underprovisioned resources are not
capable of bearing customer workloads thereby affecting
customer satisfaction; on the other hand, resource overpro-
visioning can result in idle VM instances and unnecessary
cost. Thus, the best behaviour for SaaS provider is to rent as
fewVM instances as possible while still ensuring applications
offer sufficient processing capacity to meet customer needs.
Furthermore, because of market diversity, IaaS providers
adopt different pricing models for their VM instances.
Common mechanisms include on-demand pattern, reserved
pattern, and spot pattern [1]. Considered from the point of
view of SaaS providers, different choices of VM instances
with different pricing patterns will also affect their renting
cost. Therefore, SaaS providers need to consider how to
automatically generate proper renting policy which takes
into account the types, quantity, and pricing patterns of VM
instances.
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Figure 1: Wikimedia workload between June 1, 2015 and June 28,
2015 (4 weeks) [2].

Since customer workload is always changing, achieving
automatic scaling up or down to respond to the dynamic ser-
vice requests from customers is challenging. In fact, although
customer workloads change continually as time goes by,
these random workloads still have certain regularity in some
degree. Figure 1 shows that Wikimedia workload follows
typical time-of-day and day-of-week patterns. Similarly, as
for most cloud-based enterprise applications, they receive
more requests from customers during working hours in day
time and become vacant at night time. If SaaS providers
could learn from their previous trading experiences, better
renting policies could be generated. Hence, in this work,
we aim to design a learning based auto-scaling approach
for SaaS providers to help them generate appropriate VM
renting policies for their applications in order to adapt to the
uncertainty of the market.

The rest of this paper is structured as follows. Section 2
gives an overview of relevant work in this field. In Section 3,
we define the three-tire cloud market model with some
assumptions and then present the formulation of cloud
application auto-scaling problem in this context. Section 4
introduces the basic theories of reinforcement learning. In
Section 5, we model this problem in the framework of Q-
learning and propose the auto-scaling algorithm in detail.
Experimental results discussed in Section 6 demonstrate the
performance of our approach in different cloud market
settings. Finally, we summarize our contribution and present
directions for future work in Section 7.

2. Related Work

In recent years, the research on auto-scaling technologies
for cloud-based applications has been studied intensively
[3, 4]. Various approaches and mechanisms for different pur-
poses have been proposed in both academia and industries,
and some of them have been applied in the real market
[5, 6]. Main approaches include rule-based or threshold-
based strategies [7], predictive-based mechanisms [8], and
heuristic methods [9]. Similar to our purpose, [10, 11] try
to help SaaS providers realize optimal resource allocation
to their applications. Customer requests in their model are
defined as workflows or a set of independent jobs, which is
different from our workload-based model. Moreover, they
assume IaaS providers only offer on-demand VM instances
to SaaS providers, ignoring the influence of different pricing
patterns. References [12, 13] take into account this point
and use game theoretic methods to generate optimal service

provisioning strategies for SaaS providers. However, in their
model, customer workloads have been known in advance.

Most application auto-scaling decisions happen in a
dynamic, continuous, and stochastic cloud environment,
which can be viewed as Markov Decision Processes (MDPs).
Therefore, recent research has been focusing on applying
automatic decision theoretic planning techniques such as
reinforcement learning in this field. Similar to our work, [14,
15] use Q-learning approach to achieve autonomic resource
allocation for auto-scaling applications. Compared with their
studies, we take into account different pricing patterns of VM
instances that are not considered in their work. References
[16, 17] consider multiple IaaS resources pricing patterns,
but they mainly study how to generate optimal bidding
strategies for spot VM instances. This is quite different from
our purpose: helping SaaS providers make appropriate VM
renting decisions in different single pricing markets and a
hybrid pricing market.

3. Problem Statement

3.1. System Model and Assumptions. As shown in Figure 2,
there are three roles in a three-tire cloud market: IaaS
providers, SaaS providers, and cloud application customers.
SaaS providers as the middle layer in this market rent cloud
resources from IaaS providers to host and run their web
applications. At the same time, they provide available SaaS
services to their end users. In this paper, we study a simplified
model which only consists of one IaaS provider 𝑅𝑖𝑎𝑎𝑠 and one
SaaS provider 𝑅𝑠𝑎𝑎𝑠.

Similar to Amazon EC2 service, IaaS provider 𝑅𝑖𝑎𝑎𝑠
adopts different pricing plans to charge SaaS provider 𝑅𝑠𝑎𝑎𝑠.
Here we assume that there are two kinds of virtual machine
(VM) instances: on-demand VM and reserved VM. On-
demand VM instances are charged by a fixed price for each
charge unit. SaaS providers could adjust the number of VM
instances depending on their actual demands at any time.
Reserved VM instances offer a discount compared with the
price of on-demand instances. However, they are not as
flexible as on-demand VM instances. SaaS providers have
to rent VM instances with a long-term commitment. In
addition, the price of VM instances is not only related to the
pricing plans but also affected by the configurations of VM
(e.g., CPU and memory).

Generally, customers’ workload can be classified into two
types: job-based workload and application-based workload.
Job-based workload implies that customers submit a set
of jobs to web applications and SaaS providers need to
allocate appropriate resources to each job. Application-based
workload is more general. SaaS providers make resource
scaling decision based on the whole application workloads
rather than specific jobs. Since job-based workload can be
abstracted into application-basedworkload to some extent, in
this paper, wemodel customers’ workload as the second form.

