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A classification of poromechanical interface elements

René de Borét

aUniversity of Sheffield, Department of Civil and Sructural Engineering, Sr Frederick Mappin Building,
Mappin Sreet, Sheffield S1 3JD, UK

Abstract

Interface elements are a classical approach to represseretd cracks, joints and
faults. The basic kinematic and constitutive aspects aapitulated and the extension
to hydromechanical conditions is elaborated. A classificat presented of hydrome-
chanical interface elements, depending on the multiglioftthe pressure degree of
freedom, and the physical implications of thééient possibilities are explained.

Keywords: poromechanics, fracture, hygro-mechanical interfaceiefelements

1. Introduction

Fracture in fluid-saturated porous media is a challengindtiracale problem with
moving internal boundaries, characterised by a high degfreemplexity. Moreover,
fracture initiation and propagation in fluid-saturatedque materials occur frequently,
indicating that there is also a large practical relevand& &xistence and propagation
of cracks in porous materials can be undesirable, like ttregorm in human tissues,
or when the storage of waste in rocks or salt domes is conderfBat cracking can
also be a pivotal element in an industrial process, for exartmpdraulic fracturing in
the oil and gas industry. Another important applicatioradasehe rupture of geological
faults, where the change in geometry of a fault can dragtiefflect local fluid flow as
the faults can act as channels in which the fluid can flow freely

Interface elements are a powerful and relatively simple meano simulate crack
initiation and propagation [1, 2]). Remeshing has beerodhiced to decouple the
crack propagation path from the original mesh|[3|4,15,/6, The extended finite
element method [8, 9] has been proposed as an alternativeamtp It decouples the
crack propagation path from the underlying discretisatiomd has been a main carrier
of numerical approaches to fracture for more than a decdueftension to fracture in
fluid-saturated porous media has been accomplished asell 1| 12, 13, 14, 15, 16].

The main subject of this paper is a classification of dissatibn technologies for
poroelastic interfaces, starting from the case that thespire is continuous across the
discontinuity, but where the pressure gradient is disooatiis. This relatively simple
formulation already allows for the transport and storagdiopfid inside the crack,
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provided that the pressure gradient can be discontinundkelextended finite element
method this is achieved by partitioning the pressures dt sides of the discontinuity
by a signed distance function [11,/13]. In interface elemdfi] a discontinuous
pressure gradient across the discontinuity comes in riptuaa by definition they are
CP-continuous with respect to the pressure across the icrf®ressure continuity
has also been assumed by Armero and Callari [18] using amtisemus enrichment
for the displacements exploiting the Enhanced AssumednStomcept. In the latter
case flow and storage inside the crackaas enabled since, within the element, the
continuity of the pressure field is higher thah

Other poroelastic interfaces can be constructed startorg the assumption that
the pressure is discontinuous orthogonal to the discoityifi0, 12,19/ 20], or that a
Dirac function is superimposed on the interpolation fumrasi for the pressure field as
in [21]. Again, it depends on the applied discretisatiorhtesiogy whether flow and
storage are enabled inside the crack.|In [10, 12] this has hekieved by partition-
ing the pressure field at both sides of the discontinuityugtoa Heaviside function
placed at it, which enables the gradient to be discontinasusell. Likewise, it is
naturally embedded in interface elements with a doublespresnode because of the
C~* continuity in the pressure field at the interfacel [19, 20]islfinally noted that
(pressure-continuous) poroelastic interface elements hso been developed within
the context of isogeometric analysis [[22], including thesgibility of fluid flow and
storage in the discontinuity [23].

Herein, we start with a brief recapitulation of three-dirs@mal, mechanical inter-
face elements. Next, extension is made to interfaces tharabedded in a poromechi-
cal medium, and that allow for mass transport within therfatee. Three formulations
are distinguished, with a single pressure node, a doubkspre node, and a triple
pressure node at the discontinuity. The strong and weaksf@ma given, as well as
the discretised format, and the physical implications efdifferent choices. Examples
with single and double pressure nodes conclude the paper.

2. Standard interface elements

Interface elements are normally inserted a priori in thedinlement mesh, unless
remeshing is used. For stationary discontinuities, or whendirection of the prop-
agation is known, interface elements can be used in a simpfmer. When internal
discontinuities propagate, they can be used in combinatitmremeshing.

