
This is a repository copy of A classification of poromechanical interface elements.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/141940/

Version: Accepted Version

Article:

de Borst, R. orcid.org/0000-0002-3457-3574 (2017) A classification of poromechanical 
interface elements. Journal of Modeling in Mechanics and Materials, 1 (1). 20160160. 
ISSN 2328-2355 

https://doi.org/10.1515/jmmm-2016-0160

© 2017 Walter De Gruyter GmbH. This is an author produced version of a paper 
subsequently published in Journal of Modeling in Mechanics and Materials. Uploaded in 
accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


A classification of poromechanical interface elements

René de Borsta,∗

aUniversity of Sheffield, Department of Civil and Structural Engineering, Sir Frederick Mappin Building,
Mappin Street, Sheffield S1 3JD, UK

Abstract

Interface elements are a classical approach to represent discrete cracks, joints and
faults. The basic kinematic and constitutive aspects are recapitulated and the extension
to hydromechanical conditions is elaborated. A classification is presented of hydrome-
chanical interface elements, depending on the multiplicity of the pressure degree of
freedom, and the physical implications of the different possibilities are explained.
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1. Introduction

Fracture in fluid-saturated porous media is a challenging, multi-scale problem with
moving internal boundaries, characterised by a high degreeof complexity. Moreover,
fracture initiation and propagation in fluid-saturated porous materials occur frequently,
indicating that there is also a large practical relevance. The existence and propagation
of cracks in porous materials can be undesirable, like thosethat form in human tissues,
or when the storage of waste in rocks or salt domes is concerned. But cracking can
also be a pivotal element in an industrial process, for example hydraulic fracturing in
the oil and gas industry. Another important application area is the rupture of geological
faults, where the change in geometry of a fault can drastically affect local fluid flow as
the faults can act as channels in which the fluid can flow freely.

Interface elements are a powerful and relatively simple manner to simulate crack
initiation and propagation [1, 2]). Remeshing has been introduced to decouple the
crack propagation path from the original mesh [3, 4, 5, 6, 7].The extended finite
element method [8, 9] has been proposed as an alternative approach. It decouples the
crack propagation path from the underlying discretisation, and has been a main carrier
of numerical approaches to fracture for more than a decade. The extension to fracture in
fluid-saturated porous media has been accomplished as well [10, 11, 12, 13, 14, 15, 16].

The main subject of this paper is a classification of discretisation technologies for
poroelastic interfaces, starting from the case that the pressure is continuous across the
discontinuity, but where the pressure gradient is discontinuous. This relatively simple
formulation already allows for the transport and storage ofliquid inside the crack,
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Preprint submitted to Journal of Modeling in Mechanics and Materials December 19, 2016



provided that the pressure gradient can be discontinuous. In the extended finite element
method this is achieved by partitioning the pressures at both sides of the discontinuity
by a signed distance function [11, 13]. In interface elements [17] a discontinuous
pressure gradient across the discontinuity comes in naturally, as by definition they are
C0-continuous with respect to the pressure across the interface. Pressure continuity
has also been assumed by Armero and Callari [18] using a discontinuous enrichment
for the displacements exploiting the Enhanced Assumed Strain concept. In the latter
case flow and storage inside the cracks isnot enabled since, within the element, the
continuity of the pressure field is higher thanC0.

Other poroelastic interfaces can be constructed starting from the assumption that
the pressure is discontinuous orthogonal to the discontinuity [10, 12, 19, 20], or that a
Dirac function is superimposed on the interpolation functions for the pressure field as
in [21]. Again, it depends on the applied discretisation technology whether flow and
storage are enabled inside the crack. In [10, 12] this has been achieved by partition-
ing the pressure field at both sides of the discontinuity through a Heaviside function
placed at it, which enables the gradient to be discontinuousas well. Likewise, it is
naturally embedded in interface elements with a double pressure node because of the
C−1 continuity in the pressure field at the interface [19, 20]. Itis finally noted that
(pressure-continuous) poroelastic interface elements have also been developed within
the context of isogeometric analysis [22], including the possibility of fluid flow and
storage in the discontinuity [23].

Herein, we start with a brief recapitulation of three-dimensional, mechanical inter-
face elements. Next, extension is made to interfaces that are embedded in a poromechi-
cal medium, and that allow for mass transport within the interface. Three formulations
are distinguished, with a single pressure node, a double pressure node, and a triple
pressure node at the discontinuity. The strong and weak forms are given, as well as
the discretised format, and the physical implications of the different choices. Examples
with single and double pressure nodes conclude the paper.

2. Standard interface elements

Interface elements are normally inserted a priori in the finite element mesh, unless
remeshing is used. For stationary discontinuities, or whenthe direction of the prop-
agation is known, interface elements can be used in a simple manner. When internal
discontinuities propagate, they can be used in combinationwith remeshing.

