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Abstract

The physics of optical vortices, also known as twisted light, is now a well-established and a
growing branch of optical physics with a number of important applications and significant inter-
disciplinary connections. Optical vortex fields of widely varying forms and degrees of
complexity can be realised in the laboratory by a host of different means. The interference
between such beams with designated orbital angular momenta and optical spins (the latter is
associated with wave polarisations) can be structured to conform to various geometrical
arrangements. The focus of this review is on how such tailored forms of light can exert a
controllable influence on atoms with which they interact. The main physical effects involve
atoms in motion due to application of optical forces. The now mature area of atom optics has had
notable successes both of fundamental nature and in applications such as atom lasers, atom
guides and Bose–Einstein condensates. The concepts in atom optics encompass not only atomic
beams interacting with light, but atomic motion in general as influenced by optical and other
fields. Our primary concern in this review is on atoms in structured light where, in particular, the
twisted nature of the light is made highly complex with additional features due to wave
polarisation. These features bring to the fore a variety of physical phenomena not realisable in
the context of atomic motion in more conventional forms of laser light. Atoms near resonance
with such structured light fields become subject to electromagnetic fields with complex
polarisation and phase distributions, as well as intricately structured intensity gradients and
radiative forces. From the combined effect of optical spin and orbital angular momenta, atoms
may also experience forces and torques involving an interplay between the internal and centre of
mass degrees of freedom. Such interactions lead to new forms of processes including scattering,
trapping and rotation and, as a result, they exhibit characteristic new features at the micro-scale
and below. A number of distinctive properties involving angular momentum exchange between
the light and the atoms are highlighted, and prospective applications are discussed. Comparison
is made between the theoretical predictions in this area and the corresponding experiments that
have been reported to date.

Keywords: twisted light, atoms, optical angular momentum, structured light, optical vortex,
optical manipulation, quantum electrodynamics
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List of symbols and abbreviations

A⊥ transverse electromagnetic vector potential

B magnetic vector field; also represents artificial
vector magnetic field

C l p∣ ∣ Laguerre–Gaussian mode normalisation constant

d electric dipole moment

E
⊥ transverse electric vector field

 electric field vector

Erec atom recoil energy

Fá ñ average force

H total Hamiltonian

Hint interaction Hamiltonian

I light intensity

IS saturation intensity

J current density

Jl(x) Bessel function of the first kind of order l

k wavevector

 Lagrangian density

L total Lagrangian

L orbital angular momentum density operator

l winding number (azimuthal index) in a
twisted beam

lin lin^ linearly polarised light beams, with orthogonal
polarisations

Lp
l∣ ∣ associated Laguerre polynomial

fi matrix element of interaction Hamiltonian Hint

between quantum states i and f

M mass of the two-particle atom

 magnetic dipole moment

pα=1,2 momentum canonically conjugate to qα=1,2

p radial nodal index in a twisted beam

 electric polarisation vector

T truncated electric polarisation vector (up to
quarupole term)

qα=1,2 particle position vector in the two-particle
(hydrogenic) atom

Qij (ij)th component of the electric quadrupole
moment tensor

R atomic centre of mass position vector variable

S̃ optical spin angular momentum density

S optical chirality flux

S optical linear momentum density vector

s0 saturation parameter

 torque on atomic centre of mass

Uá ñ dipole potential

up
l∣ ∣ LG amplitude distribution function

RV = ˙ velocity vector of the atomic centre of mass

V(R) artificial gauge scalar field of atom in an
optical field

vD the Doppler velocity

vrec recoil velocity

vg group velocity

w(z) beam waist at position z in the beam

zR Rayleigh range

αF damping coefficient in Sisyphus cooling

αf azimuthal damping coefficient in Sisyphus
cooling

ã atomic polarisability

Δ detuning of light frequency from atomic
transition frequency

Δ0 static detuning

δ doppler shift

r rijd - ¢^( ) transverse Dirac delta function

òf two-level atom adiabaticity parameter

ò adiabaticity parameter

 ¢ non-adiabaticity parameter in Sisyphus effect

Φ artificial magnetic flux

j optical chirality density

Γ upper state de-excitation rate in a two-
level atom

κ scalar field helicity

λ wavelength

Λ generating function in a Power–Zienau–Wool-
ley (PZW) gauge transformation

k10L elastic modulus of LG donut dipole trap

P^ momentum canonically conjugate to A⊥

0p canonical momentum density of evanescent light
sp spin momentum density of evanescent light

ŝ wavepacket transverse spread

s̃ evanescent wave helicity

Θklp Laguerre–Gaussian phase function

σ± left and right handed circular polrisation of
light

Ω rabi frequency

Ω0 rabi frequency associated with beam ampl-
itude Ek00

Ψ atomic state function on diffraction in atom
vortices

AVB atom vortex beam

HOT helical optical tube

LG Laguerre–Gaussian

OAM orbital angular momentum

SOV surface optical vortex

SPOV surface plasmon optical vortices
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1. Introduction

The term ‘twisted light’ refers to various states of light which
are endowed with the property of orbital angular momentum
(OAM). These encompass a wide range, including twisted
light in freely propagating beams such as Laguerre–Gaussian
(LG) and Bessel beams [1] and other forms of twisted light
inside optical fibres [2] and on fibres supporting twisted light
[3], as well as wave guide arrays [4]. Twisted light modes
have also featured in nonlinear waveguides [5] and as so-
called surface optical vortices (SOVs) [6]. The reference to
the twisted nature stems from the observation that the OAM
property of the light makes the normal to its wave-fronts twist
in a helical fashion with a degree of twisting depending on the
OAM content. Freely propagating twisted beams are proto-
typical twisted light and were the first to be explored; they are
also referred to as optical vortex beams. It has been realised
[7] that associated with the wave-front of such a state of light
is a topological structure due to a singularity in phase. In
cylindrical polar coordinates (ρ, f, z) the phase of a pure
vortex state takes the form ilexp f( ) where l is the topological
charge, also called the ‘winding number’ and the ‘azimuthal
quantum number’. The value of l∣ ∣ also quantifies, in terms of
the reduced Planck constant ÿthe OAM conveyed per pho-
ton. Nye and Berry were the first to describe the topological
features of the wave-front as a screw dislocation in a manner
similar to that encountered in crystal defects [8].

This review is concerned with the principles, recent
developments and applications in the context where atoms
interact with twisted light. Here we begin with the back-
ground theory of the interaction of atoms with electro-
magnetic fields in general, emphasising the division of the
atom dynamics into gross motion associated with the centre of
mass (which is dominated by the nuclear mass) and the
internal motion involving the bound electrons, and the dis-
tinction between optical spin and optical OAM densities. This
is followed by brief descriptions of conventional laser cooling
and trapping of atoms, including Doppler and Sisyphus
mechanisms. The essential formalism for twisted light fields
is given next with emphasis on LG light as the most widely
discussed form of twisted light. The inclusion of optical wave
polarisation (photon spin) as one of the main sources of
complexity of the twisted light is discussed with special
emphasis on polarisation gradients arising in co- and counter-
propagating twisted light beams with circular polarisations.
This background sets the scene for the main aim of this
review, namely the description arising when complex twisted
light interacts with atoms.

One of the first issues to be addressed in the context of
twisted light interaction with atoms is the possibility of
exchange of OAM. Could the well known selection rules in
the case of emission and absorption of ordinary (Gaussian)
polarised light with atoms be modified with the involvement
of the new ingredient in the form of OAM carried by twisted
light? The theory of this process is based on the analysis of
the transition matrix element for dipolar and quadrupolar
active transitions and on the division between the centre of
mass and the internal (electronic-type) motion of the atom.

We highlight experiments carried out to date on this issue.
The interaction also gives rise to modified optical forces that
act on the centre of mass of the atom with additional char-
acteristic features associated with the OAM content of the
twisted light, including azimuthal Doppler shifts along with
azimuthal forces and torques about the beam propagation
direction and an azimuthal Sisyphus effect. Multiple beams
are shown to lead to ‘twisted molasses’ and other novel forms
of optical trapping, including the formation of ‘Ferris wheels’
and ‘HOTs’ which arise when co-propagating beams with
opposite and identical winding numbers are formed.

Totally internally reflected twisted light can generate
SOVs as evanescent waves carrying OAM and in the pre-
sence of a metallic film deposited on the surface, the eva-
nescent modes acquire a plasmonic character. Such
evanescent fields interact with atoms in the vicinity of the
surface and the atoms may become trapped in the surface
region.

LG twisted light beams have anomalous additional phase
effects due to being focused beams with a well-defined waist
plane at focus. The additional phase terms in the form of a
Gouy phase and a curvature phase term are normally ignored
but become significant for atoms localised the vicinity of the
focus plane, particularly for LG light with large values of
winding number l and/or radial number p. Under these cir-
cumstances the atoms experience enhanced anomalous phase
effects in the form of modified gradient forces which can
diminish the axial force component acting on the atom, or
even reverse its direction.

Besides LG and Bessel beams where the dominant phase
involves integer winding number l, light beams with frac-
tional OAM have been considered. In particular, Götte et al

[9] reported the generation of light carrying fractional OAM
by limiting the number of Gouy phases in a superposition of
LG light beams.

A well defined beam of atoms, like an optical beam, is
essentially a de Broglie wave with a wavelength that depends
on the atomic axial velocity. Diffraction through light masks,
in techniques somewhat akin to, but rather different from,
those used for the generation of twisted light, are expected to
lead to the generation of twisted beams of atoms, so-called
‘atom vortex beams’. Finally, we describe how the gross
motion of atoms in twisted light gives rise to artificial gauge
fields for atoms in donut modes and in Ferris wheel patterns.

In the conclusions section, we briefly identify a number
of other treatments of atoms in twisted light that are beyond
our scope in this review, including the trapping of ions in
donut beams, the effects on cyclotron motion of ions in
twisted light, spin–orbit coupling effects in this context and
nonlinear effects.

2. Coupling light to atoms

The essential background physics describing the interaction
of twisted light with atoms stems from conventional non-
relativistic quantum electrodynamics [10] and considerable
work has been carried out on this (see [11–18]). An atom
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subject to light typically exhibits two kinds of dynamics,
namely the dynamics involving the gross motion of the atom
as a whole, in terms of its centre of mass, and processes
involving the internal dynamics in the form of transitions
between quantum (electronic) states due to the emission and
absorption of light quanta. These features play central roles in
the context of twisted light interacting with atoms and it is
helpful to tailor the formalism in a manner that highlights the
roles of the internal and gross motions. It is common practice
to explore interactions of atoms and molecules in terms of
multipole moments, both electric and magnetic, coupled to
the electromagnetic fields [13, 16]. The treatment becomes
particularly simple, but perfectly adequate and transparent,
when the atom comprises an outer electron and a nucleus
surrounded by a closed-shell electron core. The corresp-
onding particles have nett charges e1= e-∣ ∣ (electron) and
e2= e+∣ ∣ (nucleus and core) and masses m1=me (electronic
mass), m2=mc (nucleus and core). Any inner transitions of
the core need not concern us. We must bear in mind that
m2?m1, but it is important not to impose this condition
from the outset, in order to fully take account of the centre of
mass motion and its coupling to both the relative motions of
the outer electron and core and the light fields. The two-
particle atom coupled to the electromagnetic field has the
following non-relativistic classical Lagrangian in the trans-
verse (radiation) gauge [16]

L m m
e e

dq q
q q

r
1

2

1

2 4
, 11 1

2
2 2

2 1 2

0 1 2
òp

= + -
-

+˙ ˙
∣

( )

where

cJ A A A
1

2
, 20

2 2
2

 = + - ´^ ^ ^· [ ˙ ( ) ] ( )

with qa and q , 1, 2a =a˙ , the particle position variables and
corresponding velocity vectors. In the radiation gauge

A 0 =^( · ) the Coulomb effects reside in the static inter-
particle interaction and we only have A⊥ as the canonical
field variable. Besides the Coulomb interaction, the coupling
between the field and the particles occurs via the total current
density

e eJ r q r q q r q . 31 1 1 2 2 2d d= - + -( ) ˙ ( ) ˙ ( ) ( )

The dynamical variables in this canonical procedure are q1, q2
and A r^( ), and the corresponding canonical momenta are p1,
p2 and rP^( ). These canonical momenta emerge from the
Lagrangian as follows

L
m ep

q
q A q ; 1, 2, 4a=

¶
¶

= - =a
a

a a a a
^

˙
˙ ( ) ( )

A
A

E , 50 0 P =
¶

¶
= = -^

^
^ ^

˙
˙ ( )

and we obtain the total Hamiltonian in the form

H
e

m

e

m

e e
c d

p A q p A q

q q
E B r

2 2

4

1

2
. 6

1 1 1
2

1

2 2 2
2

2

1 2

0 1 2

0
2 22


 òp

=
+

+
+

+
-

+ +

^ ^

^

∣ ( )∣ ∣ ( )∣

∣ ∣
( ) ( )

The transition to the corresponding quantum theory fol-
lows once we identify the canonical momentum and coordi-
nate variables as operators obeying commutation rules

p q i

A t t ir r r r

, ,

, , , , 7

i j ij

i j ij





d d

d

= -

P ¢ = - ¢
a b ab

^ ^ ^

[ ]

[ ( ) ( )] ( ) ( )

where rijd
^( ) is the transverse delta function [10]. The above

framework constitutes the non-relativistic QED theory for the
two-particle atom interacting with light. However, so far the
theory deals with two individual charged particles interacting
with each other and with electromagnetic fields. We need to
devise means of identifying features of the dynamics which
recognise its division into types belonging to internal and
gross motions. The most useful form occurs when we seek to
express the Hamiltonian in equation (6) in a multipolar form.
The complete theory can be generalised to a many-body
system involving atoms and molecules with well defined
centres. Such a theory is now known as the Power–Zienau–
Woolley (PZW) theory, with numerous groups contributing to
its development and analysis (see [11–29]). The key point is
the observation that it is possible to take account of all mul-
tipoles, both electric and magnetic in closed forms and for-
mally include inter- as well as intra-centre interactions [12].
As we emphasise above, the version of the theory in which
we deal with a one-centre atom is both instructive and rela-
tively simple. Our ultimate aim in the context of this model is
to arrive at a Hamiltonian which is valid to all multipolar
orders, but ultimately we shall need to highlight applications
involving the leading electric dipole and quadrupole interac-
tions, as these are the multipolar orders currently accessible to
experimental work, including recent experiments on OAM
exchange between atoms and twisted light.

We begin by introducing the total electric polarisation
vector field r( ) for the two-particle system in the form

e dr q R r R q R ,

8

1,2 0

1

 òå ld l= - - - -
a

a a a
=

( ) ( ) [ ( )]

( )

in which λ is an integration parameter and R is the centre of
mass position vector

m m

M
M m mR

q q
; . 9

1 1 2 2
1 2=

+
= + ( )

The above expression of the electric polarisation field of the
two-particle system is a closed expression representing con-
tributions from all electric multipoles excluding any net
monopole (which can be included separately, e.g. in the case
of an atomic ion). The multipoles manifest themselves on
expanding the delta function appearing in r( ) in powers of
(qα−R), α=1, 2. These two vectors are related to the
internal coordinate of the two-particle system denoted by q

q q q , 101 2= - ( )

and it is easy to show that q1−R=m2q/M and q R2 - =
m Mq1- . Making use of these relations, the polarisation

vector field can be written entirely in terms of the internal
coordinates q and the field position variable r. By expanding
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the delta functions in (8) in powers of q followed by inte-
gration over λ yields the ith Cartesian component of the
expanded polarisation field vector  . Up to the quadrupole
moment, we have (using the Einstein convention that a
repeated index is summed over a set of mutually orthogonal
coordinates)

d Qr r R
1

2
, 11i i ij j d» +  -

⎡

⎣⎢
⎤

⎦⎥
( ) ( ) ( )

where ed q= ∣ ∣ is the electric dipole moment and Qij =
e q qi j∣ ∣ is a (ij)th component of the electric quadrupole moment
tensor. For electric dipole-active transitions, only the first
term is applicable, while the second (quadrupole) term
dominates in case of dipole forbidden transitions.

In practice, one seldom goes beyond this truncated form
of the electric polarisation as given in equation (11) and,
unless otherwise stated, it is this form that we shall need when
it comes to applications involving the coupling of the twisted
light to atomic systems. Ultimately, it will prove convenient
to use the notation rT ( ) to refer to the truncated polarisation
vector field, which we will subsequently define as follows

r D r R , 12T d» -( ) ( ) ( )

where D is a quadrupole-corrected dipole moment operator
with components given by

d QD
1

2
. 13i i ij j= +  ( )

2.1. Canonical transformation

The coupling of the light to all the atomic multipoles is
achievable via a PZW canonical transformation or, equiva-
lently, a gauge transformation involving a characteristic
generating function S in the form [13, 16]

e e . 14iS dr A r ri  òL = =
- ^

( )( )· ( )

This unitary transformation gives rise to a new Hamiltonian
Hnew which has the same form as the old Hamiltonian H, and
to mark the distinction we now represent all transformed
canonical variables with a prime. We have

H
e

m

e

m

e e
d

p A q p A q

q q

B
r

2 2

4

1

2
. 15

new
1 1 1

2

1

2 2 2
2

2

1 2

0 1 2 0

2

0

2

 òp m
P

=
¢ +

+
¢ +

+
-

+
¢

+

^ ^

^⎛

⎝
⎜

⎞

⎠
⎟

[ ( )] [ ( )]

∣ ∣
( )

After transformation, the new momenta p¢a andP¢̂ are given
by

e e i Sp p p p , , 16iS iS¢ = = +a a a a
- [ ] ( )

e e i S, . 17iS iSP P P P¢ = = +^ - ^ ^ ^[ ] ( )

The evaluations of equations (16) and (17) both involve a
commutator series, but it is easy to verify that both series
terminate at the first commutator in each case due to the form
of S in equation (14). We find

Sp p , 18¢ = +a a
a ( )

r r r , 19P P¢ = -^ ^ ^( ) ( ) ( ) ( )

where a in equation (18) denotes differentiation with
respect to the canonical coordinate qα. The vector field ^

appearing in equation (19) stands for the transverse vector
field part of the electric polarisation vector field given in
equation (8), having made use of the commutation relations in
equation (7).

The formal multipolar Hamiltonian follows from
equation (15) by direct use of equations (18) and (19). The
next steps involve the division of the motion into the internal
motion (which is characterised by the appearance of the
relative coordinate q), and the gross motion involving the
centre of mass coordinate R.

2.2. Decoupling of motions

Although we can continue the treatment without further recall
of a multipolar expansion, it is instructive to focus again on
the approximation in which the electric polarisation vector
field takes its truncated form in equation (11) with leading
contributions including only the electric dipole and the elec-
tric quadrupole terms We obtain for Sa after some algebra

S e A q D B R
1

2
. 20 = - + ´a

a a
^( ) ( ) ( )

Hence we can write for the transformed momenta,
equations (18) and (19)

ep p A q D B R
1

2
, 21¢ = - + ´a a a a

^( ) ( ) ( )

r r r . 22P P¢ = -^ ^ ^( ) ( ) ( ) ( )

Note that the last term in equation (21) does not depend on α.
Finally, substituting from equations (21) and (22) in
equation (15), we obtain the transformed Hamiltonian in the
following form

H
m

e

d

p D B R

r r B r
r

2 4 q

1

2
. 23

new

1,2

1

2

2
2

0

2

0

2

0






ò

å p

m
P

=
+ ´

-

+
-

+

a

a

a=

^ ^⎧
⎨
⎩

⎫
⎬
⎭

( )

∣ ( ) ( )∣ ( )
( )

To arrive at a theory with explicit division of the motion into
internal and gross motions, we have to define the centre of
mass momentum P conjugate to the centre of mass position
vector R, as defined in equation (9)

P p p 241 2= + ( )

and the internal momentum p conjugate to the internal vari-
able q by

m m

M
p

p p
q q q; . 25

2 1 1 2
1 2=

-
= - ( )

We can then express p1 and p2 in terms of P and p as follows

m

M
p P p1 ; 1, 2. 261 a= + - =a

a a+( ) ( )
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Equation (26) enables the explicit change from the par-
ticle canonical variables qa and pα to internal variables (q, p)

and gross motion variables (R, P). That the new pairs are
independent canonical variables can easily be checked. We
have i iP, R ; p , qi j ij i j ij d d= - = -[ ] [ ] and P, q 0i j = =[ ]
p , Ri j[ ] which follow by direct use of the commutator

ip , q .i j ijd d= -a b ab[ ] The above commutator relationships
ensure that the new variables conform with the requirements
for independent sets representing two independent motions in
the absence of coupling. Substituting from equation (26) in
equation (23), we get

27

H
m

m

e
d

p D B R

r r B r
r

1

2

4 q

1

2
.

new
M

P

1,2

1 1

2

2

2

0

2

0

2

0 


ò

å

p m
P

=
+ - + ´

- +
-

+

a

a
a

a=

+

^ ^

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎡

⎣
⎢

⎤

⎦
⎥

( )

( ) ( )

∣ ( ) ( )∣ ( )

The Hamiltonian (27) simplifies considerably on expanding
the square and we find

H
M

e

B
d

M

d

P p

r r
r D R

P D B R D B R P

D B R
r r B R

2 2 4 q

1

2

1
.

1

2
. .

8

1

2
,

28

new

2 2 2

0

2

0

2

0 0

2

0

2



 


 

ò

ò

m p

m

m

P

= + -

+
P

+ +

+ ´ + ´

+
´

+ +

^
^

^

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

( ) ( )
( )

( ( ) ( ) )

[ ( )]
( ) · ( )

( )
where μ is the reduced mass m m M1 2m = ( ) and coupling
terms are given in the truncated approximation. The ultimate
term involves the magnetic moment  coupling to the
magnetic field also in the truncated approximation. This term
arises from the product between p and D×B. In the dipole
approximation where D d= , the leading contribution to the
magnetic dipole moment is

m
d p

1

2
. 29

e

 = ´ ( )

Equation (28) is the non-relativistic Hamiltonian for the
electrically neutral two-particle atom in interaction with light.
It is seen that the internal electronic-type motion is essentially
separated from the gross motion, but these two subsystems of
the atom are coupled by mutual interactions between charges
and with the light fields. Amongst the various terms there are
three that essentially represent unperturbed components of the
system; these are the (zero-order) Hamiltonians representing
the gross (centre of mass) motion, the internal (electronic-
type) motion and the light fields—which appear as the first
three terms of equation (28). Other terms represent couplings
between the three subsystems; the fourth term represents the
coupling of the atomic dipole as well as the quadrupole
moments to the transverse part of the displacement field P^

(evaluated at the centre of mass coordinate R); the fifth
constitutes the leading interaction involving the centre of

mass with the truncated multipole moment and the magnetic
field; the sixth is the diamagnetic field-type energy and the
seventh term is an integral of the square of the polarisation
field. The latter is a self energy contributing to the Lamb shift
and may be absorbed in any renormalised energies pertaining
to the internal motion. Finally, the last term is the leading
interaction between the magnetic dipole of the atom and the
magnetic field of the light, evaluated at the centre of mass R.