The kinematic quantities in continuous interface elemamnésa set of mutually
orthogonal, relative displacementgi,] for the opening mode, anpls], [u:] for the
two sliding modes. When collecting the relative displacetaén a vector

[ull = ([unl, [usl, [uc)T, (1)

which is defined in a locad, n, t-coordinate system, they can be related to the displace-
mentsu® at the upper side of the interfadg;, and the displacements at the lower
side of the interfacd,y, via

[ul =R(u" —u7), 2)



Figure 1. Geometry and local coordinate system in the iaterf

whereu®, u™ are expressed in the globaly, z-coordinate system, aitl = (s, nr,, tr,)

is the standard rotation matrix between the local and thieaglmoordinate system, with
Sr,» tr, mutually orthogonal unit vectors aligned with the discountty, andnr, the unit
vector normal to the discontinuity, see also Fidure 1 fora-tdimensional representa-
tion. The displacements are interpolated in a standard eram

u = Ha, 3)
where
h 0 O
H=[0 h O 4)
0 0 h

andais the nodal displacement array that contains the degrdesaafom related to the
N nodes in case of a standard continuum element. For an ioteelement, however,
the nodes are doubled, one sef\bhodes for thd™} side of the interface, and another
set of N nodes for thd™~ side, cf Figuré 2. The X N matricesh contain the shape
functionshy, ..., hn:

hy

hel = | 5)
hn

The relation between the nodal displacements and theveldisplacements for inter-

face elements then reads:

[u]l =R(u*-u") =R(Ha" — Ha") = RBg43, (6)

with
-h +h 0 O 0 O
Bq = 0O O -h +h 0 0. @)
0O 0O O O0 -h +h

the relative displacement-nodal displacement matrix lierihterface element, ar&d
containing the discrete nodal displacements at both sifléisecinterface expressed
in the globalx, y, zcoordinate system. It is noted that, althoubontains twice the
number of degrees of freedom as dagxer element, no degrees of freedom are added
to the system.
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Figure 2: Interface elements enriched with pressure nodes

In the local coordinate system, the cohesive tractt{j’ﬁsare related to the relative
displacementfu] via a nonlinear relation:

tl9¢ = t1°° ([u]), ), 8

with  a history parameter. Similar to the relative displacemehéstraction vecto’t’é’C
can be related to the tractions in the global coordinategystsing the rotation matrix
R:

t° = Rtq (9)

For use in a Newton-Raphson iterative procedure this dotigé relation can be lin-
earised as:

dtg° = Dq d[ul, (10)
with 'd’ a small increment, and
e
Dd = m (11)

The limiting case thaﬂgc = 0 obviously represents a traction-free crack.
For the purely mechanical case, the equilibrium equatiadse

V.o=0. (12)

After multiplication by a test function and application of Gauss’ theorem, the weak

form is obtained:
f Vi : odQ
Q

—f n* - (nr; - 07)dQ —f n (N -07)dQ = fr] - t1,dQ,
T} r; Ty

d d

(13)



Figure 3: BodyQ with external boundary and internal boundaridlg] andl'y

with t, the prescribed tractions at the external traction bounbargincel’y = I'j =
I'y, which defines the zero-thickness interfégethe surface integrals at this interface
can be elaborated as follows. We define:

Nry = Nr; = —Nr; (14)

see also Figure]l 3. Next, we assume traction continuity betvtlee interface and the
bulk:
o' N, =-0 -np; =1g, (15)

with tq the cohesive tractions. Using Equatiénl(15), the equilibrequation, Equa-
tion (I3), can be reworked as:

f Vi :odQ+ | [l -tedr = f n - tpdl, (16)
Q Ty

I't

We discretise the test functignin a Bubnov-Galerkin sense:
n = Hw a7
with w a nodal array. Noting that
[n] = RBgW (18)

cf. Equation[(6), and following standard procedures therdie form of Equatior (16)
results:

f W'BlodQ + f WBJRTtdl = | w'B[tydl, (19)
Q Ty S~—— T
tq
with
Bu=LH, (20)
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0 2 o0

0o 0 2
(21)