The kinematic quantities in continuous interface elementsare a set of mutually
orthogonal, relative displacements:~un� for the opening mode, and~us�, ~ut� for the
two sliding modes. When collecting the relative displacements in a vector

~u� = (~un�, ~us�, ~ut�)
T, (1)

which is defined in a locals, n, t-coordinate system, they can be related to the displace-
mentsu+ at the upper side of the interface,Γ+d , and the displacementsu− at the lower
side of the interface,Γ−d , via

~u� = R
(

u+ − u−
)

, (2)
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Figure 1: Geometry and local coordinate system in the interface

whereu+, u− are expressed in the globalx, y, z-coordinate system, andR = (sΓd , nΓd , tΓd )
is the standard rotation matrix between the local and the global coordinate system, with
sΓd , tΓd mutually orthogonal unit vectors aligned with the discontinuity, andnΓd the unit
vector normal to the discontinuity, see also Figure 1 for a two-dimensional representa-
tion. The displacements are interpolated in a standard manner as:

u = Ha, (3)

where

H =





h 0 0
0 h 0
0 0 h




(4)

anda is the nodal displacement array that contains the degrees offreedom related to the
N nodes in case of a standard continuum element. For an interface element, however,
the nodes are doubled, one set ofN nodes for theΓ+d side of the interface, and another
set ofN nodes for theΓ− side, cf Figure 2. The 1× N matricesh contain the shape
functionsh1, ..., hN:

h =





h1

...

...

hN





. (5)

The relation between the nodal displacements and the relative displacements for inter-
face elements then reads:

~u� = R
(

u+ − u−
)

= R
(

Ha+ − Ha−
)

= RBdã, (6)

with

Bd =





−h +h 0 0 0 0
0 0 −h +h 0 0
0 0 0 0 −h +h




. (7)

the relative displacement-nodal displacement matrix for the interface element, and̃a
containing the discrete nodal displacements at both sides of the interface expressed
in the globalx, y, z-coordinate system. It is noted that, althoughã contains twice the
number of degrees of freedom as doesa per element, no degrees of freedom are added
to the system.
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Figure 2: Interface elements enriched with pressure nodes

In the local coordinate system, the cohesive tractionst loc
d are related to the relative

displacements~u� via a nonlinear relation:

t loc
d = t loc

d (~u�, κ), (8)

with κ a history parameter. Similar to the relative displacements, the traction vectort loc
d

can be related to the tractions in the global coordinate system using the rotation matrix
R:

t loc
d = Rtd (9)

For use in a Newton-Raphson iterative procedure this constitutive relation can be lin-
earised as:

dt loc
d = Dd d~u�, (10)

with ’d’ a small increment, and

Dd =
∂t loc

d

∂~u�
. (11)

The limiting case thatt loc
d = 0 obviously represents a traction-free crack.

For the purely mechanical case, the equilibrium equation reads:

∇ ·σσσ = 0. (12)

After multiplication by a test functionηηη and application of Gauss’ theorem, the weak
form is obtained:

∫

Ω

∇ηηη : σσσdΩ

−

∫

Γ+d

ηηη+ · (nΓ+d ·σσσ
+)dΩ −

∫

Γ−d

ηηη− · (nΓ−d ·σσσ
−)dΩ =

∫

Γt

ηηη · t pdΩ,
(13)

4



Γ

Γ
d

_

+

d

n

n

Γ

Γ

d

_

d
Γ +

n
Γtp

up

q

q

q
d

_

+

d

Ω

p

pp

Figure 3: BodyΩ with external boundaryΓ and internal boundariesΓ+d andΓ−d

with t p the prescribed tractions at the external traction boundaryΓt. SinceΓd = Γ
+
d =

Γ−d , which defines the zero-thickness interfaceΓd, the surface integrals at this interface
can be elaborated as follows. We define:

nΓd = nΓ−d = −nΓ+d (14)

see also Figure 3. Next, we assume traction continuity between the interface and the
bulk:

σσσ+ · nΓ−d = − σσσ
− · nΓ+d = td, (15)

with td the cohesive tractions. Using Equation (15), the equilibrium equation, Equa-
tion (13), can be reworked as:

∫

Ω

∇ηηη : σσσdΩ +
∫

Γd

~ηηη� · t loc
d dΓ =

∫

Γt

ηηη · t pdΓ, (16)

We discretise the test functionηηη in a Bubnov-Galerkin sense:

ηηη = Hw (17)

with w a nodal array. Noting that

~ηηη� = RBdw̃ (18)

cf. Equation (6), and following standard procedures the discrete form of Equation (16)
results: ∫

Ω

wTBT
uσσσdΩ +

∫

Γd

w̃TBT
d RTt loc

d
︸︷︷︸

td

dΓ =
∫

Γt

wTBT
u t pdΓ, (19)

with
Bu = LH , (20)

5



L =





∂
∂x 0 0
0 ∂

∂y 0
0 0 ∂

∂z
∂
∂y

∂
∂x 0

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x





(21)

the matrix that relates the strains,ǫǫǫ, to the displacements a continuum element:ǫǫǫ =
Lu . Considering that this identity must hold for all admissible test functions, and
rearranging yields:

f ext− f int = 0. (22)

with the external force vector

f ext =

∫

Γt

BT
u t pdΓ (23)

and the internal force vector

f int =

∫

Ω

BT
uσσσdΩ +

∫

Γd

BT
d tddΓ. (24)

The set of Equations (22) is generally nonlinear and is typically solved using a
Newton-Raphson scheme for every time step. Defining the material tangential stiffness
matrix

D j−1 =
∂σσσ

∂ǫǫǫ

∣
∣
∣
∣
∣
j−1

, (25)

which sets the relation between the change in the stress dσσσ and that in the strain, dǫǫǫ,
from iteration j − 1 to iterationj in the continuum, cf. [24]:

dσσσ = D j−1 dǫǫǫ, (26)

and utilising the material tangential stiffness matrix for the interface,Dd, the tangential
stiffness matrix after iterationj − 1, can be derived as:

K j−1 =
∂f int

j−1

∂a
=

∫

Ω

BT
u D j−1BudΓ

︸              ︷︷              ︸

KΩj−1

+

∫

Γd

BT
d RTDd, j−1RBddΓ

︸                       ︷︷                       ︸

K
Γd
j−1

. (27)

The iterative improvement da of the nodal displacements in iterationj then follows
from:

K j−1da = f ext− f int
j−1. (28)

Interface elements are often inserted in the finite element mesh prior to the compu-
tation, and a finite stiffness must be assigned in the pre-cracking phase with at leastthe
diagonal elements being non-zero. Prior to crack initiation, the stiffness matrix in the
interface element reads:

Dd =





dn 0 0
0 ds 0
0 0 dt




,
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with dn a high (dummy) stiffness normal to the interface andds and dt the tangen-
tial stiffnesses. It is noted that in the pre-cracking phase the numerical integration of
interface elements can entail inaccuracies [2].

3. Poromechanical interface elements

For a poromechanical interface element, each node is augmented with one or more
pressure degrees of freedom. For a single pressure degree offreedom, the pressure is
continuous at the internal discontinuity [11, 13, 17, 23]. When two pressure degrees
of freedom are added, the pressure can be discontinuous across the internal boundary
Γd [10, 12, 19, 20]. Alternatively, one can assume that the samepressure exists at both
sides of the discontinuity, but that this pressure is different from that inside the discon-
tinuity [21]. This model, in which a regularised Dirac function is superimposed on the
regular pressure field, also requires two degrees of freedomat the internal boundary.
However, from a physical point of view the case that the pressure is the same at both
sides of the interface may be less relevant, and its treatment is not pursued here. The
most general case is when the pressures at both sides of the crack are allowed to differ,
and can be different from the fluid pressure within the crack as well, a modelwith three
pressure nodes ensues [26]. It is finally noted that all threeoptions result in a pressure
gradient which can be discontinuous, allowing for storage and fluid flow within the
discontinuity. Indeed, the pressure across the interface element is at most interpolated
with aC0-continuity, yielding a pressure gradient that is at mostC−1-continuous.

In a fluid-saturated porous medium, the total stress is composed of a solid and a
fluid part:

σσσ = σσσs +σσσ f (29)

Using the Biot coefficientα, which takes into account the compressibility of the solid
grains [27], the total stress can be written as:

σσσ = σσσs − αpI (30)

with p the (apparent) fluid pressure andI the unit tensor. In a similar spirit we have

σσσ+ · nΓ−d = − σσσ
− · nΓ+d = td − pnΓd (31)

instead of Equation (15). When inserting Equations (30) and(31) into the weak form
of the equilibrium equation, Equation (13), and using Equation (14), we now obtain:

∫

Ω

∇ηηη : (σσσs − αpI )dΩ +
∫

Γd

~ηηη� · (t loc
d − pnloc

Γd
) dΓ =

∫

Γt

ηηη · t pdΓ. (32)

The mass balance of a fluid-saturated porous medium reads, e.g. [10, 27]:

α∇ · u̇s + n f (u̇ f − u̇s) +
1
M
∂p
∂t
= 0 (33)

with n f the porosity andM the Biot modulus. Inserting Darcy’s relation

n f (u̇ f − u̇s) = −k f∇p (34)
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with k f the permeability then gives:

α∇ · u̇s − ∇ ·
(

k f∇p
)

+
1
M
∂p
∂t
= 0. (35)

To arrive at the weak form, we multiply by a test function for the pressure,ζ. Integrat-
ing over the domainΩ and using the divergence theorem and the appropriate boundary
condition leads to:

−

∫

Ω

αζ∇ · u̇s dΩ −
∫

Ω

k f∇ζ · ∇p dΩ −
∫

Ω

ζ
1
M
∂p
∂t

dΩ

−

∫

Γ+d

ζ+nΓ+d · q
+
d dΓ −

∫

Γ−d

ζ−nΓ−d · q
−
d dΓ =

∫

Γq

ζnΓ · qpdΓ,
(36)

with qp the prescribed flux on the flux boundaryΓq. It is noted that the equation has
been multiplied by -1 as well in order to preserve symmetry after linearisation.

Having assumed equilibrium between the cavity and the bulk,Equation (15), in-
voking Equation (14), and noting that the (cohesive) tractionstd have a unique value,
the fluid pressurep has the same value at both faces of the cavity:p = p+ = p−. Using
a Bubnov-Galerkin approach, this implies that also the testfunctionζ attains the same
value at both faces:ζ = ζ+ = ζ−. With this corollary, the weak form of the mass
balance is modified as:

−

∫

Ω

αζ∇ · u̇s dΩ −
∫

Ω

k f∇ζ · ∇p dΩ −
∫

Ω

ζ
1
M
∂p
∂t

dΩ

+

∫

Γd

ζnΓd · ~qd�dΓ =
∫

Γ

ζnΓ · qpdΓ
(37)

A jump in the flux,
~qd� = q+d − q−d (38)

has now emerged in the integral for the discontinuity, see Figure 3. This term is mul-
tiplied by the normalnΓd to Γd, resulting in a jump of the flow normal to the internal
discontinuity. Accordingly, the flow can be discontinuous at Γd and some of the fluid
that flows into the crack can be stored or be transported within the crack. The jump in
the flux is therefore a measure of the net fluid exchange between a discontinuity (the
cavity) and the surrounding bulk material. It is emphasisedthat because of the pres-
ence of a discontinuity inside the domainΩ, the power of the external tractions onΓd

and the normal fluid flux through the faces of the discontinuity are essential features of
the weak formulation. Indeed, these terms enable the momentum and mass couplings
between a discontinuity – the mesoscopic scale – and the surrounding porous medium
– the macroscopic scale.