3.2. Problem Formulation. From the perspective of SaaS
providers, an inevitable problem that needs to be dealt with
is determining the optimal renting policy to meet their end-
users’ demands whilemaximizing their utilities. In a dynamic
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Figure 2: Three-tire cloud market model.

cloud environment, customers’ workload always changes,
which makes the decision more difficult. In this part, we
formulate this problem in detail.

(i) IaaS Resources Model. IaaS provider 𝑅𝑖𝑎𝑎𝑠 offers infinite
VM instances in this market. These VM instances have
different capacities and different pricing policies are applied
to them. There are totally N types of VMs according to
the VM configurations. For per unit of time Tperiod, the
processing capacity of j-th type of VM instances is𝐶𝑗, and the
prices of on-demand instance and reserved instance are 𝑃𝑗𝑜
and 𝑃𝑗𝑟 , respectively. Normally, 𝑃𝑗𝑜 is higher than 𝑃𝑗𝑟 . Because
of the difference in price, on-demand VM instances and
reserved VM instances have different renting rules, which
are reflected in the minimum rental period. On-demand
VM instances have a shorter rental period 𝑇𝑝𝑒𝑟𝑖𝑜𝑑 than the
period Treservation for reserved VM instances. SaaS providers
are not allowed to cancel their existing renting reserved VM
instances when these VM instances are still alive during
Treservation.

(ii) Customers and Workloads. There are M customers in
this market. Since we adopt the application based workload
model, we view all customers as a whole. They request
service from SaaS provider 𝑅𝑠𝑎𝑎𝑠 and pay a fixed fee 𝑃𝑢𝑠𝑎𝑔𝑒
for per 𝑇𝑝𝑒𝑟𝑖𝑜𝑑. At time t, service request from all customers
is Wt. As we mentioned in Section 1, customer workloads
normally have some certain regularity within a long period
(e.g., Wikimedia workload showed in Figure 1). Thus here
we use 𝑇𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 to describe the workload pattern, i.e., the
cyclic variations of many real-world application workloads.
Customer requests in different 𝑇𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 follow the similar
pattern.

(iii) SaaS ProviderModel. In order to satisfywith the customer
requests, SaaS provider 𝑅𝑠𝑎𝑎𝑠 needs to rent sufficient IaaS
resources from IaaS provider 𝑅𝑖𝑎𝑎𝑠 to run a web application𝑅𝑎𝑝𝑝. At each decision time 𝑇𝑖, where 𝑖 ∈ [1, 2, . . .] and

𝑇𝑖+1 − 𝑇𝑖 = 𝑇𝑝𝑒𝑟𝑖𝑜𝑑, SaaS provider 𝑅𝑠𝑎𝑎𝑠 is able to adjust
his renting policy depending on the change of customer
workloads and his current knowledge. A renting policy
involves two aspects: the choice of pricing method and the
number of required different types of VM instances. We use a

tuple (𝑋jO

Ti
, 𝑋jR

𝑇i ) to represent the new generated renting policy

at time Ti, where 𝑋jO

Ti
is the number of rented on-demand

VM instances with type j for period [𝑇𝑖, 𝑇𝑖+1], and X
jR

Ti
is the

number of new rented reservation VM instances with type j
for [𝑇𝑖, 𝑇𝑖 + 𝑇𝑟𝑒𝑠𝑒𝑟V𝑎𝑡𝑖𝑜𝑛].

The total processing capacity offered by application 𝑅𝑎𝑝𝑝
at time t is calculated as

totalCt =
N∑
j=1

(VjO
t + V

jR
t ) ∗ Cj (1)

where 𝑡 ∈ [𝑇𝑖, 𝑇𝑖+1] and V
jO
t and V

jR
t are the number of

rented on-demand VM instances and reserved VM instances
with type j during [𝑇𝑖, 𝑇𝑖+1], respectively. According to the

definition of the renting policy, V
jO
t = X

jO
Ti

and 𝑉𝑗𝑅𝑡 can be

defined as

V
𝑗𝑅
𝑡 = V

𝑗 𝐴𝑙𝑖V𝑒𝑅
𝑇𝑖 + X

𝑗𝑅
𝑇𝑖 (2)

where V
j AliveR
Ti

is the number of alive reserved VM

instances with type j at time 𝑇𝑖. Its computational formula is
as follows:

V
j AliveR

Ti
= V

j AliveR

Ti−1
− V
𝑗 notAliveR
Ti

(3)

where V
j AliveR

Ti−1
is the number of alive reserved VM

instances with type j at time𝑇𝑖−1 andVj notAliveR

Ti
is the number

of expired reserved VM instances with type j until 𝑇𝑖.
The goal of SaaS provider 𝑅𝑠𝑎𝑎𝑠 is trying to rent appro-

priate VM instances at different time to maintain the perfor-
mance of application 𝑅𝑎𝑝𝑝 as close as possible to the target
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demand given by customers while minimizing the renting
cost paid to IaaS service 𝑅𝑖𝑎𝑎𝑠. If the future workloads are
known in advance when 𝑅𝑠𝑎𝑎𝑠 is making the renting policy
decisions, this decision-making problem is easy to solve.
However, customer workloads are dynamic and unforesee-
able. SaaS provider normally has to decide his renting policy
before the next workload is coming. All these factors make
web application auto-scaling become a difficult objective for
SaaS provider 𝑅𝑠𝑎𝑎𝑠 to achieve.
4. Theoretical Foundations

Reinforcement learning (RL) is an important method in the
field of machine learning and intelligent control [18]. In a
dynamic and unknown environment, an agent with no prior
knowledge takes an action to change its state and then gets
an instantaneous reward from environment which reflects
the quality of this action. Based on the feedback and current
state, this agent makes a decision for the next action.Through
constant trial-and-error interactions with the environment,
this agent is able to learn the optimal actions for different
states.