L& 0

0

il

i)
0z 9
2 0 2|
the matrix that relates the strains, to the displacements a continuum element:
Lu. Considering that this identity must hold for all admissilkést functions, and
rearranging yields: .
fext _ flnt =0. (22)

with the external force vector
fext = fr Bjtpdl (23)
t

and the internal force vector
fint = f BlodQ + f Bjtqdr. (24)
Q I'y

The set of Equation$ (22) is generally nonlinear and is slpicsolved using a
Newton-Raphson scheme for every time step. Defining thermabtangential stiness
matrix

Dj-1= — (25)

Oe j_1’
which sets the relation between the change in the stiesand that in the strain,ed
from iterationj — 1 to iterationj in the continuum, cf.[24]:

do = Dj_; de, (26)

and utilising the material tangentialf§tiess matrix for the interfacB®yq, the tangential
stiffness matrix after iteration— 1, can be derived as:

ofint
Kij-1= 8%5_11 :fBIDj_lBudF+f BgRTDd,j_lRdeF. 27
Q Iy
| i —

Tq

Ko
j-1 Kj—l

The iterative improvementadof the nodal displacements in iteratigrthen follows
from: ‘
Kj_ida=f&' - f}”_‘l. (28)
Interface elements are often inserted in the finite elemestmprior to the compu-
tation, and a finite sfiness must be assigned in the pre-cracking phase with attheast
diagonal elements being non-zero. Prior to crack initigtihe stifness matrix in the
interface element reads:

d, 0 O
Dg=| 0 ds O |,
0 0 o




with dn a high (dummy) sfiness normal to the interface adg and d; the tangen-
tial stiffnesses. It is noted that in the pre-cracking phase the noahémtegration of
interface elements can entail inaccuracies [2].

3. Poromechanical interface elements

For a poromechanical interface element, each node is augchesth one or more
pressure degrees of freedom. For a single pressure degieeddm, the pressure is
continuous at the internal discontinuity [11]) 13, 17, 23]h&H two pressure degrees
of freedom are added, the pressure can be discontinuoussabminternal boundary
I'q [10,/12,19] 20]. Alternatively, one can assume that the gamegsure exists at both
sides of the discontinuity, but that this pressure fedént from that inside the discon-
tinuity [21]. This model, in which a regularised Dirac fuitst is superimposed on the
regular pressure field, also requires two degrees of freeatdire internal boundary.
However, from a physical point of view the case that the pnesss the same at both
sides of the interface may be less relevant, and its tredtim@ot pursued here. The
most general case is when the pressures at both sides ottieare allowed to diier,
and can be dierent from the fluid pressure within the crack as well, a madtgl three
pressure nodes ensues|[26]. It is finally noted that all tbpti®ns result in a pressure
gradient which can be discontinuous, allowing for storage #uid flow within the
discontinuity. Indeed, the pressure across the interfireent is at most interpolated
with aC%-continuity, yielding a pressure gradient that is at n@stcontinuous.

In a fluid-saturated porous medium, the total stress is ceeghof a solid and a
fluid part:

O =0s+0% (29)

Using the Biot co#ficienta, which takes into account the compressibility of the solid
grains[27], the total stress can be written as:

og=0s—apl (30)
with p the (apparent) fluid pressure ahthe unit tensor. In a similar spirit we have
o' -Nr, =-0" -Np; =tg - pnr, (31)

instead of Equatior (15). When inserting Equatidns (30) @)l into the weak form
of the equilibrium equation, Equatidn {13), and using EmqumefI4), we now obtain:

f V(s — apl)dQ + f [n] - (t5° — pni°) dI = f 7 - tpdr. (32)
Q Ta I
The mass balance of a fluid-saturated porous medium regd{$l@, 27]:

ap
Mot
with n¢ the porosity andM the Biot modulus. Inserting Darcy’s relation

ne (U —Us) = —kfVp (34)



with k; the permeability then gives:

i 10p
. -V vV —— =0.
aV - us- V- (kVp) + i =0 (35)
To arrive at the weak form, we multiply by a test function foe pressure;. Integrat-
ing over the domai® and using the divergence theorem and the appropriate bounda
condition leads to:

—fagv-usdg—fkfvg-Vde—fgia—de
Q Q Q M6t

(36)
- [ ey agar- [ o agar= [ ene- g,
ry Iy Iy
with ¢, the prescribed flux on the flux bounddry. It is noted that the equation has
been multiplied by -1 as well in order to preserve symmettgrdinearisation.