3.1. Interface elements with a continuous pressure

We first consider the case of a continuous pressure across theinterface element, so
that there is a single pressure node only, Figure 2(a). The pressure in the interface is
then interpolated as:

p = hT
pp, (39)
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where
hT

p =
(

(hp)1, ..., (hp)N

)

(40)

contains the interpolation polynomials (hp)1, ..., (hp)N for the pressure, and

p =





p1

...

...

pN





(41)

contains the nodal values of the pressurep. We discretise the test functionζ for the
pressure also in a Bubnov-Galerkin sense:

ζ = hT
pz, (42)

with z the corresponding nodal array. The gradients needed in subsequent elaborations
are assembled in a matrix

Bp =





∂(hp)1

∂x ... ...
∂(hp)N

∂x

∂(hp)1

∂y ... ...
∂(hp)N

∂y

∂(hp)1

∂z ... ...
∂(hp)N

∂z





(43)

so that
∇p = Bpp. (44)

When we define the external force vectorf ext as in Equation (23),

f ext
u =

∫

Γt

BT
u t pdΓ (45)

formally the same format for the discrete equilibrium equation is obtained as in Equa-
tion (22):

f ext
u − f int

u = 0. (46)

However, the interface term is now elaborated as:
∫

Γd

~ηηη� · (t loc
d − pnloc

Γd
) dΓ =

∫

Γd

w̃TBT
d (td − pnΓd ) dΓ, (47)

so that the internal force vector reads:

f int
u =

∫

Ω

BT
u (σσσs − αpm)dΩ +

∫

Γd

BT
d (td − pnΓd ) dΓ. (48)

with mT = (1, 1, 1, 0, 0, 0) in Voigt notation. Linearisation of the internal force vector

9



f int
u then results in:

K uu, j−1 =
∂f int

u, j−1

∂a
=

∫

Ω

BT
u D j−1Bu dΩ

︸               ︷︷               ︸

KΩuu, j−1

+

∫

Γd

BT
d RTDd, j−1RBd dΓ

︸                        ︷︷                        ︸

K
Γd
uu, j−1

(49a)

K up, j−1 =
∂f int

u, j−1

∂p
= −

∫

Ω

αBT
u mhT

p dΩ
︸              ︷︷              ︸

−KΩup, j−1

−

∫

Γd

BT
d nΓd h

T
p dΓ

︸             ︷︷             ︸

−K
Γd
up, j−1

. (49b)

We next recall the weak form of the mass balance, Equation (37):

−

∫

Ω

αζ∇ · u̇s dΩ −
∫

Ω

k f∇ζ · ∇p dΩ −
∫

Ω

1
M
ζ ṗdΩ

+

∫

Γd

ζnΓd · ~qd�dΓ =
∫

Γ

ζnΓ · qpdΓ.

Substituting the discretisations for the displacement field us and the pressure fieldp
along with that for the corresponding test functionsζ, and requiring that the result
holds for all admissible test functions, leads to the discrete format:

−

(∫

Ω

αhpmTBudΩ

)

ȧ−
(∫

Ω

k f BT
pBpdΩ

)

p −
(∫

Ω

1
M

hphT
pdΩ

)

ṗ

+

∫

Γd

hpnT
Γd
~qd�dΓ

︸               ︷︷               ︸

QΓd

=

∫

Γ

hpnT
ΓqpdΓ. (50)

whereQΓd represents the rate of fluid exchange between the cavity and the bulk.
The integration over a time step∆t is commonly carried out using a Backward Euler

scheme:

˙(•) =
(•)t+∆t − (•)t

∆t
(51)

with the superscript denoting at which time the quantity is evaluated. Substitution of
the time integration scheme into Equation (50) yields, after multiplication by∆t in
order to preserve a symmetric tangential stiffness matrix:

f int
p = f ext

p (52)

with the external force vector:

f ext
p = ∆t

∫

Γ

hp nT
Γq

qp dΓ (53)
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and the internal force vector:

f int
p = −

(∫

Ω

αhpmTBudΩ

)

︸                 ︷︷                 ︸

−KΩpu, j−1=−
(

KΩup, j−1

)T

ut+∆t −

(∫

Ω

1
M

hphT
p dΩ

)

︸               ︷︷               ︸

−KΩ(1)
pp, j−1

pt+∆t −

(

∆t
∫

Ω

k f BT
pBp dΩ

)

︸                   ︷︷                   ︸

−KΩ(2)
pp, j−1

pt+∆t

+

(∫

Ω

αhpmTBudΩ

)

︸                 ︷︷                 ︸

−KΩpu, j−1=
(

KΩup, j−1

)T

ut +

(∫

Ω

1
M

hphT
p dΩ

)

︸               ︷︷               ︸

−KΩ(1)
pp, j−1

pt + ∆tQΓd .