2.3. Mechanical momentum and pressure force

A prominent feature of the Hamiltonian in equation (28),
when taken in the truncated multipole approximation is the
appearance of the term D×B. In the electric dipole
approximation, this can be written as eAR where
AR=q×B. Clearly AR plays the role of an electrodynamic
vector potential. The significance of this can readily be seen
by considering the particle canonical momenta. From
equation (21), we can write

ep A q p D B R
1

2
. 30¢ + = + ´a a a a

^( ( )) ( ) ( )

The left hand side is equal to m qa a˙ , so we can write

m q p D B R
1

2
. 31= + ´a a a˙ ( ) ( )

Summation over α=1, 2 in all terms we get

m q p D B R . 32
1,2 1,2

å å= + ´
a

a a
a

a
= =

˙ ( ) ( )

Using equation (9), the left hand side of equation (32) is
exactly MṘ while the first term on the right hand side is just
P. We therefore have

MR P D B R . 33= + ´˙ ( ) ( )

The relationship in (33) is between the canonical momentum
P and the mechanical momentum MṘ of the centre of mass in
the truncated multipole approximation. The result also fol-
lows as a Heisenberg operator equation based on the
Hamiltonian in equation (28). We have,

i
H

M
R R

P D B R
, . 34new


= =

+ ´˙ [ ]
( ( ))

( )

The radiation pressure force acting on the centre of mass in
the dipole approximation follows from equation (33) by total
time differentiation

d

dt
M

d

dt

d

dt
F R

P
D B . 35= = + ´( ˙ ) ( ) ( )

The force also follows from equation (34) as a Heisenberg
operator equation in the form

M
i
H

d

dt

R P D B

D E R D B

¨ ,

, 36

new




= + ´

=- + ´

[ ( )]

( · ( )) ( ) ( )

where  refers to differentiation with respect to the compo-
nents of R. We have explicitly evaluated the first commutator
H P D E,

i
new

=[ ] ( · ) but left the second commutator as a
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time derivative. The last term is referred to as the Röntgen
force, generalised here to include the quadrupole contribution.
The so-called Röntgen effect arises when an electrically
neutral system possessing a dipole moment is in motion in a
magnetic field [19]. Here, we have shown that the corresp-
onding interaction arises from a treatment incorporating the
motion of the atomic centre of mass as a dynamical variable.
Other effects that have been predicted to arise from the
motion of neutral quantum systems include the rotational
motion of a BEC with a form of distribution effectively
associated with either a magnetic monopole distribution or an
electric charge distribution [20]. We have therefore estab-
lished that both dynamical attributes, namely the momentum
and the corresponding pressure force, receive contributions
directly attributable to the Röntgen interaction. The complete
Hamiltonian in the truncated pole approximation is essential
for studying processes involving the coupling of the atomic
system to electromagnetic fields.

The multipolar theory of atom-field interactions, begin-
ning with the seminal work by Power and Zienau [21] was
subsequently developed and applied by several contributors.
The reader is referred to the following sources for further
information [22–29].

2.4. Quantum amplitudes and motion

Before proceeding further, it is helpful to recognise two quite
distinct forms of mechanical response that arise in describing
the evolution of a given atom + radiation state. As fully
discussed elsewhere [30, 31], gradient forces are generally
produced in response to interactions in which the initial and
final states are identical, resulting in mechanical motion
through response to a potential energy surface sculpted by the
structure of a light-beam. Here, forces arise essentially as a
secondary result from a position-dependent shift in the elec-
tronic energy, ΔE, which in the quantum framework is
identifiable with the real part of a corresponding quantum
amplitude. With no exchange of energy taking place between
the radiation and the atom, the response has to be mediated by
an isotropic property—one that has the full three-dimensional
symmetry of the atom. Most commonly this is polarizability,
denoted here by ã, and when this engages with a radiation
field with a locally variable strength there will be a resulting
optical force given by;

MR R¨ 1

2
E . 372a= ˜ ( ) ( )

This expression of this form is commonly used to
determine an optical trapping force.

In contrast are non-conservative interactions, in which
radiation directly produces mechanical effect through quant-
um transitions that impart linear or angular momentum. Since
the atomic and the radiation states both change, these inter-
actions engage transition moments that are intrinsically non-
isotropic. A further significant difference is that since the
initial and final states differ, any observable will have a direct
relation to the process rate—the latter normally associated
with the modulus square of a quantum amplitude. In either

case, in connection with imparted linear momentum the
changes in matter state are generally associated with transla-
tional motion amenable to representation by classical physics;
with angular momentum, however, internal changes in elec-
tronic state are necessarily quantum events and must be dealt
with accordingly.

2.5. Optical momentum density and OAM density

A helical structure can be associated with two important and
largely distinct aspects of light; most familiarly the sweep of
the field vectors in circular polarization, and for twisted light
the phase structure. Circular polarizations represent radiation
states that are eigenfunctions of the operator for optical spin
angular momentum (SAM), whose density operator is given
by;

S r E r A r . 380= ´^ ^˜( ) { ( ) ( )} ( )

As such, each circularly polarized photon conveys a well-
defined quantum spin, precisely σÿ, where σ=±1 according
to left/right helicity [32]. Photons of twisted or vortex forms
of structured light in principle represent quantum eigenstates
of an OAM density operator, expressible as follows;

E AL r r . 39i i0 = ´^( ) { ( ) } ( )

Both of the above results, equations (38) and (39), represent
gauge-dependent quantities, cast in terms of the vector
potential A(r). However, the separation of angular momen-
tum into spin and orbital parts is a simplification that applies
only in the paraxial approximation. More generally the
separation is not absolute; there are transverse components
and spin–orbit coupling in any significantly structured beam
[33, 34] and there is indeed recent experimental proof of their
interconversion in a cylindrically symmetric optical fibre [35].
For an objective perspective, it is therefore expedient to
introduce more definitive, generalized measures of chirality
for the radiation field. One suitable measure is the optical
chirality density, defined as;

cr E r E r B r B r
1

2
,

40

0
2c  = ´ + ´^ ^( ) { ( ) · ( ) ( ) · ( )}

( )

whose expectation value relative to the energy density in
cognate units is bounded within the interval [−1, 1], the two
limits signifying right- and left-handed circular polarizations
[36]. We can also define a corresponding chirality flux;

r E r B r

B r E r

1

2

, 41

0j 



= ´ ´

- ´ ´

^

^
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to satisfy the continuity equation

t

r
r 0. 42jc ¶

¶
+ =

( )
· ( ) ( )

The volume integrals of both χ(r) and rj ( ) are also directly
related to the scalar field helicity [37]

dA r B r r. 433òk = { ( ) · ( )} ( )
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For plane waves, χ(r) and rj ( ) effectively quantify a net
SAM in terms of a difference in the number of left- and right-
handed photons, for example [38]

d c k N Nr r k k 44
L R

k

3 2ò åc = -( ) { ˆ ( ) ˆ ( )} ( )( ) ( )

in which the right-hand side contains a difference between the
corresponding photon number operators. When vortex modes
are entertained, the key optomechanical parameter is repre-
sented by the OAM operator. In the paraxial approximation,
for a mode with topological charge l this operator is expres-
sible as;

kl N Nk k , 45
l

L R

k,

å +ˆ { ˆ ( ) ˆ ( )} ( )( ) ( )

so that the spin and orbital parts of the total angular
momentum effectively depend on the difference and sum,
respectively, of the number operators for modes of opposite
polarization helicity. From a different perspective this result is
also consistent with the fact that fields whose mode expan-
sions convey a phase factor ilexp f( ), are eigenfunctions of
the angular momentum operator L [7]. The wide variety of
other beams conveying OAM includes several other kinds of
modified-Gaussian vortex beams [39], described as having a
perfect optical vortex structure [40] and propagation-invariant
Bessel beams [41]. For mode structures cast in a form that
necessarily involves summation over an additional parameter
(as is the case with perfect vortex beams, for example) the
associated quanta are correspondingly associated with state
superposition [40].

3. Laser cooling and trapping

3.1. Overview

The term ‘laser cooling’ refers to various methods in which an
interaction of laser light is made to systematically cool
atomic, molecular and condensed matter systems to lower
temperatures. For general reviews (see [42–46]). The primary
processes involve the exchange of laser photons leading to
momentum and hence velocity changes. Doppler cooling is
the simplest of a number of techniques leading to the sys-
tematic reduction of the temperature of atomic or molecular
ensembles while Raman anti-Stokes techniques are used for
cooling condensed matter systems. Besides Doppler cooling,
the list of laser cooling schemes includes, among others:
Sisyphus cooling [47]; Raman sideband cooling [48]; velo-
city-selective coherent population trapping; [49, 50] and
electromagnetically induced transparency cooling [51]. In
addition to laser cooling, the laser light can be made to trap
atoms in the minima of optical potential wells set up by the
laser light.

The atoms to be cooled are normally in the form of a
dilute atomic gas and the Doppler mechanism is employed for
cooling down to a microkelvin limit; for 85Rb the limit is
commonly around 150 μK. The physical principles under-
lying Doppler cooling can be summarised succinctly as

follows. When the frequency of the laser light is below a
strong atomic transition frequency (a scenario referred to as
red-detuning), then for an atom travelling in the direction of
the laser source the light is blue-shifted in accordance with the
Doppler effect. The atom absorbs a photon and so is slowed
down on recoil. Consider now the effects of two counter-
propagating laser beams of the same wavelength on a repre-
sentative atom in a dilute atomic gas. Each atom absorbs more
photons belonging to the laser beam opposite to its direction
of motion in each event, thereby losing a linear momentum
equal to the photon momentum. This atom is now in the
excited state and so discharges its excitation by spontaneous
emission in a random direction. The total effect of this basic
cycle of photon absorption followed by emission is a reduc-
tion of the momentum of the atom, and so the atom loses
speed. Repeated cycles then lead to a reduction of the centre
of mass kinetic energy, which signifies cooling of the atom
since (when compared with the case of molecules) they have
no other centre of mass degrees of freedom.

Currently the most prominent use of laser cooling is in
preparing samples of atomic ensembles with temperatures just
above absolute zero, widely used for experiments that lead to
a variety of effects, most notably Bose–Einstein condensation
(BEC). Laser cooling has primarily been applied to atoms, but
recently there has been progress leading to the cooling of
more complex systems such as molecules [52, 53] and macro-
scale objects [54, 55]. Depending on the size of the molecule,
the problem of dissipating the energy from internal vibra-
tional and rotational levels can present a considerable addi-
tional challenge [56].

When laser light is employed in the context of the laser
cooling techniques mentioned above, it is commonly regarded
as ordinary laser light in the sense that it is not endowed with
OAM unless this feature is specifically introduced. The aim in
the following is to highlight what has been achieved to date as
regards the modifications to processes involving cooling and
trapping of atoms when the laser light is twisted.

3.2. The Sisyphus effect

Soon after Doppler cooling appeared to be well-explained
theoretically the experimental evidence showed that the
existent theory was inadequate [57], as the measured kinetic
temperatures achieved were significantly lower than those
predicted by the Doppler mechanism. The failure of the
Doppler mechanism to account solely for the lower tem-
peratures achieved meant that a new theory was needed. This
paved the way for the development of so-called sub-Doppler
cooling mechanisms, most notably the mechanism based on
the Sisyphus effect [58, 59]. As we discuss later, the Sisyphus
effect is modified when the laser light is endowed with OAM,
so it is helpful to first review the salient features of this effect.

There are two main differences between the Sisyphus
cooling mechanism and Doppler cooling. In Sisyphus cool-
ing, the main process involves the interaction of atoms with a
light field characterised by spatial polarisation gradients. The
specific polarisation gradients which have been utilised in the
Sisyphus effect can be created by the superposition of two
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(for one-dimensional cooling) counter-propagating plane
wave laser beams, with either mutually orthogonal linear
polarisations [58], or with opposite circular polarisations [59].
The former is known in the literature as the lin ⊥lin case,
while the latter is represented as the σ+–σ−.

Consider now the first case where the two fields have
mutually orthogonal polarisations. The electric field vectors
of two identical, but counter-propagating laser beams, of
frequency ω and axial wavevector kk 2pl= =∣ ∣ travelling
in opposite directions along the z-axis, are given by

ez E eE ikz
0= 

( ) ˆ where eˆ are the corresponding polar-
isation vectors and E0 is the amplitude or its quantum operator
counterpart. We assume that the two beams have mutually
orthogonal polarisations, e ex=+ˆ ˆ and e ey=-̂ ˆ . The total the
total electric field is the vector sum:

e e e e
z E kz i kz2 cos

2
sin

2
.

46

x y x y
0 =

+
+

-+
⎧
⎨
⎩

⎫
⎬
⎭

( ) ( )
ˆ ˆ

( )
ˆ ˆ

( )

As depicted in figure 1, the interference of two counter-pro-
pagating laser beams with mutually orthogonal linear polar-
isations results in a total polarisation of left- and right-handed
circularity alternately σ+ and σ− at planes separated by an
axial distance of λ/4. Between planes the polarisation is
linear with polarisation vector pointing at angles ±45°. This
spatial variation of the wave polarisation along the common
axis of the interfering beams constitutes a polarisation gra-
dient, which—as will be explained—can lead to a spatially-
dependent population differential.

To explain how Sisyphus cooling works, we consider an
atom that possesses a Jg=1/2 ground state which has only two
Zeeman sub-levels g±1/2. Most laser cooling experiments use
optical transitions J J J 1g e g = + , the energy gap between
the two states defined as ÿω0. We, therefore, consider a
J J 3 2g e = transition. As in Doppler cooling, we assume
red-detuning Δ0 < 0 where Δ0 = (ω − ω0) [43]. The polar-
isation gradients created by the interfering counter-propagating
beams affect the light shifts and the populations of the atomic

levels which now become spatially dependent. This can be
explained as follows. When the atom interacts with a non-
resonant light field, then in the weak-field limit the ground state
levels acquire light shifts U±. Similarly the populations of the
Zeeman sub-levels (for an atom at rest) are now given by

z kzsinst
1 2

2P =( ) ( ) and z kzcosst
1 2

2P =- ( ) ( ), so that these light
shifts are spatially dependent and different for the Zeeman sub-
levels g±1/2 as illustrated in figure 1. The optical potentials
associated with the two Zeeman sub-level shifts are given by

U kz
2

3
2 cos 2 , 470= D¢ [ ( )] ( )

where Ω0 is the Rabi frequency. Also, Δ0 and 0D¢ and the
saturation parameter s0 are given by

s s2;
2

4
. 480 0 0 0

0

0
2 2

D¢ = D =
W

D + G
( )

Note that U± are the optical potentials of the ground state sub-
levels g 1 2ñ∣ . It is easy to see that the minima of U+ correspond
to the maxima of U− and vice versa and the maxima and
minima correspond to positions where the polarisation is sˆ
(purely circular).

Early theoretical works which sought to explain the Dop-
pler cooling argued that the damping of the atomic gross motion
arises from the fact that the atomic internal state does not follow
adiabatically the variations of the laser field resulting from
atomic motion [60]. Such an effect may be described by a non-
adiabaticity parameter ò=vτP/λ= v/(λΓ), defined as the ratio
between the distance vτP covered by the atom with a velocity v

during its internal relaxation time τP (τP=Γ−1
), and the laser

wavelength. For multi-level atoms, we can similarly define a
non-adiabaticity parameter v vP t l l¢ = ¢ = G¢( ). At low
intensities, since G¢ G it follows that  ¢  . Thus non-
adiabatic effects can appear at much lower velocities (kv » G¢)
than those required by Doppler cooling, and thus can ensure the
presence of damping forces even at very low velocities.

Dalibard and Cohen-Tannoudji [58] explained how the
damping of the atomic motion is generated. The key point is
that, as a condition, the atom must have internal states with
energy sub-levels with a strong position-dependence, and
which therefore experience large changes as the atom moves.
The creation of polarisation gradients can ensure this condi-
tion. Let us assume that the atom moves along the z-axis, and
it has a speed such that during the optical pumping time
P

1t = G¢- it travels a distance of the order of the laser
wavelength λ. If the atom starts from the bottom of a valley in
a given Zeeman sub-level, then it has sufficient time to reach
the top of the hill. At this position, it has a large probability to
be optically pumped to the other sub-level and be shifted to
the bottom of a valley, and so on: see figure 2. The atom is
running uphill more frequently than downhill. This is called a
low intensity Sisyphus effect, which arises from the correla-
tions between the spatial modulations of light shifts and
optical pumping rates. It is important to emphasise the term
‘low intensity’ as the Sisyphus effect we are discussing is
valid in the low intensity regime. This is in contrast to another
Sisyphus effect which is valid at high intensities, which we
shall not discuss any further here [61].

Figure 1. Variations of the populations (spots) and energy level
shifts of the ground state sub-levels along the z-axis. Reproduced
with permission from [58].
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In the process of Sisyphus cooling, an atomic sample
eventually reaches an equilibrium temperature. In each optical
pumping cycle, we have the emission of a fluorescence photon.
Each such photon has an energy higher than the energy of the
absorbed photon, by an amount in the order of the light shift U∣ ∣.
The excess energy is transferred from the atom to the light field
leading to a decrease of the atomic energy by the same amount.
Repeated pumping cycles, thus, lead to a stepwise decrease of the
atomic energy until its total energy is so low that the atom
becomes trapped in the optical potential wells associated with the
spatially modulated light shifts. The equilibrium temperature of
sub-Doppler cooling is therefore expected to be given by:

k T U
4

, 49B Sis

2
0

0
2 2


» =

W D
D + G


∣ ∣

( )

which for large detuning Δ0?Γ takes the form,

k T U
4

. 50B Sis

2

0


» =

W
D


∣ ∣

( )

The detailed quantitative treatment of these predictions has been
given in [58]. At low intensity, the magnitude of the light shift
U∣ ∣ of the ground state is much smaller than the natural width ÿΓ
of the excited state. This explains why it is possible to attain
temperatures about two orders of magnitude lower than the
Doppler limit, which itself scales as ÿΓ. The Sisyphus cooling
leads to a damping force which for large detuning is in the form,

F v k, . 51Sis F F
2 0a a= - =
D
G

( )

The friction coefficient αF which applies in the case of low
intensity Sisyphus cooling, as given in equation (51), is much
larger than the friction coefficient of Doppler cooling: the latter is

of the order of k s2 0 , where the saturation parameter s0 must be
smaller than one. In typical experiments, both cooling mechan-
isms come into play. Although the friction force of the low
intensity Sisyphus cooling acts within a much smaller velocity
interval than the Doppler cooling, both mechanisms are useful.
The Doppler cooling that acts over a relatively large velocity
interval drags the atoms towards the velocity region where the
Sisyphus cooling operates. Thus, use of the Doppler mechanism
as a first step serves to increase dramatically the number of atoms
affected by the sub-Doppler mechanism.

We have seen that the equilibrium temperature is pro-
portional to the square of the Rabi frequency, which means
that it is directly proportional to the laser intensity. This may
incorrectly imply that lowering the intensity can lower the
temperature indefinitely. But we must take into account the
fact that the scheme is based on spontaneously emitted
photons in each pumping cycle. Each photon imparts a recoil
momentum ÿk to the atom which, according to its direction
relative to the atomic motion, may either decrease or
increase the atomic kinetic energy. The atomic motion
continues to be cooled only so far as the decrease of the total
atomic energy due to the Sisyphus effect, remains larger
than the increase of the kinetic energy, of the order of Erec,
due to recoil associated with the spontaneously emitted
photon.

The qualitative description of low intensity Sisyphus
cooling, as given above, is based on a classical description of
the position of the atomic centre of mass. This means that the
moving atom is treated as a classical point particle. This is a
reasonable assumption only if the atomic wave packet, which
describes quantum mechanically the centre of mass, is well
localised in the laser wave. This assumption breaks down
when the minimum temperature is achieved and this leads to
the conclusion that we must then treat both internal and
external variables quantum mechanically. In this case, we can
take advantage of the fact that in the Sisyphus effect the
motion of the atom occurs in spatially periodic potential
wells. This is reminiscent of the electron motion in solid state
lattices. Thus, the description of atomic motion could also be
given in terms of Bloch states and energy bands [62–64]. In
this regime, low intensity Sisyphus cooling is a result of
optical pumping processes that accumulates the atoms into the
lowest energy bands.

The above arguments may suggest that the photon recoil
energy Erec should be the ultimate cooling limit. However, to
cool the atomic motion to kinetic energies below the photon
recoil energy, atoms with velocity v smaller than the recoil
velocity vrec must be prevented from absorbing light [49, 50].
This condition can be satisfied by the creation of atomic dark
states for which the fluorescence rate depends on the atomic
velocity at the excitation, by a Raman process. When the
velocity is zero, or close to zero, the atom does not absorb
photons; it thus does not fluoresce, and so it does not
experience recoil. We can also use selective Raman processes
in which the excitation of the atoms is velocity-selective [65].
However, these mechanisms have basic physical differences
from Doppler and Sisyphus cooling. First, the cooling with
velocity-dependent dark states is not based on a force. It is

Figure 2. When the optical pumping time is sufficiently long, an
atom, initially in the g+1/2 Zeeman sub-level, has sufficient time to
remain in the position-dependent sub-level which changes in energy
(vertical scale) from its value at the bottom of the valley to its value
at the top of the hill as the atom moves (from left to right in the
figure). At this position, the atom has a large probability of being
optically pumped into the higher state from which it then gets de-
excited to the other sub-level g−1/2 at the bottom of the
corresponding valley. This basic set of steps is repeated in each
cycle. Reproduced with permission from [58].
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rather the result of an inhomogeneous random walk in
momentum space which vanishes as the atomic velocity tends
to zero. Secondly, in Doppler and Sisyphus cooling the sys-
tem reaches a steady state as a result of the competition
between the cooling introduced by the friction, and the
heating due to fluctuations associated with the random
spontaneous emission processes. Such a competition does not
exist in sub-recoil cooling.

As a corollary, it is interesting to note why the mech-
anism in question is called the Sisyphus effect. The name
comes from Sisyphus, a hero of ancient Greek mythology
who was punished by Zeus by being forced to transport a
heavy rock to the top of a hill. Just before reaching the top,
the rock slipped away and rolled downhill to the bottom. The
Sisyphus effect is an allusion to his condemnation to repeat
this eternally just as the atom loses kinetic energy through
transitions involving the potential hills of its space modulated
energy levels.