In general, because of the uncertainty and randomness
properties, reinforcement learning problems can be modeled
asMarkovDecision Processes (MDPs), which describe a fully
observable environment for reinforcement learning [19]. A
Markov Decision Process can be defined by a five tuple:M =⟨S,A,P,R, 𝛾⟩. S is a set of environmental states. A is a
set of actions. P𝑎(𝑠, 𝑠󸀠) = P(𝑠𝑡+1 = 𝑠󸀠 | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎)
represents the probability that action 𝑎 in state 𝑠 at time t
will move to a new state 𝑠󸀠 at time t + 1. R is a reward
function, where R𝑎(𝑠, 𝑠󸀠) = E(𝑠𝑟+1 | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝑠𝑡+1 =𝑠󸀠) is the immediate reward obtained by transferring from
state 𝑠 to 𝑠󸀠 with action 𝑎. 𝛾 ∈ [0, 1] is a discount factor
which is used to balance the influence of present reward and
future rewards. In order to find the optimal policy 𝜋∗(𝑠) in
state 𝑠, the optimal value function is defined as 𝑉∗(𝑠) =
max𝜋E(∑∞𝑡=0 𝛾𝑡R𝑡(𝑠𝑡, 𝑠𝑡+1)), where 𝜋 is a complete decision
policy for following steps. This function can be rewritten as𝑉∗(𝑠) = maxa(R(𝑠, 𝑎) + 𝛾∑𝑠󸀠∈S 𝑇(𝑠, 𝑎, 𝑠󸀠)V(𝑠󸀠)), ∀s ∈ S.
Therefore, the optimal policy for state 𝑠 can be specified as𝜋∗(𝑠) = argmaxa(R(𝑠, 𝑎) + 𝛾∑𝑠󸀠∈S 𝑇(𝑠, 𝑎, 𝑠󸀠)V(𝑠󸀠)). As long
as the optimal value function is found, the optimal policy can
be obtained accordingly.

If the entire environment model is known, a MDP prob-
lem can be easily resolved by some dynamic programming
methods, such as value iteration and policy iteration. How-
ever, in most cases, the state transition probability function
and reward function are not known in advance. Q-learning
[20] is a model-free reinforcement learning algorithm which
can be used to find optimal policies by learning fromprevious
decision-making experiences. It does not rely on complete
a priori knowledge of the environment. Following the basic
idea of reinforcement learning, agents constantly perform
actions in different states and then observe state transitions
and relevant rewards. Derived from the optimal value func-
tion we mentioned before, Q-learning uses Q function to
approximate the real benefit of each state-action pair <a, s>

(i.e., taking action 𝑎 in state 𝑠) by updating Q values during
learning processes. The update rule is defined as follows:

Q (𝑠𝑡, 𝑎𝑡)
= Q (𝑠𝑡, 𝑎𝑡)

+ 𝛼 [𝑟𝑡+1 + 𝛾max𝑎 𝑄 (𝑠𝑡+1, 𝑎𝑡+1) −Q (𝑠𝑡, 𝑎𝑡)]
= (1 − 𝛼)Q (𝑠𝑡, 𝑎𝑡) + 𝛼 [𝑟𝑡+1 + 𝛾max𝑎 𝑄 (𝑠𝑡+1, 𝑎𝑡+1)]

(4)

where 𝛼 ∈ [0, 1] is the learning rate, determining the
importance of new observed information compared with
what has already been learnt so far. 𝛾 ∈ [0, 1] describes how
much future reward affects current decision. It represents
the weight of immediate gains and long-term benefits. All
these up-to-date Q values as an important part of known
information for agents are stored in real time.

At any decision time, there are two different strategies for
an agent to generate the next action. One is greedy policy,
which means that agent will choose the optimal action based
on his current knowledge. Another method is to select an
action randomly. Although this policy may result in a bad
payoff, it is able to update the existing experience information
and detect the changes of environment. In view of this, we
use 𝜀-greedy policy which combines the above two strategies
together during the whole learning process.

5. Self-Adaptive Cloud Resources Renting
Approach for SaaS Providers

In a dynamic cloud market, customer workload is always
changing. Faced with this environment, SaaS providers have
to take IaaS service purchase decisions regularly to maximize
their utility. Since these decisions have some uncertainty and
they are affected by each other, we model the SaaS provider
resource renting problem as a MDP. And of course it can
be solved by Q-learning method. In this section, we will
first describe the key elements of this Q-learning problem
and then present our self-adaptive cloud resources renting
algorithm.