(54)
The contributions to the tangential stiffness matrix follow in the usual manner, by

differentiatingf int
p with respect toa andp, respectively:

∂f int
p, j−1

∂a
= KΩpu, j−1 + ∆t

∂QΓd

∂a
(55a)

∂f int
p, j−1

∂p
= KΩ(1)

pp, j−1 + KΩ(2)
pp, j−1 + ∆t

∂QΓd

∂p
. (55b)

Hence, the complete linearised set of equations, needed in aNewton-Raphson frame-
work, reads:




KΩuu, j−1 + KΓd

uu, j−1 KΩup, j−1 + KΓd

up, j−1

KΩpu, j−1 + ∆t
∂QΓd
∂a

∣
∣
∣
∣
j−1

KΩ(1)
pp, j−1 + KΩ(2)

pp, j−1 + ∆t
∂QΓd
∂p

∣
∣
∣
∣
j−1









da

dp




=





f ext
u

f ext
p




−





f int
u, j−1

f int
p, j−1





.

(56)
It is noted that the termsKΓd

up and∆t
∂QΓd
∂a render the tangential stiffness matrix non-

symmetric, and are omitted in most computations.
To compute

QΓd =

∫

Γd

hpnT
Γd
~qd�dΓ (57)

we recall that the local rate of fluid exchange between an opencavity and the surround-
ing bulk material is given by [11, 13]:

nT
Γd
~qd� = n f

(

h3

12µ
∂2p
∂s2
+

h2

4µ
∂h
∂s
∂p
∂s
− h

(

∂(u̇s)s

∂s
−

k f

n f

∂2p
∂s2

)

−
∂h
∂t

)

(58)

where the resemblance to Reynolds lubrication equation canbe noted [28], andµ is the
fluid viscosity andh the width of the cavity, Figure 1. From this equation we observe
that higher-order derivatives and non-standard terms haveto be computed. Therefore,
the matrix

B2
p =





∂2(hp)1

∂x2 ... ...
∂(hp)N

∂x2

∂2(hp)1

∂y2 ... ...
∂(hp)N

∂y2

∂2(hp)1

∂z2 ... ...
∂(hp)N

∂z2





(59)
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is defined such that
∂2p
∂s2
= sT
Γd

B2
pp, (60)

the matrix

Bd,s =





− ∂h
∂s + ∂h

∂s 0 0 0 0
0 0 − ∂h

∂s + ∂h
∂s 0 0

0 0 0 0 − ∂h
∂s + ∂h

∂s




, (61)

which is needed to compute
∂h
∂s
= nT

Γd
Bd,sa, (62)

while the tangential gradient of the solid velocity can be approximated as the average
of the velocities atΓ+d andΓ−d :

∂(u̇s)s

∂s
≈ sT
Γd

B̄d,sȧ, (63)

The operator matrix̄Bd,s is built similar to Bd,s, except that the coefficients±1 are
replaced by1

2. Using these identities, we obtain

QΓd =

∫

Γd

hp

(
n f

12µ

(

nT
Γd

Bda
)3 (

sT
Γd

B2
pp

)

+
n f

4µ

(

nT
Γd

Bda
)2 (

nT
Γd

Bd,sa
) (

sT
Γd

Bpp
)

−
(

nT
Γd

Bda
)
(

sT
Γd

B̄d,sȧ−
k f

n f
sT
Γd

B2
pp

)

− nT
Γd

Bd ȧ
)

dΓ.

(64)

From this expression it is evident that the derivatives

∂QΓd

∂a
and

∂QΓd

∂p
(65)

lead to very cumbersome and lengthy expressions, which is another reason why they

are normally not incorporated in the tangential stiffness matrix. Moreover,
∂QΓd
∂p adds

another non-symmetry to the tangential stiffness matrix.

3.2. Interface elements with a discontinuous pressure

In case of a possible discontinuous pressure across the interface element, i.e. when
there are two pressure nodes, Figure 2(b), the fluid flux in theinterface reads:

nΓd · ~qd� = −knd(p+ − p−) = −knd~p� (66)

The discretisation of the pressure jump is similar to that ofthe displacement jump, cf.
Equation (6),

~p� = (p+ − p−) = (hT
pp+ − hT

pp−) = H pp̃, (67)

with
H p =

[

−hT
p hT

p

]

. (68)
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The arrayp̃ contains the discrete nodal pressures at both sides of the interface. Similar
to the displacements, globally no degrees of freedom are added although̃p contains
twice the number of degrees of freedom as doesp per element. Substitution of Equa-
tion (68) into Equation (67) then gives:

nΓd · ~qd� = −kndH pp. (69)

An anomaly of the approach is that there is no (separate) pressure within the in-
terface. As a consequence, the pressure vanishes from the stress continuity condition
across the interface and, instead of Equation (48), we have for the interface contribution
to the internal force vector:

f int
u =

∫

Ω

BT
u (σσσs − αpm)dΩ +

∫

Γd

BT
d td dΓ. (70)

Since in the absence of an explicitly defined pressure in the discontinuity,f int
u no longer

depends on it, the interface stiffness termKΓd
up cancels as well, and only the interface

stiffnessKΓd
uu remains.