4. Twisted light

Light possessing optical SAM is well known, where optical
spin is identified with the intrinsic property of wave polar-
isation. The much more recent discovery of twisted light
began with the work in 1992 by Allen et al [7] who suggested
that it should be possible to generate light beams possessing
quantised OAM in the laboratory. The experimental con-
firmation followed soon after, with experiments carried out in
a number of laboratories. Research on twisted light continues
apace more than three decades later and it has led to funda-
mental advances in both concepts and applications (see [1,
66–69]). The most prominent mechanical applications of
twisted light include the optical spanner as the rotational
version of the optical tweezer which has also featured in a
variety of other applications (see [70–75]). Other develop-
ments involving the application of twisted light include
micro-manipulation [76]; quantum communications and
cryptography [77–79] and phase contrast imaging (see
[80–82]). Twisted light has been presented in some recent
reviews which the reader is referred to, beginning with the
1999 review by Allen et al [1] followed by a number of edited
books, reviews and theme issues (see [66–69, 83]). This
topical review is concerned primarily with the interaction of
twisted light with atoms and we feel it is helpful to begin by
considering applications involving LG light as the proto-
typical form of twisted light. We shall also deal with complex
twisted light, which we define as polarised twisted light
arising in single or multiple beams and in various geometrical
arrangements, including co-propagating or counter-propagat-
ing twisted beams with specified wave polarisations in one,
two or three dimensional configurations. These sources of
complexity gives rise to novel interactions with atoms in
processes involving both the internal and gross atomic
degrees of freedom.

4.1. LG light

It is a general feature of twisted light, exemplified by the LG
beams, that different modes have helical wavefronts consist-
ing of intertwined helices, as shown schematically in figure 3.
Modes of the LG type, denoted LGklp, have a wavevector
component k along the propagation direction and are char-
acterised by the two integer indices: an azimuthal integer
index l, representing the number of intertwined helices and a
radial integer index p which arbitrates the number of radial
nodes. These directly equate to the degree and order of the
associated (generalised) Laguerre polynomial that modifies
the Gaussian radial profile. The integer l can be positive or
negative, representing two senses of helical wavefront rota-
tion. When both l and p are zero, the mode (k, 0, 0) becomes
simply a Gaussian distribution with no angular momentum.

In the paraxial approximation, the electric field associated
with a LG mode, of wavelength λ=2π/k and frequency ω

propagating in the z-direction, and polarised in the x-direction
is given by
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and Θklp is the phase function
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Here Lp
l∣ ∣ is the associated Laguerre polynomial, w(z) is the

beam waist at position z defined by w z z z kz2 R R
2 2 2= +( ) ( ) ,

and zR is the Rayleigh range, which is related to w0, the waist
at focus, by z wR 0

2p l= where λ the wavelength of the light.
In equation (54), the third term is the Gouy phase for the LG
mode and the fourth term is referred to as the curvature phase
term. The factor s=±1 takes into account propagation in the
opposite directions along the ±z-axes, while the factorC l p∣ ∣ is

given by C p l p2l p p= +! (∣ ∣! !)∣ ∣ .
An important feature of all twisted light fields is the

existence of the phase factor e ilf. However, the full phase
Θklp(ρ, f, z) is essential for describing the various effects
including rotational effects when the light interacts with
atoms and molecules. Figure 3 shows by way of an example
the characteristic features of optical vortex beams concerning
phase variations and helical wavefronts.

A LG beam characterised by the electric field Eklp(ρ, f, z)
has a linear momentum ÿk and carries an angular momentum
equal to lÿ per photon. The quantum number l is called the
winding number (or the topological charge) and we re-emphasise
that l can take both negative and positive integer values,
corresponding to right-hand and left-hand twisting of the
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wavefront. LG modes for which l 0¹ but p=0 are called
donut modes, since the light intensity is ring-shaped as shown
figure 4 for the cases l=1 and l=3. Figure 4 also shows the
case of a double ring mode arising when l=1, p=1.

It is often sufficient to focus on the form of twisted light
without explicit details of the LG form. An electromagnetic
light mode of frequency ω and OAM lÿ possesses an electric
field vector distribution which can be written in cylindrical
polar coordinates zr ,r= ( ) as follows

t F e eE r,
1

2
, 55kl

i kz t il r= w f-( ) ˆ ( ) ( )( )

where ̂ is a wave polarisation vector and F(ρ) is a scalar dis-
tribution function which depends only on the radial coordinate ρ.
Note that, unless a paraxial approximation is deployed, the
polarisation vector need not necessarily reside in the plane
represented by r. The field in equation (55) emerges from the
familiar LG light distribution in the limit of large Rayleigh range
zR  ¥, a situation which is often encountered and is realisable
in practice. This simplified form of field is advantageous for a

number of reasons. It has the desired feature in being endowed
with OAM, by virtue of the azimuthal phase factor, and is free
from the curvature problems which often distract from the
fundamental issues involving OAM of light in a real LG beam,
i.e. with a finite Rayleigh range.

4.2. Other types of twisted light—Bessel beams

Besides the LG beam, a second, somewhat simpler, type of
vortex beam is the Bessel beam [84]. This is characterised by
a transverse electric field which is also a solution to the
electromagnetic vector Helmholtz equation, with the modes
characterised by only one integer number l, that can take
either positive or negative values. We have in cylindrical
polar coordinates r=(ρ, f, z)

t E J k e e eE r, , 56l l
ikz il i t

0e r= f w
^

-( ) ˆ ( ) ( )

where E0l is the amplitude and the unit vector ê designates a
wave polarisation. The radial function Jl(k⊥ρ) is the Bessel
function of order l where, as in LG beams, l is the winding
number and the vortex beam carries lÿ OAM per photon. The

Figure 3. Left: continuous phase ramps in transverse planes perpendicular to the beam axis for l=1 (left, top) and l=3 (left, bottom). Here,
colours through the spectrum denote the optical phase, repeating on a 2π interval with an arbitrary zero. Right: the l=3 three-part wavefront,
a helical surface of constant phase.

Figure 4. The intensity distributions of modes, respectively, for LG1,0 (donut mode), LG3,0 (donut mode) and LG1,1 (two-ring). These radial
intensity distributions are at the waist plane z=0. The insets exhibit graphically the corresponding radial intensity distributions with radial
distance in units of wavelength.
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wavevectors k⊥ and k stand for in-plane and axial wavevector
variables. Figure 5 displays the field intensity distributions of
two different Bessel beams characterised by different values
of the winding number.

5. Complexity due to wave polarisation

5.1. Multiple polarised beams

The superposition of multiple beams endowed with OAM can
give rise to various field distributions and associated proper-
ties which become more complex when wave polarisation is
included. The simplest cases are those in which two beams
are involved and arranged to be co-axial identical or other-
wise and may have different magnitudes and signs of winding
numbers. They can be co-propagating or counter-propagating
and may have the same polarisation. The influence of such
states of twisted light on the near resonant optical forces and
torques leading to the trapping and dynamics of the atoms
immersed in them is discussed in section 7. It has been shown
[85] how further complexity arises when the twisted light
beams have circular wave polarisations (optical spins), giving
rise to spatio-temporal polarisation gradients. We discuss
below the simplest cases involving only two beams, as done
in [85].

5.2. Co-propagating LG beams

Consider the case of two co-propagating LG beams, labelled
1 and 2 of the same frequency ω and axial wave vector k, with
coinciding centres. The beams have the same magnitude of
winding number l, but differ only in the sign of l. The total
electric field vector distribution is then given by

z t z e eE , , , , , c.c. , 57i t ikzr f r f= +w+ -( ) { ( ) } ( )

where c.c. denotes complex conjugation and z, , r f+( )
arises from the sum of the two electric fields. We have

e ez f z e f z e, , , , , 58il il
1 1 2 2 r f r r= +f f+ -( ) ( ) ˆ ( ) ˆ ( )

where f1,2 describe any LG light beam expressible through
equations (52)–(54) with appropriate choice of quantum
numbers and parameters. However, for the applications we
consider here, the beams differ in the sign of l such that l1=l
and l2=−l. The vectors e1̂ and e2̂ specify the wave polar-
isations of the beams, which in general involve any combi-
nation of linear polarisations, but more specifically we
consider circular polarisation.

5.2.1. Co-propagating with σ+−σ−. When the two co-
propagating beams have opposite l, as well as opposite
circular polarisations, we write

e e ei
1

2
, 59x y1 s= = - ++ˆ (ˆ ˆ ) ( )

e e ei
1

2
, 60x y2 s= = --ˆ (ˆ ˆ ) ( )

where ex̂ and eyˆ are the usual linear wave polarisation vectors
along the x and y axes. Substituting for e1,2ˆ in equation (58),
we have

z f z f z

i f z f z

, ,
1

2
, ,

, , , 61

2 1

2 1

 r f r r f

r r f

S

S

= -

- +

+
-

+

( ) {[ ( ) ( )] ˆ ( )

[ ( ) ( )] ˆ ( )} ( )

where fSˆ ( ) are polarisation vectors that depend on only the
azimuthal angular position.

e el lcos sin , 62x yf f fS = --ˆ ( ) ˆ ( ) ˆ ( ) ( )

e el lsin cos . 63x yf f fS = ++ˆ ( ) ˆ ( ) ˆ ( ) ( )

Thus, the polarisation of the interference fields is, in general,
locally elliptical with an ellipticity given by

Figure 5. In-plane field intensity distributions as for for the corresponding positive value of l of Bessel beams: l=1 (left) and l=2 (right).
Here the colours denote an arbitrary intensity scale from a dark blue denoting zero through to bright yellow for the highest intensity regions.
The corresponding Bessel modes with l 0< have the same intensity distribution. However, the phase has the opposite sign. Reprinted figure
with permission from [84], Copyright (2017) by the American Physical Society.
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f z f z

f z f z

, ,

, ,
.2 1

2 1

r r
r r

-
+

( ( ) ( ))

( ( ) ( ))

To illustrate the polarisation distribution in the resultant
field of the above scenario involving co-propagating LG
beams, we make use of the fact that the two beams are
identical, except for the sign of l. This means that f1=f2=f.
We then have from equation (61)

e e

z i f z

i f z l l

, , 2 ,

2 , sin cos .

64

x y

 r f r f

r f f

S=-

=- +

+
+( ) ( ) ˆ ( )

( ){ˆ ( ) ˆ ( )}

( )

The polarisation is linear throughout, but its direction is
independent of the axial position and depends only on the in-
plane positions ,r f( ). Figure 6 displays the polarisation
distributions for two cases, l=±1 and l=±2. The dashed red
circles coincide with the radial positions of maximum intensity.

5.2.2. Co-propagating with lin ⊥ lin polarisations. When the
co-propagating beams have opposite winding numbers, but
with wave polarizations that are linear and orthogonal, we
have

e ez f z e f z e, , , , , 65il il
1 1 2 2 r f r r= +f f+ -( ) ( ) ˆ ( ) ˆ ( )

where now e ex1 =ˆ ˆ and e ey2 =ˆ ˆ . Substituting in equation (65),
we get:

e e e e

z

f z l i l

, ,

2 , cos
2

sin
2

.

66

x y x y

 r f

r f f=
+

+
-

+

⎧
⎨
⎩

⎫
⎬
⎭

( )

( ) ( )
ˆ ˆ

( )
ˆ ˆ

( )

Clearly the polarization direction distribution does not depend
on the axial position, but its form varies with angular position

and is in general elliptical, displaying both linear and circular
forms, as the azimuthal angle varies. This is illustrated in
table 1. For a donut mode where p = 0 and a general value of
l > 0, the region of maximum intensity occurs at a radial
position, w l 20 0r = , the polarisation changes from linear

to circular along the arc of length s w l4 20pD = . Thus, the
spatial extent of the polarisation depends on the beam waist
and the magnitude of the OAM.

5.3. Counter-propagating LG beams

Now consider counter-propagating beams with opposite signs of
winding numbers. The electric field distribution associated with
an LG beam travelling along the negative z-axis can be found
from the standard form by a simple transformation. This involves
rotating the LG beam as a rigid body about the Cartesian y-axis
by an angle π, which amounts to the substitution
x x y y; -  and z z - . In terms of cylindrical polar
coordinates, we have ;r r f f  - and z z - . It is easy
to see that this transformation affects only the phase factors but
leaves the function f (ρ, z) unchanged. The polarisation of the
light field in this case depends also on the axial position z.

Figure 6. Polarization distributions in the (x, y) plane for σ+–σ− co-propagating LG beams for two cases, l=±1 (a) and l=±2 (b). The
dashed red circles show the radial position of maximum intensity. The distances are measured in units of the beam waist w0. The arrows
represent polarisation directions.

Table 1. Variation with azimuthal angle f of the type of polarization
for two co-propagating donut modes at fixed radial position

w l 20 0r = ( ). It is seen that as f changes from 0 to π/l, the type of
polarization switches between linear and circular.

f Polarization

0 Linear
π/4l Circular σ−

π/2l Linear
3π/4l Circular σ+

π/l Linear
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5.3.1. Counter-propagating with σ+–σ� . Here, two counter-
propagating beams have opposite circular polarisations, but
the same winding number. The total electric field vector is
now given by the analogue of equation (57)

z t z eE , , , , , c.c. , 67i tr f r f= +w+ -( ) { ( ) } ( )

where now we have

e ez f z e f z e, , , , ,

68

i kz l i kz l
1 1 2 2 r f r r= +f f+ + - +( ) ( ) ˆ ( ) ˆ

( )

( ) ( )

where e1̂ and e2̂ are given by equations (59) and (60),
respectively. On substituting for these vectors in equation (68),
we find

z f z f z

i f z f z

, ,
1

2
, ,

, , , 69

2 1

2 1

 r f r r f

r r f

S

S

= -

- +

+
-

+

( ) {[ ( ) ( )] ˜ ( )

[ ( ) ( )] ˜ ( )} ( )

where z,fS˜ ( ) are polarisation vectors that now depend on
both the azimuthal angular position f and the axial position z.

e ez kz l kz l, cos sin , 70x yf f fS = + - +-˜ ( ) ˆ ( ) ˆ ( ) ( )

e ez kz l kz l, sin cos . 71x yf f fS = + + ++˜ ( ) ˆ ( ) ˆ ( ) ( )

Once again we shall consider the case where the beams
are similar, in which case, we have

e e

z i f z z

i f z kz l kz l

, , 2 , ,

2 , sin cos .

72

x y

 r f r f

r f f

S= -

= - + + +

+
+( ) ( ) ˜ ( )

( ){ˆ ( ) ˆ ( )}

( )

In this case, the polarisation distribution is z-dependent as
well as angular dependent. The polarisation is linear and is
constant in direction along spirals which result from the
equation kz l constantf+ = . For example, the polarisation
vector is eyˆ along the spiral kz + lf = 0 and ex̂ along the spiral
kz+lf=π/2, as shown in figure 7.

Figure 8 displays the polarisation distributions on the
planes z=0; λ/4; λ/2; 3λ/4 and λ in the case where l=1.
It is easy to see that the polarisation gradient distribution on
the plane z=0 for the counter-propagating fields is identical
to that for the co-propagating LG beams for any z value.

5.3.2. Counter-propagation with lin ⊥ lin polarisations. The
second case is the one where the two beams have mutually
orthogonal polarisations. The total electric field vector is now
given by the analogue of equation (57)

z t z eE , , , , , c.c. , 73i tr f r f= +w+ -( ) { ( ) } ( )

where now we have

e ez f z e f z e, , , , .

74

i kz l
x

i kz l
y1 2 r f r r= +f f+ + - +( ) ( ) ˆ ( ) ˆ

( )

( ) ( )

On substituting for these vectors in equation (74), we find

e e

e e

z

f z l kz

i l kz

, ,

2 , cos
2

sin
2

. 75

x y

x y

 r f

r f

f

= +
+

+ +
-

+

⎧
⎨
⎩

⎫
⎬
⎭

( )

( ) ( )
ˆ ˆ

( )
ˆ ˆ

( )

Now the polarisation is also in general elliptical, displaying
both linear and circular forms, as the function kz+lf varies.
This is illustrated in table 2.

As shown in table 2, the polarisation acquires certain
forms along the spiral lines defined by kz+lf=constant.
Figure 9 displays two sets of helices in separate plots, one set
representing two helices of constant linear polarisation and
the other set represents two of opposite circular polarisations.
The helices correspond to points of maximum intensity.

5.4. Rotating mode patterns

Finally, consider the case where the intensity pattern of the
light fields rotates in time. This is achieved when the inter-
fering beams have a slight difference in their frequencies. The
selection of different values of beam winding numbers and
polarizations gives rise to temporal polarization gradients.
Here, we present two such schemes.

5.4.1. Circular polarisation σ+�σ� . Consider first two co-
propagating LG beams, of opposite l but slightly different
frequencies. Assume that beam 1 has frequency ω1 and a
positive circular polarisation s+ and beam 2 has frequency ω2

Figure 7. Helices of constant linear polarisation. The red solid line
corresponds to points where kz+lf=0, where the polarisation is
eyˆ , while the blue dashed line to points where kz+lf=π/2, where
the polarisation is exˆ . The helices correspond to points of maximum
intensity.
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and a negative circular polarisation s-. The electric field
vector for the two co-propagating circularly polarised LG
beams with different frequencies is given by the analogues of
equations (57) and (58). We have

z t z t eE , , , , , , c.c. , 76ikzr f r f= ++( ) { ( ) } ( )

where

e ez t f z e f z e, , , , , .

77

i l t il t
1 1 2 2

1 2 r f r r= +f w f w+ - - +( ) ( ) ˆ ( ) ˆ

( )

( ) ( )

On following analogous steps to those in section 5.2.2, we
have the analogue of equation (64)

e e

z t i f z e

l t l t

, , , 2 ,

sin
2

2
cos

2

2
, 78

i

x y

t1 2
2 r f r

f f

= -

´
+ D

+
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+ - w w+

⎧
⎨
⎩

⎡

⎣⎢
⎤

⎦⎥
⎡

⎣⎢
⎤

⎦⎥
⎫
⎬
⎭

( ) ( )

ˆ
( )

ˆ
( )

( )

( )

where Δ is the frequency difference Δ = ω2 − ω1. We now
see the polarisation varying in both space and time. At a given
axial plane, the polarisation pattern rotates at a rate which
depends on the frequency difference Δ and the magnitude of
the winding number l. Figure 10 displays a graphical
illustration of the rotation of the polarisation vector in two

different cases. The first is the case in which the beam 1 of
frequency ω1 has l=1 while beam 2 of frequency ω2 has
l=−1, shown for different times t=0 (left) and t=π/Δ
(right). The second is the case in which beam 1 of frequency
ω1 has l=−1 and beam 2 of frequency ω2 has l=1 again
shown for two different times t=0 (left) and t=π/Δ
(right). It is interesting to see that in the second case the
polarisation changes from fully azimuthal to radial. Finally,
we note that in the limit where the beams have the same
frequency, i.e. when Δ≡ω2−ω1=0, equation (78)
reduces to equation (64), as it should.

Figure 8. Polarisation distributions on different z planes, but for σ+−σ− counter-propagating Laguerre–Gaussian (LG) beams with the same
magnitude and sign of l. The distances are measured in units of the beam waist w0. Arrows represent polarisation direction. The red circles
correspond to points of maximum intensity. The figures are labelled (a)–(d) corresponding to the axial positions z=0, λ/4, λ/2, and 3λ/4,
respectively.

Table 2.Variation with axial and azimuthal position (z, f) of the type
of polarisation for two counter-propagating donut modes at fixed
radial position r w l 20= ∣ ∣ . As (kz+lf) changes from 0 to π, the
type of polarisation switches between linear and circular.

kz+lf Polarisation

0 Linear
π/4 Circular ŝ-
π/2 Linear
3π/4 Circular s+ˆ
π Linear
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Figure 9. (a) Helices of constant linear polarisation. The red solid line corresponds to points where kz+lf=0 while the blue dashed line to
points where kz+lf=π/2. (b) Helices of constant circular polarisation polarisation. The black solid line corresponds to points where
kz+lf=π/4 while the red dashed line to points where kz+lf=3π/4. The helices correspond to points of maximum intensity.

Figure 10. The rotation of the polarisation vector, at z=0, for the light field that is made up from the interference of two LG beams with
opposite helicity, opposite circular polarisations and slightly different frequencies: (a) the case where the first beam of frequency ω1 has l=1
and the second beam of frequency ω2 has l=−1 at two different times t=0 (left) and t=π/Δ (right), (b) the case where the first beam of
frequency ω1 has l=−1 and the second beam of frequency ω2 has l=1 at two different times t=0 (left) and t=π/Δ (right). The red
circles correspond to points of maximum intensity.
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5.4.2. The lin ⊥ lin case. Finally, we deal with the case
where the two co-propagating LG beams, of opposite l but
slightly different frequency have mutually orthogonal linear
polarisations. Assume that beam 1 has frequency 1w and
polarisation ex̂ and beam 2 has frequency ω2 and a
polarisation eyˆ . In this case, we have

z t z t eE , , , , , , c.c. , 79ikzr f r f= ++( ) { ( ) } ( )

where

e ez t f z e f z e, , , , , .

80

i l t
x

il t
y1 2

1 2 r f r r= +f w f w+ - - +( ) ( ) ˆ ( ) ˆ

( )

( ) ( )

Since f1(ρ, z)=f2(ρ, z)=f (ρ, z), we find

e e

z t f z e, , , ,

e e . 81
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i l t
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i l t
y

2 2

t1 2
2 r f r=

´ +f f

+ -

-D - +D

w w+
( ) ( )

{ ˆ ˆ } ( )( ) ( )

( )

Figure 11 displays the evolution of the polarisation vector, at
z=0, for the light field arising from the interference of two
LG beams with mutually orthogonal polarisations, opposite
winding numbers and slightly different frequencies. Two
different cases involving two different time instants are
shown. Note in particular how the polarisation changes from
linear to circular and vice versa at different azimuthal angles.

In summary of this section, we have investigated the
spatial and temporal polarisation of light fields created by the

interference of either co-propagating, or counter-propagating
LG beams when they have opposite winding number l and for
the cases where they possess opposite circular polarisations,
s+ and σ− and mutually orthogonal linear polarisations.

When the LG beams are co-propagating and possess
opposite circular polarisations we have found that for a fixed
value of l∣ ∣, the polarisation is independent of the axial
position z, so that within a normal beam cross-section, it is
everywhere locally linear but the direction changes, depend-
ing on its polar position ,r f( ). When the beams have
mutually orthogonal polarisations the total polarisation again
does not depend on the radial position, but now it can change
from linear to σ− and then back to linear and σ+ as the
azimuthal angle changes from 0 to 2π.

When the LG beams are counter-propagating, the
polarisation distribution depends on the axial position as
well as the in-plane polar position (ρ, f). Note the interesting
symmetry in which the the distribution for z=λ/4 is the
mirror reflection of that at z=3λ/4. Similarly, the polarisa-
tion distribution for z=λ/2 is the mirror reflection of that for
z=0. The distributions at z=0 and z=λ are identical.

A case in which the polarisation shows both temporal and
spatial variations is that of interfering beams with slightly
different frequency and opposite signs of winding number.
We may again consider two different cases when the beams
have opposite circular polarisations and mutually orthogonal

Figure 11. The evolution of the polarisation vector, at z=0, for a light field made up from the interference of two LG beams with mutually
orthogonal polarizations, opposite helicity and slightly different frequencies: (a) the first beam of polarisation along the x-axis has frequency
ω1 and l=1 and the second beam of polarisation along the y-axis has frequency ω2 and l=−1 at two different times t=0 (left) and t= π/
Δ (right), (b) the first beam of polarisation along the x-axis has frequency ω1 and l=−1 and the second beam of polarisation along the y-axis
has a frequency ω2 and l=1 at times t=0 (left) and t=π/Δ (right). The dashed circles correspond to points of maximum intensity.
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polarisations. This difference in frequency has been shown to
give rise to a rotation of the polarisation pattern. The temporal
evolution is very similar to the sequence exhibited by the
spatial dependence and so similar patterns will emerge, except
that position-dependence is now replaced by a time-
dependence.