5.1. State Space and Actions. The state space S contains all
possible states that the SaaS provider 𝑅𝑠𝑎𝑎𝑠 may experience.
Each state 𝑠 ∈ 𝑆 provides sufficient information to describe
the current situation of 𝑅𝑠𝑎𝑎𝑠 in this market. We define each
state as a 3-tuple: 𝑠 = (𝑐𝑤, V𝑚, 𝑡𝑖𝑚𝑒), where

(i) cw is the average customer workload in last decision
period;

(ii) vm is a set which records the number of VM instances
of each type that the SaaS provider 𝑅𝑠𝑎𝑎𝑠 owns at
present;

(iii) time is a specific time within the workload period𝑇𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑.
Given a state 𝑠 ∈ 𝑆, the corresponding action set 𝐴(𝑠) in-

cludes all available actions that can be taken. Here each
action at state s is expressed as a=(𝑉1𝑂𝑠 , 𝑉1𝑅𝑠 , . . . , 𝑉𝑗𝑂𝑠 ,𝑉𝑗𝑅𝑠 , . . . , 𝑉𝑁𝑂𝑠 , 𝑉𝑁𝑅𝑠 ), where 𝑉𝑗𝑂𝑠 is the number of rented
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on-demand VM instances of type j for the next period𝑇𝑝𝑒𝑟𝑖𝑜𝑑 and 𝑉𝑗𝑅𝑠 is the number of new rented reservation VM
instances of type j.

5.2. Reward Function. For the SaaS provider𝑅𝑠𝑎𝑎𝑠 , it is impor-
tant to provide adequate processing capacity to meet the
dynamic service requests which are in the form of continuous
workloads from customers. If current processing capacity
offered by 𝑅𝑠𝑎𝑎𝑠 is lower than the demand of customers,
customer satisfaction degree of this application 𝑅𝑎𝑝𝑝 will
decline. On the contrary, if SaaS provider 𝑅𝑠𝑎𝑎𝑠 allocates
too many VM instances to application 𝑅𝑎𝑝𝑝, the application
processing capacity will become much higher than current
customer workload. In this case, SaaS provider 𝑅𝑠𝑎𝑎𝑠 not only
overspends on renting VM instances, but also wastes cloud
resources. Both the above inappropriate renting behaviors
have adverse consequences on SaaS provider 𝑅𝑠𝑎𝑎𝑠’s utility.
Only when application 𝑅𝑎𝑝𝑝 possesses suitable processing
capacity which is closed to the actual amount of customer
workload, SaaS provider 𝑅𝑠𝑎𝑎𝑠 can obtain a great utility.
Considering these factors, we propose a reward function
which can describe the SaaS provider’s utility properly. At
a decision time 𝑇𝑖, given a state 𝑠 = (𝑐𝑤𝑇𝑖 , V𝑚𝑇𝑖 , 𝑡𝑖𝑚𝑒𝑇𝑖 ),
an action a=(𝑉1𝑂𝑠 , 𝑉1𝑅𝑠 , . . . , 𝑉𝑗𝑂𝑠 , 𝑉𝑗𝑅𝑠 , . . . , 𝑉𝑁𝑂𝑠 , 𝑉𝑁𝑅𝑠 ) and the

next state 𝑠󸀠 = (𝑐𝑤𝑇𝑖+1, V𝑚𝑇𝑖+1, 𝑡𝑖𝑚𝑒𝑇𝑖+1), if current workload
is 𝑤𝑇𝑖 , the reward function 𝑅(𝑠󸀠, 𝑎) is given by the following
equations:

𝑅 (𝑠󸀠, 𝑎) = 𝑃𝑟𝑜𝑓𝑖𝑡 (𝑎) + 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 (𝑎) (5)

𝑃𝑟𝑜𝑓𝑖𝑡 (𝑎) = 𝑃𝑢𝑠𝑎𝑔𝑒 − (𝑃𝑎𝑙𝑙𝑂 + 𝑃𝑎𝑙𝑙𝑅) (6)

𝑃𝑎𝑙𝑙𝑂 = 𝑁∑
𝑗=1

[
[
𝑃𝑗𝑂 ∗ X

𝑗𝑂
T𝑖

+ {{{
0, if X

𝑗𝑂
T𝑖

≤ X
𝑗𝑂
T𝑖−1

𝑃𝑛𝑒𝑤𝑂 ∗ (X𝑗𝑂T𝑖 − X
𝑗𝑂
T𝑖−1

) , else
]
]

(7)

𝑃𝑎𝑙𝑙𝑅 =
𝑁∑
𝑗=1

[
[
𝑃𝑗𝑟 ∗ (V𝑗 𝐴𝑙𝑖V𝑒𝑅𝑇𝑖 + X

𝑗𝑅
𝑇𝑖 )

+ {{{
0, if X

𝑗𝑅
T𝑖

≤ V
𝑗 𝑛𝑜𝑡𝐴𝑙𝑖V𝑒𝑅
𝑇𝑖

𝑃𝑛𝑒𝑤𝑅 ∗ (X𝑗𝑅T𝑖 − V
𝑗 𝑛𝑜𝑡𝐴𝑙𝑖V𝑒𝑅
𝑇𝑖 ) , else

]
]

(8)

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 (𝑎)