The interface term in the mass balance also simplifies. Noting that, similar to
the displacement discontinuity, the jump in the test function, ~ζ�, is interpolated in
a Bubnov-Galerkin sense as:

~ζ� = H pz̃, (71)

the interface term in the weak form of the mass balance, Equation (37), can be elabo-
rated as: ∫

Γd

~ζ� nΓd · ~qd�dΓ = −z̃T
∫

Γd

kndHT
pH pp̃dΓ (72)

where Equation (69) has been used. Since this expression must hold for all admissible
test functions for the pressure, the contribution that stems from the internal discon-
tinuity to the internal force vector becomes, after multiplication by∆t for symmetry
reasons:

−∆t

(∫

Γd

kndHT
pH pdΓ

)

p (73)

Hence, the only non-vanishing contribution from the internal discontinuity to the tan-
gential stiffness matrix becomes:

KΓd
pp = −∆t

∫

Γd

kndHT
pH pdΓ. (74)

Physically, this choice seems less reasonable, also because the absence of a (sepa-
rate) pressure within the crack also precludes fluid transport along the crack. In reality
some assumption for the fluid pressure in the crack must be made, a linear interpola-
tion betweenp− andp+ being the simplest possible hypothesis. In fact, this is precisely
the proposal which has been made by [25] in their enhancementof interface elements
with two pressure nodes. Nevertheless, taking the fluid pressure in the crack as the
average of those at the two sides of the cavity makes it impossible to model hydraulic
fracturing, where the fluid pressure must be an independent variable.
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3.3. An independent pressure in the interface

The deficiency of the discontinuous pressure model can be remedied by superim-
posing a (regularised) Dirac function for the pressure, in the spirit of the local enrich-
ment proposed by [21]. The independent pressures are nowp− at theΓ−d -side of the
interfaceΓd, p+ at theΓ+d -side andpd within the interface. Clearly, the existence of
an independent pressure within the discontinuity allows for modelling pressurising the
crack, which permits extension of the modelling capabilities to hydraulic fracturing.

Different from the previous two cases, an explicit distinction must now be made
between the inflow of fluid through theΓ− andΓ+-interfaces. In principle, the resistance
at both boundaries can be different, and (time-dependent) expressions for leak-off have
been derived based on a heat conduction analogy [26]. Herein, we simply assume
that the resistance to flow is the same at both boundaries of the cavity,knd. Then, the
following relation ensues between the flux into the discontinuity and the different fluid
pressures:

nΓd · ~qd� = −knd (p− − pd) − knd(p+ − pd) = knd(2pd − p+ − p−). (75)

The sum of the pressuresp− andp+ is interpolated as

p+ + p− = H pp̃, (76)

with H p redefined as
H p =

[

hT
p hT

p

]

. (77)

Evidently, there must now be a separate interpolation forpd:

pd = hT
d pd (78)

where the vector
hT

d = ((hd)1, ..., (hd)N) (79)

contains the interpolation polynomials for the pressure inthe discontinuity, and

pd =





(pd)1

...

...

(pd)N





(80)

contains the nodal values of the pressurepd. We discretise the test functionζd for the
pressure in the discontinuity also in a Bubnov-Galerkin sense:

ζd = hT
d zd, (81)

with zd the corresponding nodal array. Again, gradients are neededand are assembled
in a matrix:

Bpd =





∂(hd)1

∂x ... ...
∂(hd)N

∂x

∂(hd)1

∂y ... ...
∂(hd)N

∂y

∂(hd)1

∂z ... ...
∂(hd)N

∂z





(82)
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so that
∇pd = Bpdpd (83)

Using Equations (76) and (78), Equation (75) can be rewritten as:

nΓd · ~qd� = 2kndhT
d pd − kndH pp̃. (84)

Since there is now an independent pressurepd within the discontinuity, the internal
force vector that stems from the momentum balance remains asin the single pressure
model:

f int
u =

∫

Ω

BT
u (σσσs − αpm)dΩ +

∫

Γd

BT
d (td − pdnΓd ) dΓ, (85)

cf. Equation (48). Three separate contributions to the tangential stiffness matrix can
now identified:

K uu, j−1 =
∂f int

u, j−1

∂a
=

∫

Ω

BT
u D j−1Bu dΩ

︸               ︷︷               ︸

KΩuu, j−1

+

∫

Γd

BT
d RTDd, j−1RBd dΓ

︸                        ︷︷                        ︸

K
Γd
uu, j−1

(86a)

K up, j−1 =
∂f int

u, j−1

∂p
= −

∫

Ω

αBT
u mhT

p dΩ
︸              ︷︷              ︸

−KΩup, j−1

(86b)

K ud, j−1 =
∂f int

u, j−1

∂pd
= −

∫

Γd

BT
d nΓd h

T
d dΓ

︸             ︷︷             ︸

−K
Γd
ud, j−1

. (86c)

After multiplication by∆t for symmetry-preserving reasons, the contributions from
the global mass balance to the tangential stiffness become:

K pu, j−1 =
∂f int

p, j−1

∂a
= −

∫

Ω

αhpmTBu

︸          ︷︷          ︸

−KΩpu, j−1

(87a)

K pp, j−1 =
∂f int

p, j−1

∂p
= −

∫

Ω

1
M

hT
phpdΩ

︸            ︷︷            ︸

−KΩ(1)
pp, j−1

−∆t
∫

Ω

k f BT
pBpdΩ

︸               ︷︷               ︸

−KΩ(2)
pp, j−1

−∆t
∫

Γd

kndHT
pH pdΓ

︸                 ︷︷                 ︸

−K
Γd
pp, j−1

(87b)