Having assumed equilibrium between the cavity and the Hodjyation [(I5), in-
voking Equation[(I}), and noting that the (cohesive) tartty have a unique value,
the fluid pressur@ has the same value at both faces of the cayty: p™ = p~. Using
a Bubnov-Galerkin approach, this implies that also theftesttion attains the same
value at both facest = ¢+ = ¢~. With this corollary, the weak form of the mass
balance is modified as:

—fagv-usdg—fkfvg-Vde—fgi@dQ
Q Q Q M ot

+f {nr, - [qglldl’ = f(nr'der
Ty r

[aal = a§ —aq (38)

has now emerged in the integral for the discontinuity, segfe[3. This term is mul-
tiplied by the normahr, to I'y, resulting in a jump of the flow normal to the internal
discontinuity. Accordingly, the flow can be discontinuotig@and some of the fluid
that flows into the crack can be stored or be transportedmiti@ crack. The jump in
the flux is therefore a measure of the net fluid exchange betaeakscontinuity (the
cavity) and the surrounding bulk material. It is emphasited because of the pres-
ence of a discontinuity inside the domaiy the power of the external tractions bg
and the normal fluid flux through the faces of the discontinare essential features of
the weak formulation. Indeed, these terms enable the mameabd mass couplings
between a discontinuity — the mesoscopic scale — and theuading porous medium
—the macroscopic scale.

(37)

A jump in the flux,

3.1. Interface elements with a continuous pressure
We first consider the case of a continuous pressure acrostdinace element, so
that there is a single pressure node only, Figuire 2(a). Teésspre in the interface is
then interpolated as:
p=hip, (39)



where

hp = ((hp)1. . (hp)n) (40)
contains the interpolation polynomialsgj, ..., (hp)n for the pressure, and
P1
p=| (41)
PN

contains the nodal values of the presspréWe discretise the test functiahfor the
pressure also in a Bubnov-Galerkin sense:

¢ =hlz, (42)

with z the corresponding nodal array. The gradients needed irequbst elaborations
are assembled in a matrix

d(hp)1 d(hp)n
T e e o
a(h a(h
Bp=| Mob . Xon (43)
(hp)1 d(hp)n
T e e e
so that
Vp = Bpp. (44)

When we define the external force vect8t as in Equation(23),
fext = f Bltydl (45)
It

formally the same format for the discrete equilibrium edprats obtained as in Equa-
tion (22): _
fe—fint = 0. (46)

However, the interface term is now elaborated as:

f o7l - (£5° — pnie®) dr = f 7B (t - pne,) I, (7)
Iy

Iy

so that the internal force vector reads:
fint — f Bl (0s — apm)dQ + f Bj(ta — pnr,) dr. (48)
Q Iy

with m"™ = (1,1, 1,0,0,0) in Voigt notation. Linearisation of the internal forcecter



fint then results in:

of int

Kuuj-1 = ;glz L BiDj-1B, dQ + fr B4R Dg, j-1RBg dl (49a)
d
SN—— —
Kf}u.jfl KES,jfl
ofint
Kupj-1= ;—'F’)‘l =—f9a|33mhgdg—fF Bgnr,hpdr. (49b)
d

—_— —

7KS2 . Iy
up,j-1 7Kup.j—1

We next recall the weak form of the mass balance, Equdiign (37

—fa(V-USdQ—fkfvg-Vde—fifpdﬂ
Q Q oM

+ | ¢nr, - [gelldl = f(nr - Qpdr.
Iy r

Substituting the discretisations for the displacemend figland the pressure field
along with that for the corresponding test functiahsand requiring that the result
holds for all admissible test functions, leads to the discfermat:

Q Q Q

+ f hpnf, [ogldr = fhpnﬁqul". (50)
Iy r
——————
Qry
whereQr, represents the rate of fluid exchange between the cavityhenioitk.
The integration over a time sty is commonly carried out using a Backward Euler

scheme:
L (.)t+At _ (.)t
©=""x
with the superscript denoting at which time the quantityuvaleated. Substitution of

the time integration scheme into Equatién](50) yields, raft@ltiplication by At in
order to preserve a symmetric tangentigfsdss matrix:

(51)

fint = fext (52)

with the external force vector:

10



and the internal force vector:

fg‘tz_( f ahmeBudQ)u”A‘—( f %hph; dQ)pHA‘—(At f ka;deQ) it
Q Q Q
D e e ——

[ S———
T Q1) Q2)
_K§U~171:_<K§pvifl) ~Koppjt ~Kopi-1
1
+ (f ahmeBudQ) ut + (f Mhphg dQ|p' + AtQr,.
Q Q
T Q1)
’Kspluj 1= (Kﬁzp.j—l) “Kopia

(54)
The contributions to the tangentialfitiess matrix follow in the usual manner, by
dn‘ferentlatmg"1t with respect t@a andp, respectively:

flnt (9
p.j-1 Q Qr,

e Kpu] L +At 73 (55a)
aflnt (3

p.j-1 Q1) Q(2) QFa

ap Kpp] KppJ 1t At 6p (55b)

Hence, the complete linearised set of equations, needetlewdon-Raphson frame-
work, reads:

T
Kuu11+Ku8]1 Kup11+Kup]1 {da] {fSXt] flljnjl
Q aQrd Q1) Q2) 9Qry - ext - int
Kowj1 + At = i Kopios + Kop i1 + At=5 i dp fs foia
(56)

It is noted that the termk and AtaQrd render the tangential iiness matrix non-

symmetric, and are omitted in most computations.
To compute

Qr, = | hpnf [aldl (57)
Iy

we recall that the local rate of fluid exchange between an opeity and the surround-
ing bulk material is given by [11, 13]:
h® 8°p h?2ohap (a(us)S ks 62p) ah)

T gl = h?ohap _
r, [0l = N (12;1 9% " auasas "

0s Ng 0%

(58)

where the resemblance to Reynolds lubrication equatiobearoted|[28], ang is the
fluid viscosity andh the width of the cavity, Figuriel 1. From this equation we ofsser
that higher-order derivatives and non-standard terms teabe computed. Therefore,
the matrix

(o)1 A(hp)n
L L
(h a(h
R (59)
#(hp)s o)
L) .

11



is defined such that

62
a—SSZSEEdB%p, (60)
the matrix ) )
-4 0 0 0 O
- h h
0 0 0 -% +%
which is needed to compute
oh
5= N Ba.sa, (62)

while the tangential gradient of the solid velocity can bpragimated as the average
of the velocities al’; andI'y:

oUs)s 15 .
“gs X S, Bg,sa, (63)

The operator matri>§d,S is built similar toBq s, except that the cdgcients+1 are
replaced by%. Using these identities, we obtain

n
Q= [ (g5 (7, Bea)’ (,50)
+ 2_;1 (n;d Bda)z (n;d Bd,sa) (S-rrdBpp) (64)
_ (nltd Bda) (s}d By.sa — :—;sltd B%p) - nltd Bda) dr.

From this expression it is evident that the derivatives

6Ql"d aQFd
oa and op

(65)

lead to very cumbersome and lengthy expressions, whichathanreason why they

are normally not incorporated in the tangentiaffess matrix. Moreovef% adds
another non-symmetry to the tangentiaffstess matrix.

3.2. Interface elements with a discontinuous pressure

In case of a possible discontinuous pressure across thitacgeslement, i.e. when
there are two pressure nodes, Fidure 2(b), the fluid flux inrttezface reads:

Nry - [Aall = —kna(P™ = P7) = —knallPI (66)

The discretisation of the pressure jump is similar to thahefdisplacement jump, cf.
Equation[(6),
[pll = (p* - p7) = (hgp" —hip) = Hyp, (67)
with
Hp=[-hy hi]. (68)

12



The arrayp contains the discrete nodal pressures at both sides ofttréeioe. Similar
to the displacements, globally no degrees of freedom aredadtlhoughp contains
twice the number of degrees of freedom as doeer element. Substitution of Equa-
tion (68) into Equation(G7) then gives:

N, - [0all = —KnaHpp. (69)

An anomaly of the approach is that there is no (separatejpresvithin the in-
terface. As a consequence, the pressure vanishes fronrélse sbntinuity condition
across the interface and, instead of Equafioh (48), we ke interface contribution
to the internal force vector:

fint — f Bl (os — apm)dQ + f Bltq dr. (70)
Q Iy

Since in the absence of an explicitly defined pressure inig@dtinuity,f " no longer
depends on it, the interface fStiess terrrKﬂ% cancels as well, and only the interface
stiffnessK [¢ remains.