6. Atom control and interactions

6.1. Overview

As an area of atomic and optical physics, atom optics is pri-
marily concerned with the manipulation and control of the gross
motion of atoms. The word ‘optics’ in ‘atom optics’ is in many
respects an indication of realising and manipulating atoms in
beam format, just as laser photons are realised in optical beam
format. The analogy has led to the realisation in the laboratory
of analogues of ordinary optical elements, such as atom mirrors,
atom beam splitters and atom-guides [86], with the main control
of atomic motion provided by optical forces.

The principal basis for the frequency-tuned optical con-
finement of atoms has its origin in forces associated with
beam profile effects: equation (37) highlights the key role of
the atomic polarizability. Resonance damping of the polar-
izability is attributable to several physically distinct processes
responsible for the finite lifetimes of electronic excited
states, which are not, in general, solely attributable to radia-
tive decay. The accommodation of damping serves to repre-
sent dissipative and essentially stochastic effects, but it is
impossible to fully accommodate the condition of time-
reversal invariance—the Hamiltonian for an implicitly non-
conservative system is necessarily non-Hermitian [87].
Accounting for the spherical symmetry of an ion or atom, the
result is cast as:
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where the sum is taken over all excited electronic levels r of
energy Er. The effect of the damping is primarily significant
in the first, potentially resonant term in equation (82), and on
approach to resonance with a specific excited state,

E 0X X wD = -  , it delivers signals with an approxi-
mately Lorentzian lineshape and full-width at half-maximum
(FWHM) linewidth ΓX. Specifically, we have:

83

d

i

d

E i

d

E i

d

E i

1

3 2 2

2 2
.

X

X X

X

X X

r X

r

r r

r

r r

0 2 0 2

0 2 0 2

  

   å

a w
w

w w

= -
D + G

-
+  G

+
- - G

+
+  G¹

⎡

⎣
⎢

⎧
⎨
⎩

⎫
⎬
⎭

⎤

⎦
⎥

( )

˜ ( )
∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

Different arguments support varying conclusions on the sign
and magnitude of the damping in the anti-resonant terms the
second and fourth in equation (83) (see [87–90]). However,

the results for alternative signs cannot be experimentally
discriminated, so these corrections can effectively be
neglected.

In principle, red- and blue-detuning from a resonance
leads to opposite signs for the dominant leading term—the
principle is exploited in securing forces of opposite direction
towards or away from regions of highest intensity, according
to equation (37) and the first term in equation (83). However,
it should be kept in mind that the presence of the third terms
in equation (83) means that any switch in sign generally
occurs at a frequency displaced from exact resonance.

Besides atom trapping as a useful property, optical forces
can also lead to the transport of atoms in atom guides [91].
When Bessel beams are used as atom guides the atoms can be
confined within the central region of the beam. The non-
diffracting nature of the central region facilitates atom trans-
port over long distances without transverse spreading as
expected from the use of a non-vortex structured light beam.
The width of the atom guide in the central region of the beam
can be arranged to be as small as the order of the optical
wavelength.

A LG-based dipole trap for atoms was first realized in
1997, in which approximately 108 Rb atoms were confined in
the LG core region using a blue-detuned LG beam and two in-
plane light beams [92]. A three-dimensional dark core region
surrounded by bright light, referred to as a bottle beam, has
subsequently been constructed using suitable combinations of
LG beams [93]. Such beams have been used to trap samples
of cold atoms [94, 95], including single Rb atoms [96] which
could be trapped for several seconds. Theoretical work on
atom trapping in bottle beams has been reported by Aldossary
[97]. Furthermore, LG beams and their superpositions have
been exploited in the construction of optical ring traps and
ring lattices. A dark ring trap, generated at the focus of an
LG10 mode, was shown to hold Rb atoms with a decay time
of 1.5 s [98].

With suitable superpositions of co- or counter-propagat-
ing LG beams, ring lattices can be realized for trapping in
bright or dark intensity regions. These may be used to
simulate condensed matter effects: adjusting the phase twist
can generate persistent currents [99, 100], and adjusting the
boundary between the lattice sites should allow the realization
of Mott insulator transitions. A large number of different
trapping geometries is possible by combining LG modes of
different OAM and radial mode number [101]. Single Rb
atoms have been trapped at individual lattice sites of a bright
rotating optical Ferris wheel [102]. The transfer of atoms
between a bright and dark ring trap, simply by modifying the
laser detuning, has also been observed [103]. OAM beams
have also been used in the creation of dark spontaneous
optical force traps [104].

6.2. OAM transfer

One of the issues that quickly arose in the context of the
interaction of twisted light with atoms is whether OAM can
be exchanged between the twisted light and the internal
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atomic degrees of freedom in a process involving transition
between the energy levels in analogy with the photon SAM
manifestation in a radiative transition. Electromagnetically
driven transitions between atomic states occur whenever the
exciting field properties match the redistribution of the atomic
charge and the phase of the material wavefunction. As we
have seen at the outset, atomic transitions are categorised as
dipole-allowed, quadrupole-allowed and higher multipolar-
allowed orders. The relatively clear-cut distinction between
transitions allowed at different levels of multipolarity is one
of the key simplifications, due to symmetry, that arise when
dealing with atoms—in contrast to molecules where electro-
nic transitions are frequently allowed by more than one form
of multipole. In a dipole-allowed transition the atom engages
with the optical field strength while in a quadrupole transition
it engages only with the field gradient. The field gradients in
atom-field interactions can lead to transitions for atoms
localised in the dark regions of the light beam where there is
weak light intensity but relatively strong field gradients.

6.3. Theory

Theoretical work has necessarily focused on the distinction
between the internal motion and the gross motion of an atom
(or molecule) due to interaction with fields possessing OAM,
with due consideration of the selection rules involved in
transitions [105, 106]. Initial forays into the theory were
followed by some experimental work [107, 108] which con-
firmed the theoretical finding of [106] that no exchange of
angular momentum arises between the light and the internal
degrees of freedom in a dipole-allowed transition.

Here we outline the underlying theory of OAM transfer
as given in reference [106]. We focus on the two-particle
model of the neutral atom as a system consisting of a nega-
tively charged electron of mass m1 and a positive atomic core
of mass m2 as emphasised at the outset. The Hamiltonian of
this system in interaction with the light field can be written as
the following sum of four parts, to be discussed in turn

H H H H H . 84M field int
0 0 0= + + +m ( )

H0
M is the centre of mass Hamiltonian, which is essentially the

kinetic energy of the centre of mass

H
P

M2
, 85M

0
2

= ( )

where P is the centre of mass momentum with M=m1+m2

the total mass. The centre of mass momentum is conjugate to
the centre of mass coordinate R, defined in terms of the
particle position vectors qi; i=1, 2, by

m m

M
R

q q
. 86

1 1 2 2=
+

( )

We are, however, interested in the possibility of the
centre of mass rotating about a beam axis, so that the in-plane
motion of the centre of mass kinetic energy is rotational. The
appropriate form of the centre of mass Hamiltonian is then
given by

H
L

I

P

M2 2
, 87M

z z0
2 2

= + ( )

where Lz is the angular momentum operator. Here I stands for
the moment of inertia of the atomic centre of mass about the
z-axis and Pz is the centre of mass momentum axial vector
component. The second term in equation (84), namely H 0

m ,
pertains to the internal ‘electronic-type’ motion

H
p e

q2 4
, 880

2 2

0m p
= -m ( )

where μ=m1m2/M is the reduced mass and p is the
momentum conjugate to the internal coordinate q=q1−q2.
The second term in equation (88) is the Coulomb potential
binding the two-particle system, with q q= ∣ ∣. The third term
in the total Hamiltonian is defined by

H a a 89field kl klw= ( )†

which is the field Hamiltonian in quantised form with akl the
annihilation operator (its Hermitian conjugate being the
corresponding creation operator) of the light mode in question
of frequency ω, OAM lÿ and axial wavevector kk z= ˆ . For
present purposes, any radial index p can be suppressed; the
assumption is a donut mode of the lowest order for any given
value of l. Finally, the last Hamiltonian term is the interaction
Hamiltonian describing the coupling between the light and the
two-particle bound system, representing the molecule. In the
PZW scheme this can be written as

H d tr r E r, , 90int kl
3 ò= - ( ) · ˜ ( ) ( )

where tE r,kl
˜ ( ) is the second quantised form of the electric

field; r( ) is the electric polarisation defined in a closed
integral form as in equation (8).

For simplicity, we have ignored all magnetic interactions.
Note that, although the electric polarisation field defined in
equation (8) appears to be a function of the individual particle
coordinates q1 and q2, it can be written entirely in terms of the
relative coordinate q using the relations

m Mq R q . 911,2 2,1- =  ( )

Any quantum-mechanical treatment of the interaction
between the light and the atomic system must start by spe-
cifying the zero-order states of the overall motion, comprising
the centre of mass motion (rotational and translational), the
internal ‘electronic-type’ motion and the field state. The
appropriate states are product states of the three-subsystem
Hamiltonian H H H HM field

0 0 0 0= + +m and can be written as

P L j N, ; ; . 92z z kl ñ∣ { } ( )

The unperturbed motion of the centre of mass in this product
state is represented by an axial translational state with linear
momentum Pz, together with a rotational eigenstate of the
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angular momentum operator Lz with corresponding eigenva-
lues ÿLz. The internal motion enters in terms of the hydro-
genic excited discrete states j eñ º ñ∣ ∣ of energy Ee and a
ground state j gñ º ñ∣ ∣ of energy Eg. The shorthand notation
eñ∣ and gñ∣ stand for n l m; ;e e eñ∣ and n l m; ;g g gñ∣ , respectively,
where nj, lj, mj with j≡e, g are hydrogenic state quantum
numbers. Finally, the ket Nklñ∣{ is the number state of the
light field.

The evaluation of the coupling between matter and field
involves working out the interaction matrix element if
where

i P L e N f P L g N, ; ; ; , ; ; . 93z z kl z z klñ º ñ ñ º ¢ ¢ ¢ ñ∣ ∣ { } ∣ ∣ { } ( )

Specifically, we have

P L e N

d t P L g Nr r E r

, ; ;

, , ; ; . 94

if z z kl

kl z z kl
3 



ò

=-á

´ ¢ ¢ ¢ ñ

{ }∣

( ) · ˜ ( )∣ { } ( )

To evaluate this matrix element, we begin by expressing the
interaction Hamiltonian in the following form

H e d d
m

M

m

M

m

M

m

M
t

r q r R q

q r R q E r, . 95
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kl

3
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1
2 2

1 1
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⎧
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⎩
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⎤
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⎭
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We cannot carry out the usual multipolar expansion, whereby
the two delta functions are each expanded in powers of
λm1,2/M, leading to a series of terms multiplied by r Rd -( )
which ultimately gives rise to a dipole term, a quadrupole
term and higher multipole terms The reason why the multi-
polar expansion is inappropriate at this stage is that the
hydrogenic system has a centre of mass R which is sig-
nificantly off-axis. To proceed, we now carry out the volume
integral involving the full delta functions, but keeping the λ

integral untouched for the time being. We have

H
e

M
d m m M t

m m M t

q E R q

E R q

,

, . 96

int kl

kl

0

1

2 2

1 1

ò l l

l

= +

+ -

· { ˜ ( )

˜ ( )} ( )

Note that the interaction is now such that the electric field of
the twisted light is now evaluated at the r=R+λm2q/M in
the first term and at r=R−λm1q/M in the second term.

The azimuthal dependence of the atomic internal motion
is referred to the centre of mass coordinates, while the twisted
beam has an axis coinciding with the z-axis of the laboratory
coordinate system. The position vector variables of the centre
of mass R and the atomic internal coordinate q in polar
coordinates are written as follows:

R R q qR q, , ; , , . 97R z zf= F = ( ) ( ) ( )

We need to incorporate the full azimuthal angular dependence
which must be split into internal and centre of mass depen-
dences. To be able to establish the azimuthal angular
dependence, we consider projections of relevant vectors in a
plane parallel to the (x, y) plane. The situation is shown in
figure 12 for the vectors m MR q, 2l  and their sum

m MV R q1 2l= + 

in the context of the first interaction term. Similarly, the
vectors RP and (−λm1qP/M) and their sum

m MV R q2 1l= - 

would apply in the context of the second interaction term.
In pursuit of a multipolar expansion of the interaction

Hamiltonian, the next step is to express the azimuthal
dependence of the two vectors V1 and V2 in terms of the
azimuthal angle ΦR of the centre of mass relative to the
laboratory frame, and the azimuthal angle of the internal
‘electronic’ position vector f relative to the centre of mass.
This is followed by applying the approximations

m q M R m q M R; . 98z z2 2l l   ( )

6.4. Transfer of OAM to centre of mass only—electric dipole

interaction

We then find that the interaction Hamiltonian up to the
quadrupole term consists of four contributions, which we can
write as

H H H H H . 99int int int int int
1 2 3 4= + + + ( )( ) ( ) ( ) ( )

The leading term is identifiable as the electric dipole term,
which emerges from the sum of the terms linear in the vector
components of the internal coordinate q. We have

H e e F R e e aq. h.c., 100int
ikR il i t

kl
1 z R= +f w-

ˆ ( ) ( )( )

where F(RP) is a function of the centre of mass coordinate RP

only. We see that, besides the internal position operator e q.̂ ,
this interaction Hamiltonian involves the centre of mass

Figure 12. The vector projections in the (x, y) plane and the
corresponding azimuthal angles for the vectors m MR q, 2l  and

their sum m MR q2l+  in the context of Hint
1( ). Reproduced figure

with permission from [106], Copyright (2002) by the American
Physical Society.
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cylindrical coordinates (RP, ΦR, Rz). Remember that the
eigenstates of the internal dynamics are as for a hydrogen
atom, with the position vector q expressible in spherical polar
coordinates where f is the azimuthal angle, as is the case in
cylindrical coordinates. Substitution of this in the transition
matrix element, equation (94), writing the explicit forms of
the translational and rotational eigenstates of the centre of
mass motion and performing the space integrals, we obtain

e g N e P P kd2 . ,

101

if kl
i t

L L l z z
2 1 2

,z z
  p d d= á ñ - ¢ -w-

- ¢ ( ) ∣ ˆ ∣ ( )

( )
( )

where d=eq is the electric dipole moment vector and is
the integral

dR R F R . 102
0

 ò=
¥

   ( ) ( )

The Dirac delta function in equation (101) exhibits con-
servation of the centre of mass axial linear momentum with
conventional linear momentum transfer between the light and
the centre of mass. The Kronecker delta expresses con-
servation of OAM and there is clearly OAM transfer of
magnitude lÿ between the light and the centre of mass rota-
tional motion. This transfer is not to the internal motion, and it
should be emphasised again that the internal motion does not
participate in any exchange of momentum between the atom
and the vortex light, neither linear momentum nor OAM.
Only the centre of mass responds to the vortex. As we explain
later, this is the process that leads to mechanical action
involving the gross dynamics of the atom as a whole, through
the motion of its centre of mass, and in which the atom
experiences both rotational and translational forces.

6.5. Quadrupole interactions: OAM exchange

Consider next the terms H H,int int
2 3( ) ( ) and Hint

4( ). These interaction
terms are quadratic in the vector components of q and so
correspond to quadrupole interactions. Explicitly, we have for
the first type of quadrupole interaction

H c q e F R e e aq. h.c., 103int z
il ikR i t

kl
2

1
R z= +wF -

ˆ ( ) ( )( )

where c1 is a constant. The next type is of the form

H c q e e G R e e aq. h.c., 104int
i i l

l
ikR i t

kl
3

2
1 R z= +f w- F - -

 ˆ ( ) ( )( ) ( )

where c2 is a constant. The last is of the form

H c q e e G R e e aq. h.c.

105

int
i i l

l
ikR i t

kl
4

2
1 R z= +f w- + F + -

 ˆ ( )

( )

( ) ( )

Once Hint
2( ), equation (103), is inserted in the matrix element in

equation (94), we can readily deduce that this term cannot
mediate any transfer of OAM between the light and the internal
motion. However, transfer of OAM does occur between the light
and the centre of mass motion, as in the electric dipole case. This
is essentially the next order of the multipolar process, over and
above that due to Hint

1( ). By contrast, we see in the expression for
Hint

3( ) in equation (104) that a factor eif now appears in the matrix
element between the internal states eñ∣ and gñ∣ , and the centre of
mass azimuthal phase factor is now ei l 1 R- F( ) . This is indicative
of a transfer of OAM from the light beam to the internal motion,

leaving only (l−1)ÿunits to be transferred to the centre of
mass rotation. Similarly when Hint

4( ), equation (105), is sub-
stituted in the matrix element, we can conclude that a transfer of
OAM occurs between the internal motion and the light beam,
with a balance of (l+1)ÿtransferred to the centre of mass
rotation. It is easy to check that the integrals over the azimuthal
angle f for the internal motion lead to the usual quadrupole
selection rule m m 0, 1, 2e g- =  ∣ ∣ where, as defined ear-
lier, me and mg are the azimuthal quantum numbers of the
respective internal states eñ∣ and gñ∣ involved in the transition.

We have thus demonstrated by explicit analysis that in the
interaction of light possessing OAM with atoms (or molecules,
by a directly similar mechanism) the major mechanism of
exchange of OAM occurs in the electric dipole approximation
and involves only the centre of mass motion and the light beam.
The internal ‘electronic-type’ motion does not participate in any
OAM exchange with the light beam to this leading order. It is
only in the weaker electric quadrupole interaction that an
exchange involving all three subsystems (the light, the atomic
centre of mass and the internal motion) can take place. This
involves one unit of OAM being exchanged between the light
beam and the internal motion, with the remaining (l±1)ÿ units
of OAM being transferred to the centre of mass motion. The
quadrupole transitions thus involve participation of two units of
OAM. These conclusions rule out any experiments which seek to
observe OAM exchange involving light beams and the internal
states of molecular systems via electric dipole transitions.

A different treatment of this problem was given by Lloyd
et al [84] in the conventional QED framework using a cou-
pling involving the vector potential A rather than the electric
field as above. Lloyd et al confirmed theoretically that an
optical vortex cannot transfer OAM to the internal atomic
motion in a dipole active transition, although it could do so in
a quadrupole transition.

6.6. Experimental work and other theoretical work on OAM

exchange

Following the publication of the work in [106], experimental
research began to test the validity of the main theoretical
prediction, namely that OAM cannot be transferred between
an optical vortex in a dipole active transition. There was need
to experimentally find out whether the OAM can influence the
internal electronic degrees of freedom of the atoms, a
requirement at the core of the theoretical analysis, both in the
electric dipole approximation and for higher order transitions.
Mathevet et al [109] gave an intuitive argument for explain-
ing the absence of magnetic orbital dichroism in an isotropic
medium as a function of the sign of the OAM. They sug-
gested that this effect cannot be observed in transitions
essentially described by the electric dipole approximation, but
only when considering (at least) the higher quadrupole order.

As noted earlier the compartmentalisation of optical
angular momentum into spin and orbital parts cannot always
be clear-cut, and when vortex radiation is associated with
circular polarizations, spin–orbit coupling can arise [33].
Circular polarizations are, of course, widely associated with
chiroptical phenomena, i.e. optical interactions exhibiting a
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quantitative difference in an observable such as rate of exci-
tation, for molecules of opposite handedness engaging with a
particular circular polarization or equally vice versa. It is
therefore not surprising that the possibility of engaging
twisted light with chiral matter has become a widely resear-
ched topic. Moreover, whilst the manifestations of spin–orbit
interactions do not require engagement with chiral matter (see
[33–35]) the latter offer additional scope for novel effects.

The first experimental report was by Araoka et al [107]
who showed that LG light is not specific in interaction with
chiral matter. This was followed by the work of Löffler et al
[108] who concluded that they could not find any influence of
the OAM on circular dichroism in cholesteric polymers.
Despite the experimental evidence provided by the work of
Aroaka et al [107] and Löffler et al [108], subsequent
theoretical investigations continued on the issue of the
transfer of OAM to the internal degrees of freedom of atoms
and molecules with some regarding it as an unsettled matter
(see [109–120]) and it appeared that the community was not
entirely decided upon a matter which the theoretical analysis
makes quite clear. As has recently been shown, it is only
possible to break this embargo under conditions that thor-
oughly undermine the powerful spatial isotropy principles
that otherwise generally apply. Specifically, they require a
chiral molecule (which can support transitions simultaneously
allowed by both electric dipole and quadrupole forms of
coupling) held in a fixed orientation [121].

The most recent experimental work on OAM transfer in
atoms is that by Giammanco et al [122] whose results we
outline below. Giammanco et alʼs results confirmed the ear-
liest theoretical finding and subsequent experimental evidence
[106–108] regarding the lack of influence of the photon OAM
on electric dipole transitions.

6.7. Giammanco et al experiment

In their experiment, Giammanco et al [122] aimed to find out
whether or not the OAM of light has the same ability and
manner of interacting with atoms as occurs for the SAM. They
used laser light with different combinations of OAM and SAM
to excite Rb atoms. The laser radiation was selected to inhibit or
enhance the fluorescence according to the selection rules for the
electric dipole transitions between the ground state and the first
excited doublet states. Their experimental results showed that the
OAM does not engage with the atomic internal (electronic)
motion in dipole active transitions.

Figure 13 shows the absorption profiles in the case of left
and right circularly polarized untwisted light (without OAM)

and twisted light (with OAM). By sweeping the laser fre-
quency in a range of 10 GHz across the Rb resonance profile,
Giammanco et al were able observe the four minima in the
transmission corresponding to the transitions from the ground
state of 85Rb (F3, F2, inner minima) and 87Rb (F2, F1, outer
minima). The Doppler width at their working temperature was
about 529 MHz. This enabled the resolution of the hyperfine
structure of the ground state (3.03 GHz and 6.83 GHz for 85Rb
and 87Rb, respectively).

Figure 14 shows the fluorescence signals measured under
the same experimental conditions as given in figure 13. As
expected, the fluorescence exhibits a complementary beha-
viour with respect to the absorption. The profiles of the
transition lines do not exhibit significant variations within the
limits of the experimental error; and with both polarizations
and OAM, no disappearance of the electric dipole transition
effects was observed.

As pointed out, the experiment was an attempt to verify
whether the total angular momentum of a light beam with an
OAM component induces fluorescence excitation on alkali
atoms or inhibits it, depending on the values of the OAM and
of the SAM of the beam. Theoretical results [84, 106] sug-
gested that this effect cannot be observed in transitions
essentially described by the electric dipole approximation, but
only when considering (at least) the higher quadrupole order.
In short, these results corroborate the theoretical predic-
tions [106].