K pd, j−1 =
∂f int

p, j−1

∂pd
= 2∆t

∫

Γd

kndhphT
d dΓ

︸                  ︷︷                  ︸

K
Γd
pd, j−1

. (87c)

where the weak form of Equation (84) has been exploited:
∫

Γd

ζnΓd · ~qd�dΓ =
∫

Γd

2kndζhT
d pddΓ −

∫

Γd

knd~ζ�H pp̃dΓ. (88)
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To complete the set of governing equations, the local mass balance at the disconti-
nuity

2knd pd − knd(p− + p+)−n f

(

h3

12µ
∂2pd

∂s2
+

h2

4µ
∂h
∂s
∂pd

∂s
− h

(

∂(u̇s)s

∂s
−

k f

n f

∂2pd

∂s2

)

−
∂h
∂t

)

= 0,

(89)
which is obtained by combining Equations (58) and (75), is cast in a weak format.
After multiplication by the test functionζd, integration overΓd, and application of
Gauss’ theorem, the following identity results:

∫

Γd

(

2kndζd pd − kndζd(p− + p+) +

(
n f h3

12µ
+ k f h

)

∂ζd

∂s
∂pd

∂s

− n f ζd

(

h2

4µ
∂h
∂s
∂pd

∂s
− h
∂(u̇s)s

∂s
−
∂h
∂t

))

dΓ = Qtip,

(90)

whereQtip is the inflow of fluid at the crack tip. Multiplication by∆t and discretisation
then leads to:

KΓd

dua+ KΓd

dpp + KΓd

ddpd = f ext
pd

, (91)

with the submatricesKΓd

du, KΓd

dp, KΓd

dd defined as:

KΓd

du =

∫

Γd

(

n f hsT
Γd

B̄d,s + n f nT
Γd

Bd

)

dΓ (92a)

KΓd

dp = −∆t
∫

Γd

kndhdH pdΓ (92b)

KΓd

dd = ∆t
∫

Γd

(

2kndhdhT
d +

(
n f h3

12µ
+ k f h

)

BT
pdsΓd s

T
Γd

Bpd −
n f h2

4µ
∂h
∂s

hdsT
Γd

Bpd

)

dΓ. (92c)

As for the case of a single pressure node, we have:

hn =
(

nT
Γd

Bda
)n
, n = 1, 2, 3 (93a)

∂h
∂s
= nT

Γd
Bd,sa (93b)

cf. Equation (64). The linearised set of equations now reads:





KΩuu, j−1 + KΓd

uu, j−1 KΩup, j−1 KΓd

ud, j−1

KΩpu, j−1 KΩ(1)
pp, j−1 + KΩ(2)

pp, j−1 + KΓd

pp, j−1 KΓd

pd, j−1

KΓd

du, j−1 KΓd

dp, j−1 KΓd

dd, j−1









da

dp

dpd





=





f ext
u

f ext
p

f ext
pd





−





f int
u, j−1

f int
p, j−1

0





.

(94)
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Similar to the case with a single pressure node, the terms at the internal discontinuity
render the tangential stiffness matrix non-symmetric, and are normally not included in
computations.

Figure 4: Square plate crossed by an interface with an inclined crack: (a) geometry, and (b) contour plot of
displacements at steady state

Figure 5: Pressure contour and flux vectors in the vicinity ofthe opened cavity att=1s. Left: without flow in
the cavity. Right: with flow in the cavity

4. Examples

4.1. Continuous pressure at the interface

As a first example, the square block of Figure 4 is considered.It is crossed by
a discontinuity inclined at an angleα. The central part ofΓd is traction free, and
a model with a single pressure degree of freedom at the interface is considered. A
quasi-incompressible, viscous fluid is considered withM = 1018 MPa. The Young’s
modulus is taken asE = 9.103 MPa and Poisson’s ratio is assumed asν = 0.4. The
dummy stiffnesses at the interface are chosen asdn = ds = 105 MPa. The permeability
is taken ask f = 103 mm4N−1s−1, the fluid viscosityµ = 10−9 Nmm−2s−1, and the
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Figure 6: Tangential fluid velocity along the interface at steady state

initial defect

V0

p = 0

Figure 7: Geometry and boundary conditions of two–dimensional example problem

porosityn f = 0.3. Non-Uniform Rational B-Splines have been used for the spatial
discretisation, with the displacements interpolated by cubic splines and the pressure
interpolated by quadratic splines [23]. Matching interface elements have been used to
model the (stationary) discontinuity.

Figure 5 shows the effects of the flow in the cavity on the area surrounding the cav-
ity at an early stage of the simulation. When the term for the flow in the discontinuity is
made inactive, the flux is the same at both faces of the discontinuity, i.e. the fluid flows
through the cavity without being affected by it. The jump in the fluid flow is clear in
the right part of Figure 5, with fluid being stored and flowing away within the cavity.

Figure 6 shows that for a horizontal crack (α = 0), the fluid velocity is symmetric
in the cavity, flowing to the left and to the right in equal amounts. When the interface is
inclined, the fluid can accelerate in the cavity, which starts to behave like a resistance-
free channel for the fluid.