The interface term in the mass balance also simplifies. Ndtat, similar to
the displacement discontinuity, the jump in the test furcti{/]), is interpolated in
a Bubnov-Galerkin sense as:

[£] =Hpz, (71)

the interface term in the weak form of the mass balance, kmu@7), can be elabo-
rated as:

[Z1 nr, - [qalldl = =27 [ kngH gH ppdl (72)

Fd I*d

where Equatior{{89) has been used. Since this expressiarhmidsor all admissible
test functions for the pressure, the contribution that stémmm the internal discon-
tinuity to the internal force vector becomes, after muitialion by At for symmetry
reasons:

—At ( j; d knngder)p (73)

Hence, the only non-vanishing contribution from the inggiscontinuity to the tan-
gential stiftness matrix becomes:

Kb = —At 5 knaH pH pd. (74)

Physically, this choice seems less reasonable, also etdaeiabsence of a (sepa-
rate) pressure within the crack also precludes fluid trarigpong the crack. In reality
some assumption for the fluid pressure in the crack must be nealihear interpola-
tion betweerp™ andp* being the simplest possible hypothesis. In fact, this isipedy
the proposal which has been made by [25] in their enhanceofiémterface elements
with two pressure nodes. Nevertheless, taking the fluidspiresin the crack as the
average of those at the two sides of the cavity makes it iniiples® model hydraulic
fracturing, where the fluid pressure must be an independeizthie.

13



3.3. Anindependent pressure in the interface

The deficiency of the discontinuous pressure model can bediet by superim-
posing a (regularised) Dirac function for the pressurehagpirit of the local enrich-
ment proposed by [21]. The independent pressures arepnaat thel';-side of the
interfacel’y, p* at thel'j-side andpy within the interface. Clearly, the existence of
an independent pressure within the discontinuity allowsrfodelling pressurising the
crack, which permits extension of the modelling capakiitio hydraulic fracturing.

Different from the previous two cases, an explicit distinctiamstmow be made
between the inflow of fluid through the andl™* -interfaces. In principle, the resistance
at both boundaries can beldirent, and (time-dependent) expressions for lefikave
been derived based on a heat conduction analogy [26]. Hen&irsimply assume
that the resistance to flow is the same at both boundarie®afabity,k.q. Then, the
following relation ensues between the flux into the disauuity and the dierent fluid
pressures:

Nry - [Aall = —Kna (P~ — Pa) — knd(P™ — Pa) = Kna(2pa — P* — p"). (75)

The sum of the pressurgs andp* is interpolated as

P*+ P =Hpb, (76)
with H, redefined as
Hp=[hy hil. (77)
Evidently, there must now be a separate interpolatiompfor
pa = hipg (78)
where the vector
ha = ()1, ..., (ha)n) (79)
contains the interpolation polynomials for the pressurh@ndiscontinuity, and
(Pa)1
pa=| ~ (80)
(Pa)n

contains the nodal values of the presspgeWe discretise the test functigg for the
pressure in the discontinuity also in a Bubnov-Galerkirssen

o = hizg, (81)
with z4 the corresponding nodal array. Again, gradients are neadédre assembled

in a matrix:
d(hg)1 d(hg)n

L.
a(h a(h

N (82)
9(ha)y d(ha)n
L) S . )

14



so that

Vpd = BpaPd (83)
Using Equationd (76) an@ (I78), Equatiénl(75) can be revariie
Nr, - [all = 2knghPa — KnaH pP. (84)

Since there is now an independent presgdreithin the discontinuity, the internal
force vector that stems from the momentum balance remaiimsthe single pressure
model:

0= [ Bllos-apman + [ Bty pn) o, @)
Q Iy

cf. Equation[(4B). Three separate contributions to theeatfigl stifness matrix can
now identified:

of int

Kugjo1 = ;,;1 = fg BID;_1B,dQ + fr BIR"Dq,j_1RBg dI (86a)
d
S ——
K‘(‘z“'i’l Kgﬁ.j—l
afnt
Kupj-1= ;—’r‘; = —anBImhg do (86b)
R S—
_Kl?p.j—l
ofim
Kud,j-1 = ar';d = —j; Binr,hg dr'. (86¢)
d
S ——
K