=
{{{{{{{{{{{{{{{

Pbonus, 𝑖𝑓 0 ≤ 𝑖𝑑𝑙𝑒𝑉𝑀𝑇𝑖 ≤ 1
Pbonus ∗ (1 − idle𝐶𝑇𝑖𝐶𝑇𝑖 ) , 𝑖𝑓 𝑖𝑑𝑙𝑒𝑉𝑀𝑇𝑖 > 1
−P𝑝𝑒𝑛𝑎𝑙𝑡𝑦 ∗ (1 + −idle𝐶𝑇𝑖𝑤𝑇𝑖 ) , 𝑒𝑙𝑠𝑒

(9)

idle𝐶𝑇𝑖 = 𝑡𝑜𝑡𝑎𝑙𝐶𝑇𝑖 − 𝑤𝑇𝑖 (10)

𝑎V𝑔𝐶𝑇𝑖 = ∑𝑁𝑗=1 𝐶𝑗 ∗ (X𝑗𝑂T𝑖 + X
𝑗𝑅
T𝑖
)

∑𝑁𝑗=1 (X𝑗𝑂T𝑖 + X
𝑗𝑅
T𝑖
) (11)

𝑖𝑑𝑙𝑒𝑉𝑀𝑇𝑖 = idle𝐶𝑇𝑖𝑎V𝑔𝐶𝑇𝑖 (12)

𝑃𝑟𝑜𝑓𝑖𝑡(𝑎) is the profit that SaaS provider 𝑅𝑠𝑎𝑎𝑠 earned
by providing SaaS service to his end users. It equals the
difference between his income 𝑃𝑢𝑠𝑎𝑔𝑒 from customers and the
total expenses (𝑃𝑎𝑙𝑙𝑂 + 𝑃𝑎𝑙𝑙𝑅) that he spends on renting IaaS
facilities from IaaS provider 𝑅𝑖𝑎𝑎𝑠. 𝑃𝑎𝑙𝑙𝑂 and 𝑃𝑎𝑙𝑙𝑅 are the costs
of on-demand VM instances and reserved VM instances,
respectively. Each of them involves two parts: one is the real
cost and the other one is the initial cost of newly added VM
instances. In reality, if a SaaS provider wants to rent a new
VM instance, in addition to the VM usage charge that he has
to pay to the IaaS provider, a small extra cost 𝑃𝑛𝑒𝑤𝑂 or 𝑃𝑛𝑒𝑤𝑅
regarding application deployment and VM warm-up will be

incurred. Definitions of 𝑃𝑜, 𝑃𝑟, 𝑉j AliveR
Ti

and 𝑉j notAliveR
Ti

have

been given in Section 3.𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝑎) is the gain of application performance,
which depends on the resource utilization. If SaaS provider𝑅𝑠𝑎𝑎𝑠 owns sufficient VM instances to execute customer
workloads, a positive reward will be received. In contrast, a
penalty will be caused if application processing capacity is
lower than the customers’ demand. The value of reward or
penalty is related to the distance between the offered process-
ing capacity and the real customer workload. Definitions of𝑡𝑜𝑡𝑎𝑙𝐶𝑇𝑖 and 𝐶𝑗 can be found in Section 3.

5.3. Action Selection and State Transition. Since we use the
above reward function to calculate reward 𝑅(𝑠󸀠, 𝑎) and then
use it to update the corresponding Q value, the newest Q
value for each state-action pair represents an estimation of
the future utility that the SaaS provider will achieve. As we
explained in Section 4, we adopt the 𝜀-greedy policy. Because
SaaS provider wants to maximize his utility, the optimal
action based on current knowledge 𝑎∗ = argmax𝑎𝑄(𝑠𝑇𝑖 , a)
will be chosenwith a high probability 1−𝜀. Besides, in order to
exploremore possible state-action choices, a stochastic action
instead of the best one will be taken with a low probability 𝜀.

Once SaaS performs a specific action 𝑎𝑇𝑖 , the state will
change accordingly, from 𝑠𝑇𝑖 to 𝑠𝑇𝑖+1 . Meanwhile, the Q value
of state-action pair < 𝑠𝑇𝑖 , 𝑎𝑇𝑖 > will be updated based on
current reward value and next state 𝑠𝑇𝑖+1 . The update formula
has been given in (4).

5.4. Self-Adaptive Cloud Resources Renting Approach. In
order to help SaaS provider 𝑅𝑠𝑎𝑎𝑠 generate an appropriate
renting plan in a dynamic cloud market, a Q-learning based
self-adaptive renting plan generation algorithm is proposed
(Algorithm 1). With the idea of Q-learning, SaaS provider𝑅𝑠𝑎𝑎𝑠 keeps learning from previous renting experiences and
enriching its knowledge. This accumulated information can
help 𝑅𝑠𝑎𝑎𝑠 know the best choices in different situations and
then generate an efficient renting policy for each decision
period.