Figure 13. Transmitted radiation with modes OAM=0 (black open
squares) and OAM=1 (grey full squares) for left circular
polarization (top) and right circular polarization (bottom) of the laser
beam transmitted radiation with modes OAM=0 (black open
squares) and OAM=1 (grey full squares) for left circular
polarization (top) and right circular polarization (bottom). The black
squares are not clearly visible because they overlap with the grey
squares. Reproduced with permission from [122].
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The first experimental confirmation of quadrupole tran-
sitions involving twisted light interacting with a 40Ca+ ion
was given in [123], in which Schmiegelow et al demonstrated
that a transfer of OAM from the beam to the internal elec-
tronic degrees of freedom could be observed for a quadrupole
transition of a single trapped ion. This paper is briefly sum-
marised in the next section. More recent related work
extended research by both theory and experiment involving
40Ca+ ion is that by Afansev et al [124] who also considered
the effects of the position of the atom relative to the
beam axis.

6.8. Schmiegelow et al experiment: OAM transfer in

quadrupole transitions

In their experiment, Schmiegelow et al [123] excited an
atomic transition with a vortex laser beam and demonstrated
the transfer of optical OAM to the valence electron (i.e. to the
internal degrees of freedom) of a single trapped ion. They
observed strongly modified selection rules showing that an
atom can absorb two quanta of angular momentum from a

single photon: one from the spin and another from the spatial
structure of the beam. Optical vortex beams possess both an
axial field gradient and a transverse (i.e. in-plane) gradient
both of which can drive quadrupole transitions. In particular,
the core region of the LG1,0 beam possesses a strong field
gradient, even though the intensity at the core vanishes. The
interaction of such a gradient field with the quadrupole
moment involves the transfer of OAM from the LG1,0 mode
to the internal dynamics of the trapped ion.

The experiment by Schmiegelow et al involved a single
laser-cooled 40Ca+ ion in a microstructured, segmented Paul
trap. The positioning of the ion along the beam was achieved
to a sub-micron accuracy by adjusting the voltages of the
trapping electrodes. The key aspects of the experiment are the
use of a quadrupole transition, the focusing of the probe beam
close to the diffraction limit and the use of a well-localized
atomic (ionic) system.

7. Radiation pressure forces and torques

As pointed out earlier, the Doppler effect has been exploited
in laser cooling of atoms by a process called ‘optical molas-
ses’ (see [42–46]). The principles of laser cooling have been
explained in section 3.1. When two counter-propagating light
beams are used, the atoms in both directions are slowed
down. For atomic motion in directions transverse to the ori-
ginal axis one needs further pairs of orthogonal configura-
tions, which act to slow the motions in an analogous manner,
leading to the cooling of the motion in all three directions: this
is essentially the optical molasses effect (see [125–128]).

The effects of structured light on atom dynamics, in both
its forms, namely the gross motion and the internal motion
have been thoroughly investigated (see references
([129–136]). These investigations have shown that the inter-
action of light carrying OAM with atoms introduces new
significant features, namely that (i) there is, in addition to
translational effects, a light-induced torque which causes a
rotational motion of the atoms about the beam axis, and (ii)
there are characteristic regions of maximum and minimum
intensity in the beam cross-section. The forces and torque are,
in general, time-dependent as well as position-dependent. As
we discuss below, the full space- and time-dependence of the
motion is, in general, characterised by a transient regime,
followed by a steady state regime after a sufficiently large
time has elapsed from the instant in which the beam is
switched on (typically for elapsed times much larger than the
characteristic time-scale of the problem).

7.1. Derivation of optical forces and torques

To derive the optical forces acting on a hydrogenic atom or
molecule due to application of laser light we initially adopt a
quantum mechanical approach based, once again, on the
simple picture in which the atomic motion is described in
terms of the gross dynamics of the centre of mass and the
internal dynamics is in terms of a two-level system [131]. We

Figure 14. Rb fluorescence with modes OAM=0 (black line) and
OAM=1 (grey line) for left circular polarization (top) and right
circular polarization (bottom) of the laser beam. The black squares
are not clearly visible because they overlap with the grey squares.
Reproduced with permission from [122].
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shall see how the optical forces emerge naturally from the
quantum-mechanical approach by appeal to the classical limit.

The total Hamiltonian of the light and atom and their
interaction can be written as follows

H a a
M

i f
P

R
2

h.c. ,

106

2

0  w w p p p= + + - -[ ˜ ( ) ]

( )

† † †

where p̃ and f (R) are given by

Df R Re ; e , 107i t
klp

i R
12

klp p p= =w Q˜ ( ) ( · ˆ ) ( ) ( )( )

where π and π† are the ladder operators of the two-level atom;
P is the momentum operator of the centre-of-mass with M the
total mass and ω0 the transition frequency; a and a† are the
annihilation and creation operators of the laser light of fre-
quency ω.

Our goal is to derive expressions for the forces acting on
the atomic centre of mass appropriate for the case of a
coherent optical beam whose close approximation to classical
wave means that the a and a† operators for the light become
c-numbers involving a parameter b, such that

a t b a t be ; e . 108i t i t* w w-( ) ( ) ( )†

The interaction between the two-level atom and the laser light
is given by the last term in equation (106). This is given
above in the truncated multipole approximation as well as the
rotating wave approximation and is evaluated at the centre of
mass position vector R. The function f (R) in equation (107)
involves D12, the transition matrix element of the atom,
including both dipole allowed and quadrupole allowed tran-
sitions. The atom is subject to a LG light mode characterised
by the wave polarisation vector ê, the mode amplitude
function, Rklp ( ) and phase Θklp(R), given by expressions of
the forms in equations (52)–(54) with s = 1 (denoting forward
propagation) in the latter case. Here, we have
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The mode indices l and p determine the field intensity
distribution and are such that lÿ is the OAM content carried
by each quantum.

The classical limit demands that the position R and the
momentum operator P of the atomic centre of mass should
take their average values r and P0=MV, where V is the
velocity vector of the centre of mass. This scheme treats the
centre of mass motion classically while the internal atomic
motion in terms of the two-level system continues to be
treated quantum mechanically. This is a good approximation
provided that the atomic wavepacket spread is much smaller
than the laser wavelength, and that the centre of mass recoil
energy in a transition is much smaller than the linewidth. The

density matrix of the system can then be written as

M tR r P V , 111Sr d d r= - -( ) ( ) ( ) ( )

where ρ(t) is the density matrix of the internal two-level
system. This follows the standard time evolution
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wherer is an added term representing relaxation in the two-
level system. The evolution of the density matrix is governed
by the optical Bloch equations, which are as follows
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The relaxation processes in general involve two types of rates
Γ1,2 and are assumed to include both elastic and inelastic
collision rates Γcoll and such that

;
2

, 114coll1 2G = G G =
G

+ G ( )

where Γ is the de-excitation rate of the upper state of the
atomic transition. In the optical Bloch equations, Δ is the
effective velocity-dependent detuning given by

V; , 1150 0 0w wD = D - Q D = -· ( )

so that 0D is the static detuning. We have also set

itVexp . 116r r = - Qˆ ˜ ( · ) ( )

and applied the sum rule ρ11(t)+ρ22(t)=1. The average
force acting on the centre of mass is given by

tr HF 117rá ñ = -á ñ( ) ( )

and this leads to a total force that is the sum of two different
forces: a dissipative force Fdissá ñ and a dipole force Fdipoleá ñ.
The two radiation forces are related to the density matrix
elements as follows

t f fF r r r, , 118diss 21 21
* * r rá ñ = - Q +( ) ( ˆ ( ) ˆ ( )) ( )

t i f fF r r r, , 119dipole 21 21
* * r r


á ñ =

W
W

-( ) ( ˆ ( ) ˆ ( )) ( )

where Ω(R) is the position-dependent Rabi frequency

d fR R R R2 ; e 2.

120

i R
12  W = = W Q( ) ∣( · ˆ ) ( )∣ ( ) ( )

( )

( )
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The gross motion is that of the centre of mass in response
to the light fields. Once the total force tFá ñ( ) is known the
atom dynamics can be determined by application of Newtonʼs
law, written in the form

M
d

dt
F t

R
. 121

2

2
= á ñ( ) ( )

This, together with the initial conditions, namely the initial
position vector components R(0) and initial velocity vector
components V(0), are sufficient to determine the classical
trajectory R(t) and the corresponding velocity t tV R=( ) ˙ ( ).
The solution also provides information about the time-
dependent torque acting on the atomic centre of mass.

A kind of transient atom dynamics arises initially, just after
the light is switched on, and depends on the characteristic time
scale of the system. This type of dynamics becomes important
when the excited state of the atom has a relatively long lifetime
Γ
−1

(Γ is the de-excitation rate of the upper state of the atomic
transition) [136, 137]. An example of such a scenario was
studied in detail by Carter et al [136] for the case of rare-earth
ions such as Eu3+ ions whose transition D D5

0
7

1 has a
wavelength and transition rate λ = 614 nm and Γ=1111 Hz,
respectively [138]. Although transient dynamics is of interest,
most of the attention has focused on the the steady state forces
as in the case of laser cooling and trapping.

7.2. The steady state forces and torque

The steady state forces emerge on taking the limit t  ¥.
This corresponds to setting time derivatives in the optical
Bloch equations to zero. In the steady state, we have Γt=1,
and we find that the steady state forces become position- and
velocity-dependent and consist of two types. The force acting
on a moving atom subject to a single LG beam propagating
along the positive z-axis turns out to be in the form

FF F , 122klp diss klp dipole klpá ñ = á ñ + á ñ ( )

where Fdiss klpá ñ is the dissipative force

R V

R
R

R

F

R V
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4

, 2 4
,

123

diss klp

klp
klp

klp klp

2

2 2 2




á ñ

= GW
Q

D + W + G

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )

( )
( )

( ) ( )
( )

and F R V,dipole klpá ñ( ) is the dipole force
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where R V,klpD ( ) is the detuning which is both position- and
velocity-dependent

R V V R V, , . 125klp klp0 D = D - Q( ) · ( ) ( )

Both the dissipative and dipole forces involved in the context
of non-vortex light are well known in atom cooling and
trapping. The dissipative force is a net frictional force

responsible for optical molasses, and the dipole force corre-
sponds to a potential which traps the atom in regions of
extremum light intensity.

A steady state light induced torque acts on the atomic
centre of mass due to interaction with the twisted light as can
be shown by examining the velocity-independent force terms
Setting V=0 and for motion near the beam waist, i.e.
z=zR we have

kz
l

F R
R

R4 2 4
.
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There are two vector components of this force: an axial
component and an azimuthal one. Only the azimuthal
component is responsible for the torque about the beam axis.
Associated with the light induced force is a torque given by

T r F . 127= ´ á ñ ( )

We find

z
R

l
R4 2 4

. 128
klp

klp

2

2 2 2

 =
G W

D + W + G

(

( )
ˆ ( )

Berry and Shukla [139] referred to forces akin to the above
azimuthal component as a curl force. In the saturation limit of
high intensity corresponding to Ω ? Δ0 and Ω ? Γ, we
obtain

l z
1

2
. 129 » G ˆ ( )

This relation of the light-induced torque acting on the atom
was first derived by Babiker et al [129] and has a simple
interpretation as follows. Since a torque is, by definition,
angular momentum per unit time, the above saturation torque
arises from an angular momentum lÿ delivered over a time
period of 2 1G -( ) . The general form of the light-induced
torque displays both velocity- and position-dependences, and
so has well defined values along the atom trajectory.

7.3. Atom trapping: dipole potential

The dipole force is the gradient of the dipole potential

U
R

R
2

ln 1
2

4
, 130klp

klp0
2

0
2 2
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⎥
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( )
( )

( )

such that

UF R . 131dipole klp klp
0 á ñ = - á ñ( ) ( )

As in laser trapping with ordinary light, the dipole potential
due to the LG beam traps atoms either in the high intensity
regions of the LG beam for Δ0<0 (red-detuning), or in the
case of blue detuning, 00D > , in the low-intensity (i.e. dark)
regions.

As an illustration we consider the LG donut mode pro-
pagating along the z-axis for which l=1, p=0. At focus,
i.e. in the beam waist plane z = 0, the dipole potential has a
minimum at radial position w 20 0r r= = . The locus of
the minimum is therefore a circle in the (x, y) plane given by
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x y2 2
0
2r+ = and the atom is trapped forΔ0<0. Expanding

the potential expression at focus, i.e. U zR, 0 k10á = ñ( ) to a
harmonic approximation about ρ0, we have

U U
1

2
, , 132k k10 0 10 0

2r rá ñ » + L -( ) ( )

where U0∣ ∣ is the depth of the potential
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and k10L is the effective elastic modulus given by
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An atom of mass M, trapped in this potential would exhibit a
vibrational motion about ρ=ρ0 of angular frequency
approximately equal to Mk10

1 2L{ } .

8. Doppler shifts and atom dynamics

8.1. Azimuthal and other Doppler shifts

The light-induced force and torque involve the effective
velocity and position-dependent detuning Δklp given by

V. 135klp klp0w w D = - - Q · ( )

This can be written as follows

. 136klp 0w w dD = - - ( )

Because of its dependence on velocity the term δ is identified
as a Doppler shift. On substituting for the LG phase function
Θ(R), we obtain
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where Vρ, Vf and Vz are the velocity vector components in
cylindrical polar coordinates. It is seen that δ consists of four
terms: an axial term axiald , a term arising from the Gouy phase
δGouy, a beam curvature term δcurve and an azimuthal term
δazimuth, so that

. 138axial Gouy curve azimuthd d d d d= + + + ( )

The axial term δaxial is identical to a Doppler shift due to a
plane wave of wavenumber k travelling along the beam axis

kV 139axial zd = ( )

and the Gouy phase Doppler shift is
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For LG beam with low integer values of l and p, the Gouy
phase Doppler shift would be negligibly small since typically
zR?w0. As will be discussed later, this term becomes sig-
nificant, for large values of l and/or p.

The curvature Doppler shift is given by
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This Doppler shift is caused by the wavefront curvature
spreading of the beam in the radial and axial directions and
could be observable under appropriate conditions. Finally, a
Doppler shift which arises directly from the vortex nature of
the twisted light is the azimuthal Doppler shift, which is given
by

lV
. 142azimuthd

r
= f ( )

This is directly proportional to the winding number l char-
acterising the angular momentum property of the twisted
light, but it is also inversely proportional to ρ the radial
coordinate of the atom. Note that the dependence on l

includes both the magnitude and the sign of the winding
number.

Experimental work on the azimuthal Doppler shift was
reported by Luo et al [140] and Aramaki et al [141]. Luo et al

detected the Doppler effect associated with light beams car-
rying OAM in ‘left-handed materials’. However, they repor-
ted that the azimuthal Doppler shift, proportional to the OAM
of photons, was not reversed compared to conventional
positive-index materials. They attributed this result to two
joint contributions, one from the negative phase velocity and
the other from the inverse screw of the wave-front. Aramaki
et al performed a modified saturated absorption spectroscopy
to separate the components. The optical vortex and a plane
wave are used as a probe beam and pump beam, respectively.
Although the plane-wave pump laser cancels the axial-
direction Doppler shift, the azimuthal Doppler shift remained
in the saturated dip. The spatial variation of the dip width
provided information on the azimuthal Doppler shift.

8.2. Steady state atom trajectories

The dynamics of the atom is governed by Newtonʼs second
law, together with well defined initial conditions. The solu-
tions leads to the trajectory R(t) as well as other dynamical
properties of the system. However, the analytical form of the
trajectory R(t) cannot be determined in general and there is,
inevitably, a need to resort to computational analysis. One of
the significant properties that can be verified directly is that
the trajectories for two cases in which the atom is subject to
single separate LG beams with opposite but equal signs of l,
are identical except for a reversal of the direction of atom
rotation. This is consistent with the dependence of the light-
induced torque on the magnitude and sign of l.
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8.3. Atoms in multiple twisted beams

It is well known that Doppler cooling leads to the optical
molasses effect in multiple beams in one, two and three
dimensions. We expect a form of optical molasses effect to
occur for twisted beams, but the description of optical
molasses in this context demands, as a first step, the specifi-
cation of each of the multiple beam field distributions relative
to the same (the laboratory) coordinate frame. This step
requires the application of coordinate transformations. For
relatively weak beams, the nett light-induced force due to all
beams in the molasses configuration is the vector sum of
individual light-induced forces and the atom trajectory in the
multiple beams arises from the solution of the equation: mass
times acceleration equals the vector sum of all forces entering
Newtonʼs law.

For illustration, we consider a basic twisted light beam of
frequency ω, axial wavevector k and quantum numbers l and
p coupled to an atom or an ion at a general position vector
R=(ρ, f, z). In cylindrical coordinates, the phase Θklp(R)

and the Rabi frequency Ωklp(R) are taken as follows

l kz 143klp fQ = + ( )
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The above expressions apply for a LG beam in the large
Rayleigh range limit z=zR and also setting w(z)=w0,
which also means disregarding beam curvature effects.

The steady state light-induced forces acting on the centre
of mass are given above but with the approximate phase
Θklp(R) and Rabi frequency Ωklp(R), as in equations (143)
and (144). These expressions are in cylindrical polar coordi-
nates with the direction of propagation along the positive z-
axis. However, in order to derive the dynamics for multiple
beams, we need to express the position dependence in Car-

tesian coordinates R = (x, y, z), using x y2 2r = + and
y xarctanf = ( ). The expression for an LG beam whose axis

of propagation is in an arbitrary direction is obtained by
applying two successive transformations with the first trans-
formation involving a rotation about the y-axis by an angle θ
and the second is another rotation about the x-axis by an
angle ψ.

An appropriate choice of θ and ψ leads to the force
distribution due to a twisted light beam propagating in any
desired direction. This procedure allows consideration of
geometrical arrangements involving counter-propagating
beams (especially those corresponding to one-, two- and
three-dimensional optical molasses configurations).

As a specific application of the above scheme, we con-
sider optical molasses of magnesium ions Mg+ in multiple
beams. The requisite transition is of frequency ω0 corresp-
onding to the wavelength λ=280.1 nm and transition rate

2 2.7 108G = ´ s−1. The Mg+ mass is M=4.0× 10−26

kg. To have trapping in regions of high field intensities, we
must choose red-detuned light such that Δ0=−Γ/2 and we

assume a value of the beam waist w0=35λ. The equation of
motion for the Mg+ ion is written as

M
d

dt
tR F . 145

i

i

2

2 å= á ñ( ) ( )

The sum is over all individual force vector contributions due
to all beams present in the configuration. The simplest case is
the one-dimensional molasses configuration, which involves a
pair of identical counter-propagating twisted light beams
arranged along the z-axis. Figure 15 (top left) shows the
trajectory of the Mg+ ion with l l 11 2= - = and p1=p2= 0.
The initial radial position is ρ=10λ and the initial velocity is
V(0)=5 m s z1- ˆ . The motion is for a time duration equal to
4×105 Γ−1.

Once the Mg+ ion is trapped in the high intensity ring
which is located at the fixed focus point z=0, it rotates
clockwise about the common axis. This rotation is due to the
light-induced torque which, in the saturation limit, is given
by l l2 21 2  á ñ » G - G = G∣ ∣ .

It is easy to see that the motion of the trapped ions at
azimuthal speed vs gives rise to an electric current equal to
e ev 2s 0t prº per rotating axially trapped particle. With vs
of about 2 m s−1 and w 350 0r l» = we have an ionic
current of the order of a fA per particle. Note that the electric
current scales with the number of trapped ions; if a million or
so ions are involved they can produce an electric current on
the nA scale.

8.4. Twisted molasses in two- and three-dimensional

configurations

The two-dimensional molasses configuration arises when we
introduce in addition to the pair along the z-axis of waist w0 a
second pair of counter-propagating beams along the x-axis of
waist w0

¢, which can be equal or different from w0. The net
force in this case is the vector sum of the individual forces
from the four beams. The appropriate functional dependences
of three of the beams are obtained from the expression of a
beam along the z-direction using transformation equations for
axis rotation. The trajectories in figure 15 (top right) are of
two Mg+ ions initially located at different points with each
having an initial velocity of v 5 m sz

1= - . The ions are subject
to the four beams where each beam of has a waist w0, an
azimuthal index, l=1, and radial index, p=0.

The total torque about the common axis arising from
each pair is zero. This is because the choice of l values pro-
duces identical torques of opposite senses which cancel in this
case. Thus each ion ends up at a specific fixed point,
depending on the initial conditions and it remains at that fixed
point essentially motionless. To understand this, we should
note that the deepest dipole potential well is four times the
depth due to a single beam. The potential minima are situated
on the locus of spatial points defined simultaneously by two
equations x y w 22 2

0
2+ = and y z w 22 2

0
2+ = ¢ . For

w w0 0¢ = these two equations describe two orthogonal obli-
que circles representing the intersection curves of two cylin-
ders of radii w 20 . Solving for x and y, we have x z= 
and y w z20

2 2=  - .
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The locus of spatial points where the dipole potential is
minimum can be described by the parametric equations

x u w u

y u w u

z u w w u

2 cos

2 sin

2 2 sin . 146
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( ) ( )

( ) ( )

( ) ( ) ( )

All Mg+ ions in the two-dimensional configuration of
orthogonal counter-propagating pairs of twisted beams will be
trapped at points lying on one of the two oblique circles, as
determined by the initial conditions. An ensemble of Mg+

ions with a distribution of initial positions and velocities will
populate the two circles, producing two orthogonal essentially
static Mg+ ion loops. Associated with this system of charges
would be a Coulomb field whose spatial distribution, for
example, for ions uniformly distributed in the ring can easily
be evaluated. When the values of l are such that each pair of
beams generates a torque, the motion becomes more com-
plicated, but the ions will seek to congregate in the region of
potential minima, while responding to the combined effects of
two orthogonal torques and orthogonal axial cooling forces.

When a third pair of counter-propagating beams is added
to the two-dimensional configuration, orthogonal to the plane
containing the original beams, we have a three-dimensional
configuration. In this case, the deepest potential minima are
located at eight discrete points defined by the coordinates:

x y z, ,
w w w

2 2 2

0 0 0=  =  =  . These coincide with the

eight corners of a cube of side w0, centred at the origin of
coordinates. Figure 15 (bottom) exhibits the trajectories of
eight atoms which end up being trapped at the eight corners of
the cube.