“Nud,j-1

After multiplication byAt for symmetry-preserving reasons, the contributions from
the global mass balance to the tangentidlrstiss become:

afint

-1
Kpujr= 20 = f ah;m™B, (87a)
L,_/
_KQ
pu,j-1
afirftj_l 1, . .
Kpp,jfl = 6—p = - o Mhphde_At o kapodQ—At 5 kndeH de (87b)
N~— —————
Koo Koo K
int 1
Kpdj-1= aF;)Z = 2At A knahphlidr . (87¢)
d
K

pd,j-1

where the weak form of Equation (84) has been exploited:

{nr, - [alldl = | 2knalhdpedl — | knallZTH pPdr. (88)
Iy Iy Iy
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To complete the set of governing equations, the local mdssibaat the disconti-
nuity

12u 0  4u ds ds

h® 9*ps  h* 6hopg h(a(Us)s ks 62pd) ah) _o,

0s Ny 0s?

89)
which is obtained by combining Equatiois 58) ahd] (75), ist éa a weak format.
After multiplication by the test functiody, integration ovef’y, and application of
Gauss’ theorem, the following identity results:

2KndPd — kna(P™ + p*) — ¢ (

oy, (i 944 Opg
j;d (and§dpd —Kngla(p™ + p") + (E + kfh)gg

h2 6h apd (3(U3)3 (3h
f4d (ES_SE - h—as - E)) dl" = Qip,

whereQyp is the inflow of fluid at the crack tip. Multiplication bt and discretisation
then leads to:

(90)

Kega+ Kgip + Kgipa = firl, (91)
with the submatricek ¢, Kg‘;) Kl defined as:
Kgﬂ = fl“d (mhs}d gd,s + nntTd Bd) dr (92&)
Kg;, = —At fr knahaH pdl (92b)
d

n¢h? oh

n¢h3
K8 = At fr (andhdhg + (f—zﬂ + kfh) B aSraS,Bpd — Ia—shdsldapd)dr. (92c)
d

As for the case of a single pressure node, we have:

h'=(nf.Bea)' . n=123 (93a)
oh
7= N, Basa (93b)

cf. Equation[(64). The linearised set of equations now reads

Q Ty Q Ty
Kuu,j—l +K K Kud,j—l da

uy,j—-1 up,j-1
Q Q(1) Q2) Iq Ig
Kpu,j—l Kpp,jfl + Kpp,ifl + Kpp,ifl Kpd,j—l dp
Ty Iy Ty d
Kdu,j—l de,j—l Kdd’l'*l P (94)
fext fint
u u,j-1
_ ext int
= f5¢ |- fpy i1
ext
fpd 0
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Similar to the case with a single pressure node, the terntgeanternal discontinuity
render the tangential fliness matrix non-symmetric, and are normally not included in
computations.

10m
| |
;5:/(.) ~—4m—
10m /ﬁ
[ 2 < Ki
rrtrr —— -
q Norm of displacements (mm)

Figure 4: Square plate crossed by an interface with an iedlerack: (a) geometry, and (b) contour plot of
displacements at steady state

Figure 5: Pressure contour and flux vectors in the vicinitthefopened cavity dat1s. Left: without flow in
the cavity. Right: with flow in the cavity

4. Examples

4.1. Continuous pressure at the interface

As a first example, the square block of Figlie 4 is consideted crossed by
a discontinuity inclined at an angle. The central part ofy is traction free, and
a model with a single pressure degree of freedom at the aueris considered. A
quasi-incompressible, viscous fluid is considered with= 10*® MPa. The Young’s
modulus is taken aE = 9.10° MPa and Poisson’s ratio is assumedvas 0.4. The
dummy stifnesses at the interface are chosed,as ds = 10° MPa. The permeability
is taken asks = 10° mm*N~1s, the fluid viscosityy = 10°° Nmm2s!, and the
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Figure 6: Tangential fluid velocity along the interface asly state

Vo
p=0
initial defect

Figure 7: Geometry and boundary conditions of two—dimeraliexample problem

porosityn; = 0.3. Non-Uniform Rational B-Splines have been used for thdiapa
discretisation, with the displacements interpolated bgicsplines and the pressure
interpolated by quadratic splines [23]. Matching integf@ements have been used to
model the (stationary) discontinuity.