4.2. Discontinuous pressure at the interface

We next consider a two-dimensional specimen having a widthw = 0.04 m and a
heightH = 0.1 m, Figure 7, which is loaded under plane–strain conditions. The sides
are traction free and the external loading is applied via an imposed constant velocity
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Figure 8: Evolution of the displacement field att = 18 s, 22 s, 26 s

V0 = −10−4 m/s. The pore pressure at the top of the specimen is the reference pres-
sure, here zero, and undrained boundary conditions have been imposed on the other
boundaries. The solid constituent is assumed to behave in a linear elastic manner with
a Young’s modulusE = 20 GPa and a Poisson’s ratioν = 0.35. The Biot coefficient
α has been set equal to 1, the Biot modulus has been assigned a value M = 5.0 GPa,
while the bulk material was assumed to have a permeabilityk f = 10−14 m3/Ns. Shear-
band formation was triggered by a small imperfection, see Figure 7. The critical shear
stress at which nucleation occurred, was taken asτc = 100 MPa and after inception
the shear-band evolution is controlled by a mode-II fracture energy,GII

c = 500 J/m2.
In the example calculations, the permeability of the diaphragm has been assigned
knd = 0.5 · 10−14 m3/Ns, which is half of that in the bulk.

Different from the previous example, the specimen has been discretised with quadri-
lateral basis elements with a bilinear Lagrange interpolation scheme for the displace-
ments as well as for the pressure. This scheme is not optimal,but has been used to
avoid complexities in the Extended Finite Element approachthat has been adopted to
model the propagating shear band, especially with respect to the integration of the dif-
ferent parts of the load vectors and stiffness matrices in elements which are crossed by
the discontinuity [10]. In the simulations, 24 elements have been used across the width
of the specimen and 60 elements over the height. The simulation has been carried out
in 65 equal time steps over a total time of 26 s.

Figures 8 and 9 show the evolution of the displacement field and the pressure field,
respectively. At the end of the simulation, the discontinuity has traversed the entire
specimen. At this point, the bulk has unloaded elastically and the external loading
is transmitted entirely through the discontinuity, at which the deformations have lo-
calised. The global inclination of the interface is approximately 45o, which is in con-
formity with the behaviour in a single phase medium.
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Figure 9: Evolution of the pressure field att = 18 s, 22 s, 26 s

The pressure distribution is strongly influenced by the propagation of the interface
even in the present case wherek f andknd are of the same order of magnitude. Indeed,
the pressure discontinuity is significant as observed in Figure 9. Accordingly, the rel-
atively lower permeability at the discontinuity has a majorinfluence on the fluid flow,
and therefore on the stress distribution inside the specimen.

5. Concluding remarks

A classification has been made of hydromechanical interfaces in fluid-saturated
porous media. Distinction is made between one, two, and three pressure degrees of
freedom. In all cases, there is a discontinuity of the pressure gradient, enabling ex-
change of fluid between the discontinuity and the surrounding porous bulk material.
The fluid is assumed to be viscous and Newtonian, and after dimensional reduction in
the direction normal to the interface, a Reynolds type equation results that governs the
flow and storage within the interface. When two pressure degrees of freedom are used,
a discontinuity in the pressure can be modelled at the interface, with a separate fluid re-
sistance, but the absence of a separate, independent fluid pressure in the interface then
prevents the use of a Reynolds type equation to govern possible fluid flow along the
interface. This can be remedied by introducing a fluid pressure which is the average
of the fluid pressures at the sides of the cavity [25], but a better solution is to rigor-
ously introduce an independent fluid pressure, leading to a triple-node fluid pressure
model [26].
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ysis Bézier interface element for mechanical and poromechanical fracture prob-
lems, International Journal for Numerical Methods in Engineering, 97, 2014,
608–628.

22



[23] J. Vignollet, S. May and R. de Borst, Isogeometric analysis of fluid-saturated
porous media including flow in the cracks,International Journal for Numerical
Methods in Engineering, 2016, DOI: 10.1002/nme.5242.

[24] R. de Borst, M. A. Crisfield, J. J. C. Remmers and C. V. Verhoosel,Non-Linear
Finite Element Analysis of Solids and Structures, Second Edition, Wiley & Sons,
Chichester, 2012.

[25] J. M. Segura and I. Carol, On zero-thickness interface elements for diffusion
problems,International Journal for Numerical and Analytical Methods in Ge-
omechanics, 28, 2004, 947–962.

[26] E. W. Remij, J. J. C. Remmers, J. M. Huyghe and D. M. J. Smeulders, The
enhanced local pressure model for the accurate analysis of fluid driven fracture
in porous materials,Computer Methods in Applied Mechanics and Engineering,
286, 2015, 293–312.

[27] R. W. Lewis and B. A. Schrefler,The Finite Element Method in the Static and Dy-
namic Deformation and Consolidation of Porous Media, Second Edition, Wiley
& Sons, Chichester, 1998.

[28] O. Reynolds, On the theory of lubrication and its application to Mr. Beauchamp
tower’s experiments, including an experimental determination of the viscosity of
olive oil, Philosophical Transactions of the Royal Society of London, 40, 1886,
191–203.

23


	Introduction
	Standard interface elements
	Poromechanical interface elements
	Interface elements with a continuous pressure
	Interface elements with a discontinuous pressure
	An independent pressure in the interface

	Examples
	Continuous pressure at the interface
	Discontinuous pressure at the interface

	Concluding remarks