8.5. The NIST-Gaithersburg experiments

A number of experiments by Anderson et al [142] and Clade’
et al [144] showed that a BEC of sodium atoms can be
trapped in the field of a donut beam and a Gaussian beam or a
sheet beam and with the atomic ensemble exhibiting a
quantised superfluid behaviour. The atoms were made to
rotate in the donut ring by the light-induced torque [129] and
constituted a relatively long-lived persistent current for a time
more than twenty times the duration for the atoms confined in
a spheroidal trap. A snap-shot image of the trapped atom is
presented in figure 16. The flow was observed to persist even
when there was a large (80%) thermal fraction present in the
toroidal trap. These experiments open the possibility for
investigations of the fundamental role of flow in superfluidity
and of realizing the atomic equivalent of superconducting
circuits and devices such as SQUIDs [145]. Atoms trapped in
such ring-shaped traps could form the basis of quantum
motors. Generally, such findings were hailed as paving the

Figure 15. Top left: the path of a Mg+ ion in the one-dimensional twisted optical molasses created by two counter-propagating Laguerre–
Gaussian beans with l1=−l2=1 and p1=p2=0 propagating along the z-axis. The initial velocity is v z5= ˆ m s−1. Top right:
trajectories of two Mg+ ions with different initial locations subject to a two-dimensional optical molasses formed by two pairs of counter-
propagating twisted beams, with li=1 and pi=0 for i=1–4. Each ion ends up motionless on the locus of lowest potential energy minima
corresponding to two oblique orthogonal circles, as explained in the text. Bottom: trajectories of eight Mg+ ions in a three-dimensional
twisted optical molasses formed by three pairs of counter-propagating LG beams with li=1 and pi=0 where i=1–8. The initial velocity
of each of the ions is v 5z = ms−1. The ions end up motionless at the corners of a cube of side w0.
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way towards the realisation of atom circuits in the field of
atomtronics [145–147].

9. Azimuthal Sisyphus cooling

9.1. Sisyphus effect with twisted light

As described earlier the Sisyphus effect which uses ordinary
plane wave laser light has been shown to provide an efficient
cooling mechanism, which has succeeded in cooling atoms to
temperatures well below the Doppler cooling limit [44, 58].
The point to emphasise here is that this cooling method is
based on the creation of a standing wave exhibiting polar-
isation gradients using counter-propagating laser beams. The
polarisation gradients are responsible for the generation of
spatially dependent light shifts, which result in spatially
modulated energy levels along the beam axis. This interaction
landscape is characterised by potential hills which an atom
has to climb more than it descends in the processes of sti-
mulated and spontaneous emission cycles between the energy
levels. The atom progressively loses its kinetic energy and
slows down.

An analogue of the Sisyphus mechanism has been pre-
dicted by Lembessis et al [148] concerned with the case of the
azimuthal atomic motion in the annular region of maximum
intensity when the atom is irradiated by two LG beams with
lin lin^ polarizations, i.e. having orthogonal linear polarisa-
tions. The azimuthal motion arises in the context involving
two co-centred, co propagating LG beams, labelled 1 and 2,
of the same frequency ω and axial wave vector of magnitude
k. The beams have the same magnitude of the winding
number l∣ ∣ but differ only in the sign of l.

In the focus plane z=0, the electric field consists of two
in quadrature fields with the amplitudes proportional to

lcos f( ) and lsin f( ). The wave polarisation form varies with
angular position and is in general elliptical, displaying both
linear and circular forms at certain angles, as f varies. The
situation is equivalent to the conventional polarisation gra-
dient due to two counter-propagating plane wave light beams
where the changes in polarisation are cyclic, with a spatial
periodicity of the standing wave along the z-axis equal to the

wavelength of the light λ=2π/k. Here, the periodicity
occurs in the azimuthal direction. However, the spatial extent
of the polarisation gradient depends on the beam waist w0 as
well as the winding number l.

We now consider the atom dynamics in such a light field
and we focus on an atom with transitions between a hyperfine
ground state Jg=1/2 and an excited state Je=3/2. The
Clebsch–Gordan coefficients of the various possible transi-
tions are indicated by the numbers in the inset of figure 17
with the squares of the numbers indicated representing the
corresponding transition probabilities. We also make the
assumption that the atomic motion is restricted in the annular
region of radius w l 20 0r = ∣ ∣ where the intensity of the
beams is highest (when p = 0). The optical potentials asso-
ciated with the two Zeeman sub-level shifts are given by

U l
2

3
2 cos 2 , 1470 f= D¢ [ ( ∣ ∣ )] ( )

where s0 is the saturation parameter at w l 20 0r = ∣ ∣ and 0D¢
is given by

s s2;
2

4
. 1480 0 0 0

max
2

0
2 2

D¢ = D =
W

D + G
( )

Here Ωmax is the Rabi frequency at ρ0 which, in the case where
p=0, is given by C e l 2 2k l

l l l
max 00 0

2 2 2W = W - (∣ ∣ )∣ ∣
∣ ∣ ∣ ∣ ∣ ∣ . For

large values of l∣ ∣, we may use Stirling’s approximation and we
have C l l2k lmax 00 0 pW = W ∣ ∣! ∣ ∣∣ ∣ . The potentials U± are the
optical potentials for the g 1 2ñ∣ sub-levels. It is easy to see that
the minima of one potential correspond to the maxima of the
other and vice versa, and the maxima and minima correspond to
positions where the polarisation is sˆ (purely circular).

Suppose now that the angular position of the atom within
the annular ring is l4f p= ∣ ∣ and that the light field has a
circular polarisation s-ˆ . If we assume that the atom is opti-
cally pumped to level g 1 2ñ-∣ , the population of the level
g 1 2ñ+∣ is then zero. Furthermore we consider that the detun-
ing is negative so that both light shifts are negative. If the
atom is shifted within the annular trap to an angular position
at l3 4f p= ∣ ∣ the level populations are reversed. Finally, if
the atom is at angular positions where the polarization is
linear, the two sublevels are equally populated. This scenario
is summarized in figure 17.

Figure 16. Time-of-flight image showing the donut shape characteristic of a atomic cloud with quantized rotation. Reproduced with
permission from [143].

30

J. Opt. 21 (2019) 013001 Topical Review



When the light intensity is sufficiently low so that the
excited state population is negligible the cooling of the atomic
azimuthal motion can be explained with reference to the inset
of figure 17. This shows the energy levels for the
J J1 2 3 2g e= « = transition and the relevant transition
probabilities. If the atom is located at l4f p= ∣ ∣ where the
polarization is s-ˆ , the absorption of a σ− photon takes the
atom from g 1 2ñ+∣ to e 1 2ñ-∣ . This process is followed by a

decay of the atom from the state e 1 2ñ-∣ to the state g 1 2ñ-∣ . If

the decay is from e 1 2ñ-∣ to g 1 2ñ+∣ , the atom can absorb a σ−
photon and have another chance to arrive at g 1 2ñ-∣ . By

contrast, absorbing a σ− photon when in g 1 2ñ-∣ promotes the

atom to e 3 2ñ-∣ from which the atom can decay to g 1 2ñ-∣ . It
follows that in the steady state all the atomic population is
optically pumped into g 1 2ñ-∣ . If the atom is at l3 4f p= ∣ ∣
where the polarization is s+ˆ , the above scenario is reversed.

The damping of the atomic motion in the Sisyphus effect
is characterised by a damping coefficient which can be cal-
culated as follows. Let us assume that initially the atom
performs circular motion at a radius w l20 0r = ∣ ∣ with an
azimuthal speed vf. As explained in table 1 and with refer-
ence to figure 17, the atom in effect sees an azimuthal
standing wave of an equivalent wavelength w l20l p=f ∣ ∣ .
We define the two-level relaxation time as τR=Γ−1 and an
optical pumping time between sublevels P

1t = G¢- . In general
the atomic internal state does not follow adiabatically the

variations of the light field. To take into account this fact, we
introduce two adiabaticity parameters: one is a two-level atom
adiabaticity parameter òf, defined as the ratio between the
length of the arc travelled by the atom during its internal
relaxation. The other is a characteristic length of the azi-
muthal spatial variations of the laser field (i.e. the wavelength
λf). For òf, we write

v v l

w

2
. 149
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l p
= =

G
f

f

f

f ∣ ∣
( )

The corresponding multi-level parameter  ¢f is defined as

v v l

w

2
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t

l p
¢ = =

G¢f
f

f

f ∣ ∣
( )

At low laser powers, we have  ¢f f since G¢ G , i.e.
τR=τP. The condition for the non-adiabatic effects coming
into play is then approximately given by 1 ¢ » , which leads
to

v l

w

2
. 151

0p
» G¢f ∣ ∣

( )

The resulting azimuthal damping force is then given by

F v . 152a= -f f f ( )

where αf is an azimuthal damping coefficient. This coeffi-
cient can be estimated qualitatively following Dalibard and

Figure 17.Variations of the light-shifted energy levels with azimuthal position f and the steady-state populations (full circles) for a Jg=1/2
ground state interacting with two counter-propagating LG light beams in the lin ⊥ lin configuration and negative detuning. The ground state
is light-shifted into the state g−1/2, which varies with f as shown by the full curve, and g+1/2, whose variation with f is shown by the dotted
curve. The atom is trapped in the donut annular region and is assumed to be rotating with velocity vf. The most populated energy sublevel is
the one with the largest negative light shift. The inset shows the processes of emission and absorption involved in the azimuthal Sisyphus
effect between Je=3/2 and Jg=1/2 sublevels. The time lag τP associated with the optical pumping is responsible for the atom climbing on
average more potential uphills than downhills as it rotates. Reproduced figure with permission from [148], Copyright (2011) by the American
Physical Society.
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Cohen-Tannoudji [58] and is given by
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Associated with the friction force is a torque about the
common beams’ axis directed along ẑ, operative at

w l20 0r = ∣ ∣ and given by

r F z
l v

w
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f

f∣ ∣
ˆ ( )

It is seen that the damping coefficient is proportional to the
magnitude of the winding number l, while the torque is
proportional to the square root of l∣ ∣ through its dependence on
the radius of the annular region. Hence the higher the value of
l∣ ∣ the larger the annular radius, and consequently the larger
the number of potential hills there are for the atoms to climb.
Note that the damping coefficient and the torque are inversely
proportional to the beam waist w0. The larger the beam waist,
the further apart the potential hills are and this amounts to less
effective damping and smaller torque due to the potential hill
climbed by the atom.

As an illustration, we consider Cs atoms interacting with
a light field of wavelength λ=852.35 nm, which can thus
excite the transition S P6 62

1 2
2

3 2- , where the upper state
P62 3 2 has a spontaneous emission rate Γ=3.25×107 s−1.

We assume a detuning Δ0=2Γ and the Rabi frequency Ω is
taken to be 0.1Γ. These atomic transitions and orders of
parameter were used in the pioneering experiment that con-
firmed the validity of Sisyphus cooling mechanism [47].
Finally, for the LG beams we take l 20=∣ ∣ and the beam
waist w0=10λ. With these parameters equation (151) yields
the azimuthal velocity at which Sisyphus effect commences
as vf=3.6 cm s−1. We have made use of the following
relationship [58] giving the pumping rate G¢ in terms of Γ and
the saturation parameter s2 90G¢ = G . The value of the azi-
muthal damping coefficient corresponding to the above
parameters turns out to be αf=4.65×10−22 kg s−1. For the
same parameters, the azimuthal velocity in the Doppler limit
is vf=8.82 cm s−1 approximately twice the azimuthal
velocity at which the Sisyphus effect commences. Both are
much larger than the recoil velocity of 0.35 cm s−1.

9.2. Comparison with other azimuthal cooling mechanisms

It is instructive to compare the Sisyphus cooling mechanism
with other azimuthal cooling mechanisms. The Doppler
regime for a twisted single beam involves a torque acting on
the two-level atom, which has a magnitude at the radial
coordinate w l 20 0r = ∣ ∣ (where the Rabi frequency max-
imises), is given by:

T l
4

2 4
. 155TS
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2

0
2

max
2 2

= G
W

D + W + G
( )

This torque is proportional to l and so can be positive or
negative. It is easy to verify that it depends on the radial but
not the angular position of the atom. In the saturation limit,
achieved at high intensities, the torque becomes TTS≈lÿΓ/2,

which is position-independent. In the twisted molasses (M)

situation, which involves two counter-propagating donut
beams, also within the Doppler regime, the atom experiences
a torque of magnitude given by:

T
kl

v
2 4

, 156M z
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D GW
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where vz is the axial component of the velocity. This torque is
also proportional to l and in the high intensity limit, we have

vM
kl

z
4 0

max
2 » D G

W( ) . So this torque decreases with increasing

intensity. By contrast, here the general torque in the azimuthal
Sisyphus effect emerges as
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w
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where 0D is the static detuning, applicable here as the Doppler
effect is negligible at low velocities. This torque is proportional
to the azimuthal velocity and the magnitude of l, and inversely
proportional to the beam waist w0. It is a function of the radial
coordinate ρ, but it does not depend on the light intensity.
Significantly, this torque is proportional to the detuning Δ0,
which can be positive, or negative. This suggests that the
Sisyphus effect is a mechanism with which we can accelerate or
decelerate the azimuthal atomic motion by simply changing the
sign of the detuning, as in the twisted molasses case. This may
be exploited for controlling the azimuthal motion in different
types of atomic samples trapped in annular regions. We also see
that the general torque in the azimuthal Sisyphus effect is
inversely proportional to the relaxation rate Γ while in the case
of Doppler cooling, it is directly proportional to Γ. This reflects
the different physical processes that are behind the generation of
the two cooling mechanisms.

A crucial parameter in this context is the beam waist. In
the case of the azimuthal Sisyphus effect the torque is
inversely proportional to the square of the beam waist. In the
annular region, where w l 20r = ∣ ∣ , equation (157) yields

vS
l

w

4 2 3 2
0

0

 = f
D

G
∣ ∣ . Thus twisted beams with large cross

sections, i.e. weak focusing, will result in smaller torques.
This is because as the beam waist increases the characteristic
length of the azimuthal spatial variations of the laser field (i.e.
the ‘wavelength’ λf) becomes larger. This is equivalent to a
Sisyphus effect in a field with a larger wavelength and thus to
a smaller Sisyphus torque. The torque created by the Doppler
mechanism does not depend explicitly on the beam waist.
This is clear in the case of irradiation by a single beam in the
saturation limit; for the case of twisted molasses as given by
equation (156), a larger beam waist (for a given power) results
in a smaller Rabi frequency and thus to larger torques.

Finally, we must emphasise the role of the dependence on
the winding number l. In the Doppler mechanism, a larger
winding number leads to larger torques and this is reasonable
since it is associated with the angular momentum exchanged
between the light and the atom. In the case of the azimuthal
Sisyphus effect, again an increase in l leads to a larger damping.
This is because the equivalent wavelength λf becomes smaller
and thus leads to a more effective Sisyphus effect.
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10. Ferris wheels

A Ferris wheel is a typical example of an optical lattice field
with cylindrical symmetry. The term owes its origin to ana-
logy with a rotating fairground ride. Ferris wheel light fields
were proposed by Franke-Arnold et al in 2007 [100]. Since
then there have been theoretical as well experimental works
concerning the atom dynamics in the trapping sites of this
light field. Using optical Ferris wheels it is possible to create
both positive and negative optical potentials that are either
static or can rotate around the beam axis at frequencies ran-
ging from a few mHz to hundreds of MHz [100].

The generation of a Ferris wheel light field in its simplest
form requires setting up two co-propagating LG beams with
equal and opposite optical angular momenta, i.e. such that
l1=−l2. This type of light field is characterised by bright
petal-like regions in a plane transverse to the propagation
direction, and by using LG beams with different indices l and
p it is possible to create dark lattices of different geometrical
patterns [100, 101]. Furthermore, it has been shown that
counter-propagating beams in three dimensions would lead to
exotic light fields where the bright regions have the form of
helical tubes twisted along the beams’ propagation direction
[149–154]. However, prior to the proposal of the optical
Ferris wheel field, bright ring-shaped lattices had been used in
optical tweezing experiments [155, 156].

A superfluid ensemble trapped in a rotating helical
optical tube (HOT) has been shown to be associated with an
artificial magnetic field [149]. The twisted tubes can be
considered as a waveguide for atomic motion over distances
significantly smaller than the Rayleigh range of the beam
(z=zR) [150], while connections between Gaussian lattices
and HOTs have been also considered [150].

This scheme has been also proposed as an atomic guide
along a helical path where the atom oscillates globally between
two turning points [151]. However, a slight difference in the
angular frequencies of the LG beams produces rotating HOTs,
which have been used to study the flow of a cold bosonic
ensemble (superfluid) trapped in the helical pattern [149]. The
rotation of the reference frame (the helical pattern) can be used
as laboratory equipment to demonstrate the difference between
quantum and classical fluids [152]. The rotating helical pattern
can also be used as a detector of the slow rotation of an inter-
ferometer [153]. The study of atom guiding inside a rotating
HOT has shown that this mechanism can serve as an Archi-
medes spiral for elevating atoms [154].

Recently, such a cylindrical lattice has been proposed as
a mechanism for exhibiting various realisations of a Hof-
stadter-Hubbard model with fermionic cold atoms, and it has
been shown that this set up in the presence of interaction
might allow the observation of fractional quantum Hall
physics [157]. The Ferris wheel optical lattice has been used
in an experiment where a trapped atom has been rotated and
observed from its fluorescence [96]. In another recent work,
the interaction of a two-level atom with a rotating Ferris
wheel light field has been shown to create artificial gauge
electromagnetic fields which propagate in closed paths [158].
Finally, besides lattices with cylindrical symmetry it is also

possible to create other types of lattices by proper interference
of LG beams. One such example is the stack of ring shaped
traps which is created by the interference of counter-propa-
gating beams with the same winding number [159].

10.1. Ferris wheel: co-propagating LG beams with l1 ¼ � l2

Consider a Ferris wheel light field composed of two LG
beams labelled 1, 2 co-propagating along the z-direction and
both are polarised along the x-direction, but with opposite
optical angular momenta l1=−l2=l. The electric fields of
these LG beams are given by:
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The total electric field of the optical Ferris wheel light field is
the sum

xz E C u z l ikzE , , , cos exp . 160k l p p
l

00r f r f=( ) ( ) ( ) ( ) ˆ ( )∣ ∣

The intensity of the light field is then I u z l, cosp
l 2 2r fµ [ ( )] ( ).

The presence of the factor lcos2 f( ) leads to the appearance of
l2 petal-like high intensity regions. Figure 18 displays the
spatial distribution of the Ferris wheel light field intensity (in
arbitrary units) for the case where l=2 and p=0 and for the
case where l=2 and p=1 together with the corresponding
contour plots. These show the characteristic four petal-like
intensity distribution. The Ferris wheel petal-like structure is
richer when the radial index p is different from zero, in which
case the intensity displays p+1 petal-like regions.

The above light fields are not the only ones that can be
constructed. Other cylindrically symmetric optical lattices can be
realised by interfering beams with opposite l but also different
magnitudes. Such a scenario presents interesting features. The
maximum of the at-focus intensity of the field of a donut beam
occurs at the radial position l w20 0r = ∣ ∣ . Thus LG beams
with different magnitudes of the azimuthal index l have their
intensity maxima at different radial positions. The electric field
of an LG beam has a FWHM equal to w2 ln 2 0( ) in the radial
direction. The interference of such beams is such that

w2 ln 21,0 2,0 0r r- = ( ) . The two LG fields have similar max-
imum amplitudes and are separated by one FWHM. This leads
to a dark Ferris wheel lattice with an approximately uniform
depth in the radial and azimuthal directions.

Furthermore, the optical Ferris wheel intensity patterns
can be rotated in space when the two beams have a slight
difference in frequency Δω=ω2−ω1. There are various
methods for the generation of precise laser frequency shifts,
as for example by passing the light through an acousto-optical
modulator, or when circularly polarized light is passed
through a rotating half wave plate [160], which, due to an
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accumulated geometric or Berry phase [161], shifts the fre-
quency by twice the rotational speed of the waveplate in the
context of optical tweezers [162]. A rotating Ferris wheel due
to a frequency difference Δω has an the electric field of the
form:

x

z E C u z ikz il i t

il i t
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, exp exp exp

1 exp 2 exp .
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k l p p
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The corresponding intensity is such that I u z,p
l 2rµ [ ( )]

l tcos 22 f w- D( ), indicating that the pattern rotates at a rate
l2rot wW = D ∣ ∣. This rotating pattern can be used as an azi-

muthal optical conveyor belt for trapped atoms as in the
experiment by Xu et al [96]. It is important to note that for
both bright and dark Ferris wheel lattices, the rotation is not
subject to mechanical noise, which means that the pattern
would be extremely stable over rotational frequencies ranging
from mHz to tens of MHz.

10.2. Trapping of atoms

Consider now the interaction of atoms with a Ferris wheel
light field. Once more, we concentrate on a two-level atom
with a transition frequency ω0 interacting with a static optical
Ferris wheel light field. The interaction is characterised by a
Rabi frequency given by:

z C u z l, , 2 , cos . 162l p p
l

0r f r fW = W( ) ( ) ( ) ( )∣ ∣

Assuming large detuning, the trapping optical dipole potential
is given by:
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Here, Ω0 is the Rabi frequency associated with a Gaussian
beam of the same power and beam waist as the two LG
beams involved in setting up the optical Ferris wheel light
field. The trapping potential (for Δ0<0) has minima at the

Figure 18. (a), (b) The intensity (arbitrary units) of a Ferris wheel light field at z=0. The field has been created from the superposition of two
co-propagating LG beams with l1=−l2=2. In the contour plot, we see the characteristic four petal-like regions of maximum intensity. (c),
(d) The intensity (arbitrary units) of a Ferris wheel light field at z=0. The field has been created from the superposition of two co-
propagating LG beams with l1=−l2=2 and p=1. In the contour plot, we see the characteristic two zones of four petal-like regions of
maximum intensity.
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radial positions z w l n l, , 2 , , 0l0 0r f p=( ) ( ∣ ∣ ∣ ∣ )∣ ∣ where
n l0, 1, ..., 2 1= -∣ ∣ . An atom deeply trapped in such a
rotationally symmetric potential is subject to the simple
harmonic approximation about the potential minimum and
irrespective of the value of l the potential has trapping regions on
the common axis of the beams. In the trapping region located on
the positive x-axis and for red detuning, the potential has a
minimum at x y z w l, , 2 , 0, 00 0 0 0=( ) ( ∣ ∣ ), so performing a
Taylor expansion about this minimum, we find

U x y U k x w l k y k z,
1

2
2

1

2

1

2
,

164

l
x y z0 0

2 2 2= - - - -( ) ( ∣ ∣ )

( )

∣ ∣

where the derived force constants kx, ky, kz andU
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∣ ∣ are given by:
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For large values of l, application of the Stirling’s approximation
gives l l l l2 explp» -! ∣ ∣ ∣ ∣ ( ∣ ∣)∣ ∣ and we then have
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where we have taken the detuning 0D to be negative. The
parameters kx, ky are larger than kz since in general zR?w0. This
means that in-plane trapping is much stronger than axial trapping.
A complete three dimensional trapping would then require an
additional trapping potential to be set up in the axial direction. In
a Ferris wheel scheme, axial trapping can be considerable only for
tightly focused beams. Moreover, equation (166) shows an
interesting dependence on the index l, such that as l increases the
potential U l

0
∣ ∣ becomes shallower and a similar behaviour is

shown by the axial potential. The in-plane potential depth
decreases in the x-direction and increases in the y-direction.
Furthermore, other features arise at other trapping positions such
as the point x y z w l, , 2 , 0, 00 0 0 0=( ) ( ∣ ∣ ) on the x-axis. At the
corresponding trapping point x y z w l, , 0, 2 , 00 0 0 0=( ) ( ∣ ∣ )
on the y-axis the force constant kx becomes ky and vice versa.
Since the intensity pattern is rotationally symmetric, the potential
at the different trapping sites can be cast in the form
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Thus, we have an anisotropic harmonic oscillator potential,
and the harmonic approximation leads to oscillation

frequencies given by k Mx y z x y z, , , ,w =¢ ¢ ¢ ¢ ¢ ¢ where M is the
atomic mass.