6. Experimental Design and Analysis

In this section, we will evaluate our Q-learning based self-
adaptive renting plan generation algorithm through a series
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Input: Initialize parameters 𝜀, 𝛼 and 𝛾
StateNum←󳨀1, s←󳨀 an initial state, S[StateNum]←󳨀s, add A(s) to A
For ∀𝑎 ∈ 𝐴(𝑠), initialize Q-values𝑄(𝑠, 𝑎)

Output: action a for each renting decision period
(1) loop (for each renting decision period)
(2) // choose an action from A(s) using 𝜀-Greedy policy
(3) if Random(0,1) < 𝜀 then // exploration
(4) a←󳨀random A(s)
(5) else //exploitation
(6) a←󳨀argmax𝑎 𝑄(𝑠, 𝑎)
(7) end if
(8) submit renting plan(i.e. action a) to IaaS provider 𝑅𝑖𝑎𝑎𝑠
(9) observe customer workload w over this period
(10) move to new state 𝑠󸀠
(11) if 𝑠󸀠 ∉ 𝑆 then // add new state into state space
(12) StateNum++
(13) S[StateNum]←󳨀 𝑠󸀠
(14) For ∀𝑎󸀠 ∈ 𝐴(𝑠󸀠), initialize Q-values𝑄(𝑠󸀠, 𝑎󸀠)
(15) end if

(16) calculate reward r←󳨀 𝑅(𝑠󸀠, a) using (5) - (12)
(17) update 𝑄(𝑠, 𝑎) ←󳨀 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾max𝑎󸀠 𝑄(𝑠󸀠, 𝑎󸀠) − 𝑄(𝑠, 𝑎)]
(18) s←󳨀 𝑠󸀠
(19) end loop

Algorithm 1: Q-learning based self-adaptive VM instances renting algorithm.

of experiments. First, we describe the basic simulated cloud
environment and present two other IaaS facilities renting
strategies which will be used as baselines to evaluate our
proposed algorithm in the following experiments. Then we
will mainly study the performance of Q-learning based self-
adaptive renting plan generation algorithm under different
cloudmarket settings.We implement all algorithms inMatlab
R2014b. All experiments were carried out on a MacBook Pro
with 2.7 GHz Intel Core i5 CPU and 8GB RAM.

6.1. Experimental Setup. In our experiment, we simulate
a dynamic cloud environment which involves one IaaS
provider𝑅𝑖𝑎𝑎𝑠, one SaaS provider𝑅𝑠𝑎𝑎𝑠 , and some SaaS service
customers. Based on the model we formulated before, default
experimental parameters are set as follows.

Attributes of Cloud Resources. IaaS provider 𝑅𝑖𝑎𝑎𝑠 has 2 types
of VMs and employs two pricing methods. The rental costs
($ per hour) of on-demand VM instances and reserved VM
instances are 𝑃1𝑜 = 0.094, 𝑃2𝑜 = 0.2 and 𝑃1𝑟 = 0.072, 𝑃2𝑟 =0.13, respectively. In terms of the VM rental period, we set𝑇𝑝𝑒𝑟𝑖𝑜𝑑 = 1ℎ and 𝑇𝑟𝑒𝑠𝑒𝑟V𝑎𝑡𝑖𝑜𝑛 = 3ℎ. 𝐶1 = 200 and 𝐶2 = 400 are
the processing capacities of VM instances of type 1 and VM
instances of type 2, respectively.

Customer Workload Settings. Similar to the workload model
used in [14], we assume customer workloads are stochastic
but follow a certain regularity in period 𝑇𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑. Here we set𝑇𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 = 24ℎ. The workload in each period 𝑇𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 is a
series of discrete data which obeys a normal distribution with
some noise, varying in [3000, 8000]. The noise is generated
randomly in interval [-300, 300]. Customers submit requests

hourly so there are totally 24 workloads for 0 to 23 o’clock in a
day. SaaS provider 𝑅𝑠𝑎𝑎𝑠 adjusts the renting policy every hour
before the customer workload coming. That is to say, 𝑅𝑠𝑎𝑎𝑠
does not know customers’ future workloads in advance.

Reward Function Parameters. Reward function represents the
utility of SaaS provider 𝑅𝑠𝑎𝑎𝑠. As for the profit part, we set
the newly added costs of VM instances as fractions of the
actual rental costs: 𝑃𝑛𝑒𝑤𝑂 = 𝑃𝑜/60, 𝑃𝑛𝑒𝑤𝑅 = 𝑃𝑟/60. 𝑃𝑢𝑠𝑎𝑔𝑒 is
the revenue that SaaS provider 𝑅𝑠𝑎𝑎𝑠 obtains from end users.
In this model, we assume 𝑃𝑢𝑠𝑎𝑔𝑒 is a constant. For example,𝑅𝑠𝑎𝑎𝑠 has fixed number of customers and they are charged
annually. Therefore, we can ignore 𝑃𝑢𝑠𝑎𝑔𝑒 from the reward
function and set its value to zero. In terms of the parameters of
performance, the values of positive reward and penalty with
regard to resource utilization are given by Pbonus = 2 and
P𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 1, respectively.
Q-Learning Parameters. In our proposed scenario, we set the
values of learning rate 𝛼 and discount factor 𝛾 to be both 0.5.
The value of 𝜀 is 0.1 for 𝜀-greedy policy. According to the value
range of customer workloads, we set the maximum number
of rented VM instances for each type to be 28.

Since customer workloads change regularly in 24 hours
(i.e.,𝑇𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑), we use everyday reward of SaaS provider 𝑅𝑠𝑎𝑎𝑠
as the evaluation indicator for these experiments. Because of
the randomness of customerworkloads, each experiment was
repeated 50 times and the average results will be presented.