Figure[® shows theffects of the flow in the cavity on the area surrounding the cav-
ity at an early stage of the simulation. When the term for thv fh the discontinuity is
made inactive, the flux is the same at both faces of the disnotyt, i.e. the fluid flows
through the cavity without beingi@cted by it. The jump in the fluid flow is clear in
the right part of Figurg]5, with fluid being stored and flowirvgag within the cavity.

Figure[® shows that for a horizontal craek € 0), the fluid velocity is symmetric
in the cavity, flowing to the left and to the right in equal amtai When the interface is
inclined, the fluid can accelerate in the cavity, which stéstbehave like a resistance-
free channel for the fluid.

4.2. Discontinuous pressure at the interface

We next consider a two-dimensional specimen having a width 0.04 m and a
heightH = 0.1 m, Figurd Y, which is loaded under plane—strain conditidie sides
are traction free and the external loading is applied viangmosed constant velocity
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Figure 8: Evolution of the displacement fieldtat 18 s, 22 s, 26 s

Vo = —-10"% m/s. The pore pressure at the top of the specimen is the refepas-
sure, here zero, and undrained boundary conditions haveibgmsed on the other
boundaries. The solid constituent is assumed to behavenear lelastic manner with
a Young'’s modulu€ = 20 GPa and a Poisson'’s ratio= 0.35. The Biot coéficient
a has been set equal to 1, the Biot modulus has been assignégedwa= 5.0 GPa,
while the bulk material was assumed to have a permeakility 10~ m3/Ns. Shear-
band formation was triggered by a small imperfection, seefe[ 7. The critical shear
stress at which nucleation occurred, was takemcas 100 MPa and after inception
the shear-band evolution is controlled by a mode-Il frazemergyG. = 500 Jm?.
In the example calculations, the permeability of the diaghm has been assigned
kna = 0.5- 10" m3/Ns, which is half of that in the bulk.

Different from the previous example, the specimen has beeetiéstt with quadri-
lateral basis elements with a bilinear Lagrange interpmiatcheme for the displace-
ments as well as for the pressure. This scheme is not optbuahas been used to
avoid complexities in the Extended Finite Element apprahaehhas been adopted to
model the propagating shear band, especially with respehetintegration of the dif-
ferent parts of the load vectors andfstess matrices in elements which are crossed by
the discontinui]. In the simulations, 24 elementsénbeen used across the width
of the specimen and 60 elements over the height. The siranlatis been carried out
in 65 equal time steps over a total time of 26 s.

Figure$8 anfll9 show the evolution of the displacement fiedttla@ pressure field,
respectively. At the end of the simulation, the discontiynias traversed the entire
specimen. At this point, the bulk has unloaded elasticatligt the external loading
is transmitted entirely through the discontinuity, at whitie deformations have lo-
calised. The global inclination of the interface is approately 4%, which is in con-
formity with the behaviour in a single phase medium.

19



u] Z2.25e+07 4.5e+07

Figure 9: Evolution of the pressure fieldtat 18 s, 22 s, 26 s

The pressure distribution is strongly influenced by the pgation of the interface
even in the present case whégeandk,y are of the same order of magnitude. Indeed,
the pressure discontinuity is significant as observed inff€l@. Accordingly, the rel-
atively lower permeability at the discontinuity has a majdgluence on the fluid flow,
and therefore on the stress distribution inside the spetime

5. Concluding remarks

A classification has been made of hydromechanical intesfatdluid-saturated
porous media. Distinction is made between one, two, andthressure degrees of
freedom. In all cases, there is a discontinuity of the pnesguadient, enabling ex-
change of fluid between the discontinuity and the surroumgiorous bulk material.
The fluid is assumed to be viscous and Newtonian, and aftegrdifanal reduction in
the direction normal to the interface, a Reynolds type eqaaesults that governs the
flow and storage within the interface. When two pressureategof freedom are used,
a discontinuity in the pressure can be modelled at the enterfwith a separate fluid re-
sistance, but the absence of a separate, independent #sisipe in the interface then
prevents the use of a Reynolds type equation to govern pedkiid flow along the
interface. This can be remedied by introducing a fluid pressthich is the average
of the fluid pressures at the sides of the ca\@ [25], but gebeblution is to rigor-
ously introduce an independent fluid pressure, leading tpketnode fluid pressure
model [26].
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