When two-level atoms are trapped in a dipole trap the
trapping quality depends on two important factors, namely the
depth of the optical dipole potential and the photon scattering
rate. A numerical estimate of the trapping quality can be made
as follows. Consider the D2 S P5 52

1 2
2

3 2- transition of 85Rb
for which the de-excitation rate is Γ/2π=5.98 MHz, the
transition wavelength is λ=780.9 nm, and the intensity is
IS=16.4 W m−2. We assume a ring lattice laser of total
power of 0.12W, focused to a beam waist of w0=10 μm and
a negative detuning of 1064 nm for trapping. The Rabi fre-
quency associated with each beam is related to the saturation
intensity IS by I I 2S 0

2 2= W G where I P w2 0
2= , with P the

total available laser power (such that P/2 is provided by each
of the interfering beams). Also, we have a scattering rate
S

U


» G

D
[163]. With these parameters, it is possible to con-

struct a ring lattice of depth about 25 μK and a scattering rate
S≈0.013 s−1. The spatial distribution of the trapping
potential is shown in figure 19.

The above analysis indicates that the Ferris wheel lattice
could provide a potentially dynamic three-dimensional trap
for atoms. The trapping is sufficient in the transverse direc-
tion, though the potential is shallower in the z-direction. For a
lattice that traps in the intensity maxima (red lattice), we
could use a tightly focused Ferris field (short Rayleigh range)
but there is a trade-off between axial confinement and scat-
tering rate. However, it has been suggested that an additional
localisation field can be set up along the z-direction with a
hybrid configuration of a Ferris light field and a quadrupole
magnetic trap [164, 165]. Alternatively, it is possible to create
an axial confinement in a ring lattice by using counter-pro-
pagating laser beams forming a standing wave. This leads to
the generation of an axially separated stack of lattices similar
to the ones in [99]. However, by introducing a frequency shift
between the forward and backwards LG beams, the individual
ring lattices will not only rotate but also translate along the
z-axis.

10.3. Helical optical tubes (HOTs)

The twisted optical potential tubes or HOT are formed by the
interference of two counter-propagating LG beams, with
opposite winding numbers l and the same polarisation, which
results in the generation of a three-dimensional twisted
standing wave. When a two-level atom interacts with such a
light field the optical dipole potential (in the far off-resonance
case) is given by:

U z
z

C u l kz

, ,
, ,

4

cos . 169l p p
l

0
2

0 0
2 2 2 2





r f
r f

f

=
D W

= D W +

( )
( )

( ) ( ) ( )∣ ∣

This HOT dipole potential is shown in figure 20 for the case
where l=1 and p=0. This pattern has a left-handed helical
shape with a pitch equal to 2πh (h l k= ∣ ∣ ) and has two tubes
where the maximum intensity is at the geometrical centre of
each tube at z=0 and decreases in the radial direction away
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from the centre of each tube, and away from the z=0 plane
along each tube.

The motion of an atom in such a potential has been
analysed in the semi-classical approximation which treats the
external variables classically [151]. The atom is considered as
subjected to both the optical dipole potential and the grav-
itational potential and depend on the helix orientation with
respect to the lab frame. The equations of motion can be
derived using the Lagrangian formalism in cylindrical coor-
dinates, leading to three coupled nonlinear differential
equations of the second order for which there is no exact
general analytical solution. The atom trajectory can, however,
be calculated numerically and analytically in special cases.
The numerical solution is based on the fourth order Runge–
Kutta method subject to initial conditions for the cold atom
inside the HOT. For negative detuning, the atom is attracted
towards the high intensity regions.

The initial position of the cold atom can be chosen at the
maximum intensity point (which is the minimum value of the
dipole potential), which, in cylindrical coordinates, is

z w, , , , 0
l n

l0 0 0 0 2

1r f = p-( )( ) ∣ ∣ ( )
∣ ∣

, where n=1, 2, K, 2l

is the index of the tubes of the helical optical potential. For
example, for l=1, the helical optical potential has two tubes:
the first tube has index n=1 while the second one has index
n=2, as in figure 20. For the initial velocity, we choose
v=(vr, vf, vz)=(5 cm s−1, 5 cm s−1, 0). This is reasonable
as the initial velocity of the cold atom should not be less than
the recoil velocity vrec (in order to ensure the validity of the

semi-classical approximation) and must be greater than the
Doppler velocity vD (so as to keep the interaction resonant),
i.e. vrec<v0<vD.

For an atom in the region where z zR , assuming that
the small radial ‘wiggling’ of the motion does not affect the
global oscillations in the z-direction, it is possible to obtain an
analytical solution of the equations of motion. We have
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Figure 19. The trapping potential for a Ferris light field created from the superposition of two co-propagating LG beams with l1 =−l2=5.
The potential is given in μK units.
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Figure 21 displays the trajectories, calculated both
numerically and analytically, for the following set of parameters.
The transition is taken as S P5 52

1 2
2

3 2- in 85Rb for which
λ=780.2 nm, Is=1.64 W m−2, and Γ/2π= 5.98 MHz. The
recoil and Doppler velocities for laser cooling of an 85Rb atom
are vrec=0.602 cm s−1 and vD=11.85 cm s−1, respectively
[44]. The laser power is P=80mW, detuningΔ= 2.57×1013

Hz and the beam waist w0=4 μm [96]. Figures 21(a) and (b)
provide an excellent agreement between the numerical and
analytical calculations. Both figures show the global oscillatory
behaviour of the atom between two turning points along the z-
axis and following a helical trajectory due to the helical geo-
metry of the dipole potential.

The physical origin of this type of motion lies in the term
l kzcos2 f +( ) which is responsible for the formation of l2

potential wells (each well corresponds to a tube in the
potential depicted in figure 20 in the (z, f) plane. Each of
these wells has energy minima along the line
lf+kz=(n−1)π (n is the index of the tube of the
potential). This topological feature of the dipole potential
drives the atom to oscillate locally about the line
lf+kz=(n−1)π, which is the locus of the minima of the
potential wells. Due to the coupling of the equations of
motion the local oscillations induce an average motion along
the line lf+kz=(n−1)π, which guides the atom inside

the tube of index n by keeping lf+kz=(n−1)π and a
radial distance w l 2 2zr = ∣ ∣ . This guiding elevates the
atom along the z-direction.

Another important parameter of the atomic motion is the
beam width w(z) which depends on the position in the z-
direction. This dependence, which is shown in figure 22, has
normally been ignored in previous works concerning the
atomic motion in twisted beams, being considered negligible.
However, here it plays an important role. Due to the factor 1/
w(z) the depth of the potential is modified in the z-direction. It
is straightforward to understand that if the kinetic energy of
the atom is less than the depth of the dipole potential on this
larger scale, the atom will perform a global oscillation
between two turning points. Thus, the motion inside the
twisted optical potential tubes is made up of two component
motions: a local atomic oscillation in the region 0<z<λ
and 0<f<2π and a global oscillation in the region
λ<z<zR. The two types of motion are due to the fact that
the dipole potential has two different topological features with
different spatial scales.

The turning points of the atomic trajectory constitute one of
the important features of the atomic motion inside the twisted
optical tube. This feature defines the furthest point the atom can
be guided along the HOT. Additionally, the turning points are a
feature of the atomic gross motion that can be manipulated by
changing the characteristic parameters of the LG beams, namely
the power, the detuning and the beam waist. In general, the
upper turning point of the atom can be higher when the dipole
potential is weaker. This can be achieved by making the beam
waist larger, the beam power smaller or the detuning larger. On
the other hand, the lower turning point of the atom occurs at a
lower position and farther than the upper turning point when the
dipole potential becomes weaker.

The positions of the turning points are symmetric with
respect to the origin when the dipole potential is strong and
therefore the influence of gravity is negligible. When the
dipole potential is dominant over the gravitational one, the
trapped atom will oscillate between the symmetrical positions
of the upper and lower turning points, a situation equivalent to
an atom reflected between two mirrors of an atomic cavity.
When the dipole potential is weaker an asymmetry between
the positions of the lower and the upper turning points (where
the lower turning point becomes more distant from the origin
than the upper turning point) arises since the influence of
gravity is then stronger. At the limit of very weak dipole
potentials, the motion of the atom is governed almost entirely
by gravity and thus has only one turning point. Its initial
velocity allows the atom to move up and reach the upper
turning point, then the atom starts to fall under the influence
of gravity only and follows in its downward motion the
helical path determined by the topology of the optical tubes.

10.4. An Archimedes screw for atoms

A HOT intensity pattern can also be rotated once we arrange
for a slight frequency difference between the two interfering
LG beams [166]. The most interesting effect on atomic
motion is that for specific choices of the values and the sign of

Figure 20. The HOT potential with mode l = 1 and p = 0.
Reproduced from [151]. © IOP Publishing Ltd. All rights reserved.
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the rotating angular frequency the trapped atoms can be
dragged in an upward or downward motion. In this case, the
action of the rotating HOT on atoms is reminiscent of the
operation of the Archimedes screw with which even today in
several places of the world people elevate water from rivers
and lakes. This Archimedes screw for atoms was proposed
and presented in [154] and an experiment on this was reported
by Hadad et al [168]. Here, we outline the essential elements
of the treatment by Al Rsheed et al [154].

The potential in this scheme is given by
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This potential rotates at an angular velocity l2R 0wW = D ∣ ∣.
The study of the atomic motion can be done in the rotating
frame of reference, where the potential takes a form similar to
the one in equation (169) but for new coordinates
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The third term on the right-hand side of the first equation in (174)
and the last term in the second equation are Coriolis forces, while
the last term in the first equation is a centrifugal force. These are
well known forces that appear because of the rotation of the
HOT. The above three equations of motion are coupled nonlinear
differential equations of the second order for which there is no
exact analytical solution, but a solution can be obtained
numerically using the fourth-order Runge–Kutta method.

The motion of an atom that is trapped inside a rotating
HOT can be explained in terms of inertial forces. Initially, an
atom at rest inside a rotating HOT will experience a

Figure 21. The 3D trajectory of 85Rb atom along the helical tube with index n=1 with a time duration of 8 μs calculated: (a) numerically
(red line) and (b) analytically (blue line). Reproduced from [151]. © IOP Publishing Ltd. All rights reserved.

Figure 22. The scaled (in units of its maximum depth ò) twisted
optical dipole potential as a function of z along the minima line
l kz n 1f p+ = -( ) . Reproduced from [151]. © IOP Publishing
Ltd. All rights reserved.
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centrifugal force F mrr R0
2= W and will then move along the

radial direction. Once in motion it acquires a radial velocity
and an associated Coriolis force F m2 Rr= - ¢W˙ along the
azimuthal direction. This drives the rotating atom in a direc-
tion opposite to that of the angular velocity of the HOT.
Finally, the atom will have a global motion along the HOT
due to the coupling between the motions along the z- and the
azimuthal directions. Consequently, the cold atom, which is
initially at rest, will acquire a clockwise azimuthal velocity if
it is trapped inside a counter-clockwise rotating HOT, while it
will acquire a counter-clockwise azimuthal velocity if it is
trapped inside a clockwise rotating HOT. In other words, the
angular momentum that is transferred from the rotating HOT
to the atom is directed opposite to the angular velocity of
rotation of the HOT, in agreement with the prediction by
Bekshaev et al [166].

We now demonstrate with a specific example that with a
judicious choice of parameters the rotating HOT can be used
for elevating atoms. To elevate an atom we must obey two
conditions: first, the atom must be able to escape from the
oscillations along the vertical z-direction and, second, it must
simultaneously be kept trapped in the potential tube without
escaping along the radial direction. Again the light field is
assumed to excite the transition S P5 52

1 2
2

3 2- , in 85Rb for
which λ=780.24 nm, Is=16.4 W m−2, Γ/(2π)= 5.98
MHz, the laser power is P=80 mW, the detuning is
Δ0=−2.57×1013 Hz and the beam waist is w0=5 μm.
The initial velocity is taken as (vx=5 cm s−1, vy=5 cm s−1,
vx=0).

Figure 23 shows the helical motion of the atom in the
rotating frame of reference for two different angular velocities
of the HOT: 70 kHz;RW = ΩR=−70 kHz. In the first case,
the atom is performing an oscillation in the upward z-direc-
tion and in the second case the atom is performing an oscil-
lation in the downward z-direction. Note, however, that the
atom oscillates between two vertical positions and it is not
elevated or dragged downwards.

Figure 24 displays the time evolution of the vertical dis-
placement of the atom. The atom can be elevated along the z-
axis when the HOT rotates at angular velocities greater than 146
krad s−1 counter-clockwise. It can also move downwards when
the HOT rotates at angular velocities greater than 150 krad s−1

clockwise. In these cases, the rotating HOT operates as an
Archimedes screw for atoms. For other values of the rotational
angular velocity, it clearly performs an oscillation along the z-
axis, which means that it remains trapped in this direction.

The operation of the rotating Ferris wheel as an Archi-
medes screw for atoms is possible for those angular velocities
ΩR for which the atom during the elevation remains trapped in
the radial direction. The angular frequency of the axial
oscillations is given by:
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The angular frequency w¢r in the radial direction can be
computed numerically. Here ωs is the angular frequency of
the axial oscillations in the static HOT case. Figure 25 dis-
plays the angular frequencies in the axial and radial directions

Figure 23. The trajectory of a 85Rb atom with respect to the HOT frame of reference: (a) ΩR=70 kHz, represented by the black line and (b)
ΩR=−70 kHz, represented by the red line. Reproduced from [154]. © IOP Publishing Ltd. All rights reserved.
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and from the figure it can be seen that there are values of the
HOT angular frequency RW for which the oscillation fre-
quencies along the axial and radial direction, sw¢ and w¢r
respectively, become zero. We also see that the atomic radial
frequency w¢r is always larger than the atomic global fre-

quency sw¢ and that there are rotation angular velocities for
which these frequencies can be zero. In figure 25, these are
denoted by R

sW and RWr , respectively. These are important
since if the HOT rotates within the following range of angular
velocities: R

s
R RW < W < Wr∣ ∣ ∣ ∣ ∣ ∣ then the atom can be elevated

to any desired height along the z-axis while simultaneously
remaining trapped in the radial direction. The atom can be
transported upwards or downwards along the HOT by chan-
ging the direction of the rotation of the HOT. The values of

R
sW and RWr can be controlled by changing the dipole potential

parameters such as the winding number l, the beam waist w0,
the beam power P, and the detuning Δ.

11. Atomic interaction in evanescent waves

11.1. Goos–Hänschen and Imbert–Federov shifts

It is well established in elementary geometrical optics that
when plane wave light is totally internally reflected at the
interface between a dielectric material (like a glass prism) and
vacuum then evanescent waves that propagate along the
boundary are developed. An evanescent wave has an ampl-
itude that decreases with distance away from the boundary so
that its intensity falls away with a typical decay length of the
order λ/2π where λ is the wavelength. The light fields
associated with the evanescent wave have strong intensities
and are localised within a small volume. There are thus strong
spatial field gradients, which can influence atomic properties.

In addition to optical forces due to evanescent light atoms
experience van der Waals attraction to the surface. Atoms can

dwell in the vicinity of surfaces either as a result of chemi-
sorption (producing bond formation) or physisorption. Here,
we focus on physiosorbed atoms where binding energies are
much smaller and the equilibrium distance to the surface is
comparatively larger. Physisorbed atoms will respond to
surface optical forces because they can represent a displace-
ment from equilibrium, in a planar motion that leaves the
distance to the surface unchanged. Undoubtedly, atomic-scale
irregularity in the surface itself will modulate the atomic
motions we describe, but these will be only minor perturba-
tions to the main effects.

The physics of light at surfaces is in reality a little more
involved when one is dealing with a light beam with finite
spatial variations in the plane perpendicular to the axis of
propagation. The first effect experienced by a light beam,
such a Gaussian beam, on reflection is a Goos–Hänschen shift
of the plane of incidence [169]. This is a lateral shift, which is
distinct from a second, so-called, Imbert–Fedorov shift that is
perpendicular to the plane of incidence [170, 171].

The reflection of a beam carrying OAM changes the
vortex beam and creates additional modes of higher and lower
orders. On reflection, a vortex beam has been shown to
experience further shifts associated with the additional
angular degrees of freedom. These are the angular Goos–
Hänschen and Imbert–Federov shifts, both of which have
been analysed and demonstrated [172, 173]. The angular
shifts are in fact shifts in wavevector space (see [174, 175]).
Merano et al [176] demonstrated both theoretically and
experimentally that the spatial and angular shifts are in fact
coupled.

However, the intensities of the additional modes
responsible for the above shifts are typically small. A rea-
sonable approximation is to ignore such effects and adopt a
geometrical optics model in which the light beams are spec-
ularly reflected. When the totally internally reflected light is
an LG beam that is assumed specularly reflected, the effect, as
we explain shortly, is to produce SOVs [6]. These are eva-
nescent waves endowed with angular momentum.

Figure 24. The variation of a 85Rb atom elevation with initial
velocity (vx=5 cm s−1, vy=5 cm s−1, vz=0) for different angular
rotation velocities of the HOT: 147 krad s−1

(black solid line), 146
krad s−1

(red dashed line), −151 krad s−1
(blue dashed–dotted line),

and −150 krad s−1
(brown dotted line) (w0=5 m and l=1).

Reproduced from [154]. © IOP Publishing Ltd. All rights reserved.

Figure 25. The variation of sw¢ (red dashed line) and rw ¢ (black solid
line) of a trapped 85Rb atom as a function of ΩR. The atom starts
motion from rest, the beam waist of LG beams is w0=5 μm, and
the orbital winding number is l=1. Reproduced from [154]. © IOP
Publishing Ltd. All rights reserved.
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11.2. Atoms at surfaces

Electromagnetic surface modes can have strong interactions
with two-level atoms in the vicinity of the interface, leading to
considerable optical trapping potentials, forces and associated
torques. We have seen that when the detuning of the laser
light is positive, then the dipole force acts to repel the atoms
away from the high intensity regions. With the potential
barrier so created any incident atoms can be elastically
reflected if their kinetic energy is smaller than the maximum
of the optical dipole potential, and the system operates as an
evanescent mode atom mirror (EWAM) [178]. A laser
intensity of 1 W, focused on a surface area of the order of 1
mm2, creates an atom mirror on which an atom can be
reflected if the component of its velocity normal to the mirror
is lower than a few meters per second, which corresponds to
kinetic temperatures on the order of few mK [43].

The evanescent wave atom mirror (EWAM) has been
used in both the technological and fundamental research of
atomic physics for many years [91, 178–205]. The EWAM
allows one to reflect ultra-cold atoms [184] in order to probe
quantum electrodynamic retardation effects [185]. It is also
the basic component for the creation of gravito-optical traps
[186, 187]. The first demonstration of an EWAM was in
1987, where it was used to reflect thermal atoms at grazing
angles [188]. In 1990, it was used with cold atoms at normal
incidence [189]. Since then, EWAM has been extensively
studied by several groups, both experimentally [190–195] and
theoretically [196–199]. The control of the effective potential
barrier has been demonstrated in the case of a two-level atom
interacting with surface plasmons [190–192], a dielectric
waveguide structure [200] and a metallic film [201] deposited
on the surface of the mirror. Multiple bounces of atoms have
been observed when evanescent waves were created on

concave surfaces [202]. The EWAM has also been used to
investigate atom optics in the time domain [203]. One of the
most spectacular properties of an EWAM is the quantum
state-selective character of the atomic reflections which were
demonstrated by Balykin et al [204]. An atom mirror of a
three-level atom in the so-called Λ-configuration has also
been proposed [205]. Finally, evanescent wave mirrors have
been considered for small objects at surfaces [206–208],
rather than for near-resonance atoms and molecules.

The intensity of the evanescent wave in an EWAM can
be increased by a few orders of magnitude by introducing a
thin metal layer into the dielectric-vacuum interface due to the
excitation of surface plasmons produced, or by introducing a
dielectric film of high refractive index, which essentially
produces a dielectric optical fibre for the laser radiation. The
repeated reflection of the laser light from the dielectric-
vacuum and dielectric–dielectric interfaces substantially
increases the intensity of the evanescent wave [209]. When an
EWAM with a thin metal film is irradiated by an LG beam we
have the so-called surface plasmon optical vortices (SPOVs).
These specifically plasmonic modes which are once again
features with an intrinsic angular momentum [210, 211].

11.3. Surface optical vortices (SOVs)

We now ignore the small beam effects in the forms of the
Goos–Hänschen and Imbert–Federov shifts and adopt a
geometrical optics model in which the twisted light beams are
totally internally reflected at a planar interface between a di-
electric material and vacuum. The result of the total internal
reflection is the generation of an evanescent light which
carries an in-plane distribution of the incident beam and its
angular momentum properties. This is a surface optical vortex
(SOV) endowed with the OAM of the incident light.
Figure 26 schematically represents the process of total inter-
nal reflection leading to the generation of surface optical
vortices, as surface modes with OAM.

The electric field of an LG beam travelling along the z-axis in
a medium of a constant refractive index n, characterised by the
integers l and p, frequency ω and axial wavevector k=nk0 where
k0=ω/c is the wavevector in vacuum. If the interface with the
vacuum occupies the plane z=0 and the angle of incidence, θ,
exceeds the total internal reflection angle, an evanescent mode is
created in the vacuum. The main requirements are the applic-
ability of the standard phase matching condition of boundary
reflection and the condition that the electric field vector comp-
onent tangential to the surface is continuous across the boundary.
Figure 27 displays the intensity distribution of an SOV due to an
internally reflected LG mode on the planar surface of a dielectric.
The assumed parameters are given in the caption of this figure.

The evanescent light possesses well-defined intensity
maxima and minima that can be used to trap adsorbed atoms
or to reflect incident atoms with transition frequencies
appropriately detuned from the frequency ω of the light. We
also see that the spatial profile of the intensity distribution is,
in fact, no longer circular, but elliptical, because the light
strikes the surface at the angle of incidence θ and the ellip-
ticity increases with increasing θ.

Figure 26. Total internal reflection of an LG beam at an angle greater
than the critical angle (schematic). The incident beam is arranged
such that at θ=0 the beam waist coincides with the surface at
z=0. The evanescent light possesses angular momentum proper-
ties, but is confined near the surface, exponentially decaying in the
direction normal to the surface. Reproduced with permission
from [177].
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11.4. Surface plasmonic optical vortices (SPOVs)

Consider now the case of co-propagating incident beams of
opposite winding number l creating an interference of two
surface vortices, in a manner similar to that discussed in the
previous section which leads to the generation of the optical
Ferris wheel [100]. The total electric field in the vacuum
region results from the interference of the two evanescent
light beams in the azimuthal direction.