Baseline Algorithms. In order to measure the performance
of our algorithm (QAA), we will compare it with another
two algorithms with different renting strategies: empirically
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Figure 3: Everyday reward of Rsaas in on-demand market.

based adjustment algorithm (EAA) and threshold-based
adjustment algorithm (TAA).

Empirically based adjustment algorithm adopts a simple
and direct strategy to generate new renting policy. Because
SaaS provider 𝑅𝑠𝑎𝑎𝑠 does not know the upcoming customer
workload when making decisions, he adjusts the number
of rental VM instances according to the last workload.
Specifically, at decision time 𝑇𝑖, SaaS provider 𝑅𝑠𝑎𝑎𝑠 will rent𝑤𝑇𝑖−1/𝑎V𝑔𝐶𝑇𝑖−1 VM instances from IaaS provider 𝑅𝑖𝑎𝑎𝑠.

Threshold-based adjustment algorithm is similar to
empirically based adjustment algorithm. It also refers to the
last customer workload but does not change the renting
policy each time. Onlywhen the difference between customer
workload and processing capacity offered by 𝑅𝑠𝑎𝑎𝑠 exceeds a
specific threshold, a new renting policy will be generated.The
basic rules are given as follows:

(i) If |𝑡𝑜𝑡𝑎𝑙𝐶𝑇𝑖−1 − 𝑤𝑇𝑖−1 | > 𝑤𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and 𝑡𝑜𝑡𝑎𝑙𝐶𝑇𝑖−1 −𝑤𝑇𝑖−1 < 0, then rent more VM instances to fit 𝑤𝑇𝑖−1 .
(ii) If |𝑡𝑜𝑡𝑎𝑙𝐶𝑇𝑖−1 − 𝑤𝑇𝑖−1 | > 𝑤𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and 𝑡𝑜𝑡𝑎𝑙𝐶𝑇𝑖−1 −𝑤𝑇𝑖−1 > 0, then rent less VM instances to fit 𝑤𝑇𝑖−1 .
(iii) If 0 ≤ |𝑡𝑜𝑡𝑎𝑙𝐶𝑇𝑖−1 − 𝑤𝑇𝑖−1 | ≤ 𝑤𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, then maintain

previous renting policy.

We set 𝑤𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑅𝑎𝑡𝑒 ∗ 𝑎V𝑔𝐶𝑇𝑖−1 , where𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑅𝑎𝑡𝑒 = 0.2.
6.2. Experiments of On-Demand VMs Market. In this part,
we consider a simple cloud market environment where IaaS
provider 𝑅𝑖𝑎𝑎𝑠 only provides on-demand VM instances to
SaaS provider 𝑅𝑠𝑎𝑎𝑠. For each decision period, SaaS provider𝑅𝑠𝑎𝑎𝑠 uses Q-learning based self-adaptive renting plan gen-
eration algorithm to readjust his renting policy to adopt the
workload change.

Figure 3 shows the variation of SaaS provider’s everyday
reward in 200 days. Each colored dash line is the actual
everyday reward curve for one test and the solid magenta
line is the average results of 50 experiments. It is clear that
SaaS provider’s everyday reward is lower at the early stage of
decision-making periods but it keeps rising and then rapidly
reaches a high and relatively stable level.

In order to observe more clearly, we show some detailed
information in Figure 4. Figures 4(a)–4(d) depict the com-
parison results of customer workload and SaaS provider’s
offered capacity in days 20, 40, and 60 and the last day,
respectively. In day 20, SaaS provider 𝑅𝑠𝑎𝑎𝑠 prefers to rent
a small number of VM instances even though his capacity
does not meet customers’ demand. This results in a low
reward in return in most of the day. As shown in Figures
4(b)–4(d), we can find that the gap between customer
workload and 𝑅𝑠𝑎𝑎𝑠 owned capacity becomes smaller and
the capacity is always higher than customer workload as
time goes by. The reason for this series of changes is that
with the help of Q-learning based self-adaptive renting plan
generation algorithm, the SaaS provider gets more trading
experiences. This accumulated knowledge suggests him to
generate optimal renting policy in most cases.

For the purpose of estimating the performance of our pro-
posed algorithm,we compare it with the other twomentioned
algorithms EAA and TAA. As maximizing SaaS provider’s
utility is the optimization target of this model, we focus on
comparing three algorithms with regard to everyday reward
of𝑅𝑠𝑎𝑎𝑠. Figure 5 presents the average everyday reward curves
for three renting decision-making processes using different
algorithms. Compared with algorithms EAA and TAA, our
proposed algorithm does not perform well during the initial
learning phases. However, after a period of time (around
day 47), a higher reward could be obtained and this leading
position still be kept in the following days.

As we mentioned before, because of the nature of Q-
learning, our approach could adapt to the market changes
automatically. In this experiment, we use two periodic
stochastic workloads to estimate its performance in this
respect. In the first phase (for day 1 to day 1250), we still
use the default customer workloads which vary in [3000,
8000]. From day 1251, the workloads are changed to another
value range [2500,6000] with the same noise generation
method that we apply in default workloads. Figure 6 displays
the changes of SaaS provider’s everyday reward throughout
the whole period, which also reflects the adaptive ability of
our algorithm. In both phases, reward values first increase
gradually and then reach a stable level.

6.3. Experiments of Reserved VMs Market. In this part, we
apply Q-learning based self-adaptive renting plan generation
algorithm into another simulated cloud market. In this sce-
nario, SaaS provider 𝑅𝑠𝑎𝑎𝑠 only rents reserved VM instances
from IaaS provider 𝑅𝑖𝑎𝑎𝑠.

Compared with the flexibility of on-demand VM
instances, reserved VM instances have a restriction on the
minimum rental period. It is obvious that the longer this
period (i.e., 𝑇𝑟𝑒𝑠𝑒𝑟V𝑎𝑡𝑖𝑜𝑛) is set, the less flexibility is given to
the SaaS provider. This is because SaaS provider 𝑅𝑠𝑎𝑎𝑠 is not
allowed to reduce the number of VM instances that are still
within the validity period, even if he has no further use for
so many resources. On this account, we set different values
to 𝑇𝑟𝑒𝑠𝑒𝑟V𝑎𝑡𝑖𝑜𝑛 to study the relationship between everyday
reward and the length of period 𝑇𝑟𝑒𝑠𝑒𝑟V𝑎𝑡𝑖𝑜𝑛. Figure 7(a)
depicts reward curves of 𝑅𝑠𝑎𝑎𝑠 under different settings
of 𝑇𝑟𝑒𝑠𝑒𝑟V𝑎𝑡𝑖𝑜𝑛. We can find that no matter the length of
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Figure 4: Comparisons between customer workload and offered capacity in different days.
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Figure 5: Performance comparison in on-demand VMs market.
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Figure 6: Reward variation under different customer demands.
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Figure 7: Comparison results regarding different Treservation.

𝑇𝑟𝑒𝑠𝑒𝑟V𝑎𝑡𝑖𝑜𝑛, each reward curves can reach a stable level in the
end. It means that our proposed algorithm is still effective
on generating appropriate policy for 𝑅𝑠𝑎𝑎𝑠 in reserved VMs
market. Moreover, it is clear that, for a specific day, a higher
reward can be obtained with a shorter 𝑇𝑟𝑒𝑠𝑒𝑟V𝑎𝑡𝑖𝑜𝑛. This is
because, with a shorter minimum rental period, 𝑅𝑠𝑎𝑎𝑠 has
more flexibility to adjust the number of owned VM instances
to respond to the changes of customer demand at different
times. Figure 7(b) compares the customer workload curve
with the offered processing capacity curves corresponding
to different 𝑇𝑟𝑒𝑠𝑒𝑟V𝑎𝑡𝑖𝑜𝑛 in the last 6 days. As shown in
this graph, the capacity curve with a shorter 𝑇𝑟𝑒𝑠𝑒𝑟V𝑎𝑡𝑖𝑜𝑛
is closer to the real customer workload. Accordingly, its
corresponding reward curve in Figure 7(a) is higher than
others.

Figure 8 presents the performance comparison results
of three different algorithms regarding achieved everyday
reward. In this experiment, we set 𝑇𝑟𝑒𝑠𝑒𝑟V𝑎𝑡𝑖𝑜𝑛 = 3 which
is the default value we defined in Section 6.1. Similar to

the observations that we get in Figure 5 (i.e., comparison
results in on-demand VMs market), our algorithm can
generate better renting policy in the long run compared with
algorithms EAA and TAA.

6.4. Experiments of HybridMarket. In previous experiments,
we evaluate Q-learning based self-adaptive renting plan gen-
eration algorithm in on-demand VMs market and reserved
VMs market separately. In this part, we consider a more
complex environment that IaaS provider 𝑅𝑖𝑎𝑎𝑠 adopts two
pricing models in a hybrid market. Compared with on-
demand VMs market, SaaS provider 𝑅𝑠𝑎𝑎𝑠 is able to acquire
reserved VM instances to reduce his renting cost. Meanwhile,
he can adjust his renting policy more freely than in a
market where IaaS provider 𝑅𝑖𝑎𝑎𝑠 only provides reserved
VM instances. Figure 9 displays the performance of SaaS
provider’s reward in the on-demand VMs market, reserved
VMsmarket, and hybrid market. We can find that, faced with
the same customer workloads, 𝑅𝑠𝑎𝑎𝑠 could gain more rewards
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Figure 8: Performance comparison in reserved VMs market.
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Figure 9: Performance comparison in different market settings.

if he rents both on-demand VM instances and reserved VM
instances from 𝑅𝑖𝑎𝑎𝑠.
7. Conclusion and Future Work

In this paper, we proposed a cloud application auto-scaling
approach based onQ-learning method to help SaaS providers
make optimal resource allocation decisions in a dynamic
and stochastic cloud environment. Unlike existing studies,
we took into account different VM pricing mechanisms
in our model, including on-demand pattern and reserved
pattern. Through a series of experiments, we demonstrated
the effectiveness of our algorithm and evaluated its perfor-
mance in different market settings. Nevertheless, auction-
based pricingmechanismplays an important role in the cloud
trading market. In the future, we will add spot VMs into our
model and design appropriate algorithms for a more complex
heterogeneous cloud market.
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