Twisted light can also lead to the generation of surface
plasmonic optical vortices [212, 213]. An experimentally
accessible scenario is the case where a thin metallic film is
deposited on the surface of a glass prism and, as before, a LG
beam is totally internally reflected on the inner interface as
shown in figure 28.

The metallic film enhances greatly the evanescent fields
and the interaction with a two-level atom in the vicinity is
stronger than in the absence of the metallic film, so the
corresponding mechanical effects should be larger. From
Maxwell’s equations the electric field vector components
emerge with in-plane polarisation in the three regions of the
layered structure as shown in figure 28, namely a dielectric,
occupying the region z<−d; a surface film occupying the
region −d<z<0, and the vacuum region occupying the
space z>0. These fields are then subject to boundary and
phase-matching conditions. This procedure leads to the eva-
nescent field in the vacuum region.

An atom in the vacuum region with position vector R
(t)=(x(t), y(t), z(t)) interacts with the surface plasmon vortex
and the interaction is characterised by the Rabi frequency Ω

(R(t)) and the phase Θ(R(t)).
To confine the atom to an angular path in the plane

parallel to the surface, it is necessary to use two internally
reflected incident beams as shown in figure 28. Here, two LG
beams, labelled 1 and 2, are incident at angles f1 and f2. The
two beams, which are assumed as identical, are totally
internally reflected and have field components within the film,
and surface plasmonic components in the vacuum region.
Once the forces acting on the centre of mass of the atom are
specified, the motion of the atom in the vicinity of the surface
can be determined. The dynamics again follows a Newtonian
equation of motion, driven by a sum of the forces delivered
by each beam.

To illustrate the results of the theory leading to typical
trajectories, we consider a sodium atom in two confocal,
counter-propagating LG beams as in figures 29 and 30
assuming the same magnitude of detuning, but one beam has
positive detuning and the other negative detuning . It is seen
that the trajectories of the sodium atom are very different in
the two types of detuning. The confinement regions are now
concentric elliptical valleys defined by the intensity distribu-
tions, radial confinement leading to vibrational motion in a
radial direction and resulting in an overall zigzag trajectory.

11.5. Extraordinary spin in evanescent waves

In recent years, there has been a growing interest in extra-
ordinary spin in evanescent light modes. The reference here is
to spin directed transverse to the direction of propagation.
Much of the work has been done for subwavelength optical
fibres (see, for example, [214, 215]), but the phenomenon is
general in this setting [216]. Note, however, that the twisting
here is not in the phase of the optical field.

Bliokh et al [216] explored the local momentum and spin
distributions of evanescent waves. The electric field of their
evanescent wave emerges from that of an elliptically-polarised
plane wave propagating along the z-axis carrying momentum

and spin in the form x yA m ikz mE exp 1 2= + +( ˆ ˆ) ( ) ( ∣ ∣ )
where k=ω/c. A rotation of the plane wave field by an ima-
ginary angle iθ leads to the electric field Eevan of an evanescent

Figure 27. The intensity distribution for the SOV created by the total
internal reflection of a LG beam with l=2; p=1. The LG beam
has a waist w0=200 μm and a power P=1 mW. The beam has a
wavelength 589.16 nml = and is incident at angle θ=30° at the
interface of a piece of glass made of GaP with a refractive index
n=3.365. The glass is transparent at this wavelength which can
excite the transition S P3 32

1 2
2

3 2- in 3Na. The beam has an
intensity I0=25 kW m−2=390.25Isat, where Isat=64 W m−2 is
the saturation intensity for the sodium 32S1/2−32P3/2 transition.
The intensity distribution is plotted in the (x, y) plane at z=0.

Figure 28. Schematic total internal reflection of two LG beams at a
planar dielectric interface with a metallic film, creating a surface
plasmon from counter-propagating evanescent modes.
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mode in the half-space x>0, occupied by vacuum

x y z
A

m
m
k

k
i
k

ik z xE
1

exp ,

176

evan
z z

z
2

k
k=

+
+ - -

⎛

⎝
⎜

⎞

⎠
⎟

∣ ∣
ˆ ˆ ˆ ( )

( )

where k k kcoshz q= > . In the above, A is the wave ampl-
itude and caret denote unit vectors; m is a complex number that
determines the polarisation state. The evanescent mode propa-
gates along the z-axis and its field decays exponentially along
the x-axis. It is characterised by the longitudinal wavenumbers kz
and κ, the spatial decay rate. These combine to form the com-
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where (in Gaussian units) w A x8 exp 21 2pw w k= --( ) ∣ ∣ ( ) is the
spatially-inhomogeneous energy density of the wave and

m m2 1 2 1s = + -˜ ( )( ∣ ∣ )I is the helicity (ellipticity of
polarisation).

The three expressions presented in equation (177) are the
main findings of the work by Bliokh et al Bliokh2014 who
emphasised the remarkable peculiarities of the momentum
and spin. In particular:

(1) Since kz>k, the evanescent wave possesses a long-
itudinal canonical momentum component zp which is
greater than the plane wave momentum wkp w= that
created it.

(2) The group velocity in the evanescent wave is
vgz=ckz/k>c which confirms that the evanescent
wave is superluminal in the direction of propagation.

(3) The theory predicts a super-momentum transfer per
photon (i.e. larger than k ) from the evanescent wave to
a dipole particle via the radiation force Fz z

0pµ . This is
in conformity with the super-momentum transfer [217]
which was observed earlier by Howard and Imbert
[218] in the resonant interaction between a moving
atom and an evanescent wave.

(4) The results show that there are transverse y-components
of the momentum and spin of the evanescent wave
propagating in the (x, y) plane. The y-component of the
momentum w k ky z

0p s kµ ˜ , which depends on the
helicity s̃. The y-component of the spin is
s w ky zkµ , which is helicity-independent.

So far we have assumed that the evanescent wave exists
in the vicinity of a planar surface. There are other contexts in
which evanescent modes feature prominently, most notably in
waveguides and in whispering galleries. Here too, it has been
found that the polarisation of an allowed evanescent mode
exhibits a longitudinal component along the direction of

Figure 29. Trajectory of the sodium atom in the evanescent fields
generated by counter-propagating LG beams, with positive detuning,
at a planar dielectric interface coated with a metallic film where
l l p1; 01 2= = = . The trajectory is superimposed on a rendering of
the associated potential well. The parameters are as follows. The
beam waist is taken as w0=35λ, with λ=589.0 nm. The intensity
is assumed to be I=2.0×106 W m−2. The layer structure consists
of a thin silver film of thickness d=59 nm and electron density
n 5.57 1028= ´ m−3, deposited on glass of dielectric constant
ò2=2.298. The magnitude of the detuning is 1000D = G∣ ∣ , where
Γ=6.13×107 s−1. The dipole moment is taken as d ea2.6 B=
where aB is the Bohr radius.

Figure 30. Trajectory of the sodium atom in the evanescent fields
generated by counter-propagating LG beams, with negative detun-
ing, at a planar dielectric interface coated with a metallic film where
l1=l2=1; p=0. The trajectory is superimposed on a rendering of
the associated potential well.
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propagation. The work by Junge et al [214] investigated the
interaction of a single atom with a whispering gallery mode in
a microresonator, taking account of the effects of the non-
transversal polarisation of the whispering gallery mode in the
interaction.

12. Enhanced quadrupole effects with twisted light

12.1. Quadrupole transitions

The development of laser cooling and trapping has been
based on the interaction of coherent light with atoms in the
electric dipole approximation. Other higher multipolar effects
have been ignored since they are considered to be too small
[219]. The next in the multipolar order is the electric quad-
rupole. Electric quadrupole transition rates are typically
smaller by a factor g a k0

2= ( ) in comparison with electric
dipole transitions, where a0 is the Bohr radius and k is the
wavenumber of the ordinary laser light. For processes
involving transitions in the optical region, we have g≈10−6.

Although usually weak, quadrupole effects become
important at high intensities or when the light is tightly
focused [220], or when the transition in question is driven
between two long lived states, in which case the Rabi fre-
quency may be larger than the linewidth, leading to coherent
oscillations of the upper state population [221, 222]. Further
advancements in optical techniques have allowed more
quadrupole transitions to be observed and utilised. In part-
icular, very weak quadrupole transitions have been detected
in hydrogen molecules and these have been regarded as of
particular interest in probing the atmospheres of various
celestial objects [223]. Enhancements of optical absorption of
an electric quadrupole transition in caesium atoms interacting
with an evanescent field have also been observed [224].
Indeed, quadrupole transitions can be significantly enhanced
in the vicinity of material surfaces, including microstructures
where enhancements by two orders of magnitude are pre-
dicted and have been experimentally observed [225, 226].

12.2. Quadrupoles in twisted light

Here, we seek to explore what mechanical effects a LG beam
would create on a two-level atom when the atomic transition
is electric quadrupole allowed. The aim is to find out whether
we can achieve mechanical effects of substantial strength
when LG beams with high OAM content interact with atoms
by quadrupole allowed transitions. Once more, we consider a
two-level system with a ground state, denoted 1ñ∣ of energy 1
and an excited state 2ñ∣ of energy 2 , such that the resonance
frequency is 0 2 1  w = -( ) . The atom interacts with an
LG beam characterised by the quantum numbers l and p

propagating along the z- axis with an axial wave-vector k.
The basic quantum mechanical Hamiltonian formalism in

this case follows an analogous initial set of steps to those
followed in the case of atoms interacting with light in the
electric dipole approximation. The only difference here is that

the interaction Hamiltonian is

H ex x E R
1

2
, 178Q i j i j= - ˆ ( ) ( )

where the Einstein summation convention applies. Here xi are
the components of the internal position vector x=(x, y, z)
and ∇j are components of the gradient operator which act
only on the spatial coordinates of the transverse electric
field vector E as a function of the centre of mass variable R=
(X, Y, Z).

We assume that the LG mode is linearly polarised along
the x-direction and that its quantised electric field as a func-
tion of the centre of mass coordinate R now expressed in

cylindrical coordinates R=(ρ, f, Z) (with X Y2 2r = + )

has the familiar form of equations (52)–(54). Here, for sim-
plicity, we shall ignore the Gouy phase such that the phase of
the LG beam at position R is given by kZ lRklp fQ = +( ) .
With the electric field polarized along the x-direction, the
quadrupole interaction Hamiltonian equation (178) now takes
the form

H Q
E

X
Q

E

Y
Q

E

Z

1

2
, 179Q xx

x
xy

x
xz

x= -
¶
¶

+
¶
¶

+
¶
¶{ }ˆ ˆ ˆ ˆ ( )

where Q ex xij i j=ˆ are the elements of the quadrupole tensor
operator, which for the two-level atom can be written in terms
of ladder operators as

Q Q , 180ij ij p p= +ˆ ( ) ( )†

where Q Q1 2ij ij= á ñ∣ ˆ ∣ are quadrupole matrix elements
between the two atomic levels.

Substituting for the fields, we can write the quantised
quadrupole interaction Hamiltonian in the form

H a eR h.c. 181Q klp klp
Q i Rklp= W +Qˆ ˆ ( ) ( )( )

Here, Rklp
QW ( ) is the complex Rabi frequency defined as fol-

lows

E C u Q Q ikQR R ,
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The form of the interaction Hamiltonian is similar to the one
for the electric dipole transitions. The only difference is the
way that the Rabi frequency has been defined. The theoretical
and experimental justification of this model has been exten-
sively discussed in [227]. With both the phase and the com-
plex Rabi frequency defined, the steady state force on the
moving atom due to the LG laser mode is written in a manner
similar to case of electric dipole transitions. As in the case of
electric dipole transitions, the dissipative force can now be
understood as a result of quadrupole absorptions followed by
spontaneous emissions of the light by the atom, while the
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quadrupole force, which is proportional to the gradient of the
Rabi frequency, is responsible for confining the atom to the
maximal or minimal intensity regions of the field, depending
on the detuning Δklp. The quadrupole force is derivable from
a quadrupole potential

U R
R1

2
ln 1

2

4
. 184quad klp

klp
Q

klp Q

2

2 2
= D +

W

D + G

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( )

∣ ( )∣
( )

In experimental situations where we have large detuning
;klp

Q
klp QD W D G ∣ ∣ ∣ ∣ ∣ ∣ , the quadrupole potential can be

written to a good approximation as

U R
4

. 185quad
klp

klp
Q

R
2

»
D

W( ) ∣ ∣ ( )( )

It is clear from the above expressions that if we wish to
compare the corresponding expressions for forces and
potentials in the electric dipole and electric quadrupole tran-
sitions, we need to investigate the modulus squared Rabi
frequency Rklp

Q 2W∣ ( )∣ , which is rather different from the
corresponding case in electric dipole transitions.

For illustration, we now consider the case of an LG donut
mode of winding number l, but for which p = 0. In this case,
the derivative in  in equation (183) is equal to zero, since
L l
0
∣ ∣ is a constant for all l. We also assume that the atom is

constrained to move in the X–Y plane and the quadrupole
transition is such that Q Q0xy xz= = . this can occur for

example in a Y Yl
m

l
m

0
0

2
0=

=
=
= transition. In this case, the Rabi

frequency equation (182) takes the following simpler form,
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Expressing lengths in units of w0, so that R R w0=¯ , etc, we
find for the modulus square of the Rabi frequency entering the
dissipative force
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The topology of the Rabi frequency will be imprinted in the
topology of the quadrupole potential in the case of large
detuning. It is interesting to explore the relevant depth and the
spatial structure of the trapping potential given by
equation (185) and how these are affected by the choice of the
vortex and atomic parameters. To be specific, we consider Cs
as an atom recently explored for its quadrupolar transition
S D6 52
1 2

2
5 2 , specifying the de-excitation rate ΓQ and a

quadrupolar matrix element Qxx. The optical vortex is such
that the amplitude E000 is related to the intensity by
I cE 2k0 00

2= . We also need a suitable value for the detuning
Δ and, since we wish to maximise the quadrupolar effects we
take a large value of winding number l. The parameters
are w 10 m; 675 nm;0 m l= = Q ea10 ; 7.8xx B Q

2» G = ´
10 s ;5 1- and 10 ;Q

2D = G P I1W; 3.18 10 W m .9 2= = ´ -

It is also convenient to define a scaling parameter Ω0 as

follows

I
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where the last equality emerges on substituting the relevant
parameters defined above. Figure 31 displays the quadrupole
potential and the corresponding contour plots in two different
cases namely when l = 3 and l = 300. Experimentally,
winding numbers as large as l = 300 can be achieved, as
emphasised in [228]. The trapping potentials are given in
absolute temperature units. It is obvious that the increase of
the winding number l gives a deeper trapping potential. From
the contour plots, we also see a different spatial structure of
the potential. As l increases, we obtain two crescent-like
trapping regions. This spatial structure can be explained by an
analysis of equation (187) on substituting for up

l 2∣ ∣∣ ∣ , expressed
in terms of the dimensionless variables. In the large l case, we
have a distribution with two regions of variation and there are
high symmetry points. To identify the dependence on l, we
consider the points X Y, 0, 1= ( ¯ ¯ ) ( ), the expression between
the curly brackets in kl

Q
0
2W∣ ∣ becomes equal to l2, while at the

points X Y, 1, 0= ( ¯ ¯ ) ( ) the curly bracket reduces to
l 2 2-( ) , both of these observations effectively scale as l2 for
large l. We have also verified that the maxima and minima of

kl
Q
0
2W∣ ∣ actually occur at the following X Y,( ¯ ¯ ) points

X Y l

X Y l

, 2 , 0 minimum ;

, 0, 1 2 maximum . 189

= 

=  -

( ¯ ¯) ( ∣ ∣ ) ( )

( ¯ ¯) ( [∣ ∣ ] ) ( ) ( )

It is seen that the positions where the Rabi frequency max-
imises are different from those in the case where we have an
electric dipole transition. In this case, the Rabi frequency
maximises at points where R l 2=¯ ∣ ∣ . The reason is that the
strength of the electric quadrupole interaction depends on the
gradient of the electric field. Thus, such an interaction can be
maximum even at points where the electric field and thus the
intensity are zero [229]. This counter-intuitive observation
has been demonstrated in an experiment where a single ion
was positioned at different locations inside an optical cav-
ity [230].

The depth of the quadrupole trap is sufficiently large to
lead to the trapping of atoms. Moreover, as our analysis has
shown the photon scattering rate is very low, so ensuring long
trapping lifetimes. This means that the interaction of LG light
with an atom in a quadrupole-allowed transition can lead to
significant mechanical effects on the atoms. The facility to
generate LG light in the laboratory with large values of l [228]
indicates that the quadrupolar mechanical effects should be
amenable to experimental verification.

It seems reasonable to suggest that a further enhancement
of quadrupolar vortex interactions could be achieved by
placing the atoms near the surface of plasmonic structures and
arranging the generation of surface plasmonic modes
endowed with the vortex properties. Dipole allowed transi-
tions are subject to strong enhancement under these
conditions.
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13. Mechanical effects for large l and p

The study of the mechanical effects of LG beams with atoms
has mostly been limited to cases of the lowest values of the
winding number l. Furthermore, studies have ignored modes
with non-zero values of the radial mode index p. As pointed
out earlier, advances in technology and experimental techni-
ques for the generation of twisted light have recently made
possible the realisation of LG beams with very large values of
both the winding number l and the radial index, p [231, 232].
The radial index p has in fact been dubbed as the ‘ignored’
quantum number, although its role in quantum communica-
tions has been emphasized in [228] and a quantum mechan-
ical theory featuring the effects of p has been presented [233].
As the current experimental activity on the production of
optical vortices with extremely large values of l and p con-
tinues [231, 232], we expect that more light will be shed on
the physical role of the radial index p. For example, it has
been suggested that LG beams with high values of p can be
exploited in the creation of concentric cylindrical lattices
which can offer a platform for the exhibition of quantum Hall
physics with cold atoms [157].

It turns out that in the study of the mechanical effects of
LG light on atoms the consideration of large l and p values
brings to the fore optical phase terms, which have so far been

discarded because for small l and p values they are justifiably
negligible. We show here that considerable modifications
arise in the physics involving atomic gross motion primarily
because the radiation forces exerted by the light on the atoms
are modified. The modifications stem from phase gradients
originating from the beam curvature and the Gouy phase most
prominently near the focus plane of the LG light mode. Both
the Gouy and the curvature phase terms have so far been
ignored in the analysis, with the Gouy phase strongly
dependent on the values of l and p.

The Gouy phase is a basic property of all focused beams.
Although frequently discussed with reference to focused light
beams, it is also known to arise in the cases of focused
acoustic and electron beams. It was first discovered over 11
decades ago by Gouy who made direct measurements in the
case of optical beams [234, 235]. Over the years, the Gouy
phase has been shown to play significant roles in a number of
contexts as described in the interesting paper by Feng and
Winful [236] who provided a physically transparent inter-
pretation of the Gouy phase as originating from the in-plane
spatial confinement of the focused beam. Hariharan and
Robinson have given another explanation of the Gouy phase
as a geometrical quantum effect which arises as a result of the
uncertainty principle whenever there is a modification of the
volume of space in which the light beam is transmitted [237].

Figure 31. The quadrupole potential and the corresponding contour plots for two cases: (a) and (b) for l=3, (c) and (d) for l=300. Data as
given in the text.
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One of the most prominent manifestations of the Gouy phase
is in the context of optical tweezers, where it plays a role in
the in-plane trapping of particles and leads to super-luminal
phase velocities vf at focus. This suggests a sub-luminal
group velocity vg of the light in vacuum which is in con-
formity with the product rule vfvg=c2. Recent experiments
suggest that light in vacuum travels at sub-luminal speeds for
all beams, including Gaussian, Hermite-Gaussian and LG
ones, which are endowed with lateral intensity spread. Of
course, light only has its normal speed c in vacuum when
propagating in the form of a plane wave [238].

13.1. Gouy phase and beam curvature effects

The mechanical effects of the Gouy and curvature phase
terms on the gross motion of two-level atoms have been
explored by Lembessis and Babiker [239]. The outlines of
their arguments are as follows. In the paraxial approximation
the electric field associated with a LG mode, of wavelength

k2l p= propagating in the z-direction and polarised in the
x−direction is given by equations (52)–(54). In equation (54),
the third term is identified as the Gouy phase term, namely

p l z z2 1 tan , 190Gouy R
1Q = - + + -( ∣ ∣ ) ( ) ( )

and the curvature term is the last term, namely

k z

z z2
. 191curve

R

2

2 2

r
Q =

+( )
( )

The beam is characterised by a wavevector given by
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In fact not just the wavevector, but also the Poynting vector
expressions are significantly modified compared with the
expressions that are valid for low values of the indices l and p

provided that we work with parameters that can make the con-
tributions from the Gouy phase equation (190) and the curvature
phase equation (191) of appreciable sizes. This conclusion, whilst
it introduces additional complexity, suggests that when exper-
imental results are assessed, it may be important to consider such
effects if simpler formulations give imprecise agreement.

13.2. Modified radiation pressure forces

Recall that radiation pressure gives rise to two distinct forces,
namely the dissipative force and the dipole force. In the
saturation limit where ,lpW D G , the dissipative force can
be approximated to

F K
1

2
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2
. 193lp lpdiss  á ñ » G Q = G ( )

Consider the situation in which the atoms move near the focus
plane of the LG mode such that z=zR. In this case, the

wave-vector of the beam K takes the following effective form
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When the gradient terms originating from the Gouy phase and
the curvature phase terms are considerable in size, they
amount to an effective axial wavevector denoted by keff, so
that the phase gradient in the vicinity of the focus plane can
be written as

k
l

z . 195pl eff f
r

Q » + ˆ ( )

The above relations show clearly that the axial wave-
vector is modified from k to keff. In the specific case p=0
and making use of the relation z wR 0

2p l= we find that the
winding number l should be close to (kw0)

2 and since,
kw0?1, only LG beams with large value of l could exhibit a
non-negligible effect, i.e. such that keff differs significantly
from k.

To understand better the relevant size of the modifica-
tions we consider the following numerical estimations. Con-
sider an LG mode of wavelength λ=2π/k=852.35 nm,
with azimuthal and radial indices l=300, p=3, respec-
tively. We focus on four different cases of beam waist with
respective values w 3 , 5 , 100 l l l= and 20λ , and seek to
explore how the effective wavevector keff changes with the
radial position r near the focus plane, i.e. in the region at
z≈0 of the beam. The plot of keff as a function of radius ρ,
scaled in beam waist units, is shown in figure 32 in which we
clearly see that keff becomes considerably different from that
of k as the beam waist decreases in value. The effect is even
more interesting since as we also see for w0=3λ the effec-
tive axial wavevector keff takes negative values at certain
radial positions: the interpretation is that locally the atom
‘sees’ a beam travelling in the opposite direction. We must,
however, be careful in interpreting this scenario since, as has
recently been pointed out, when the focusing is very tight the
generated LG beam is not a pure state as we have the pro-
duction of modes with higher and lower winding numbers due
to a small field component in the propagation direction, so the
above ideal picture does not precisely apply [157, 240].

A direct consequence of the modification of the axial
wavevector is that the dissipative force on a two-level atom is
also modified. In the saturation limit, this force is now given by:

k
l
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Note that the axial z(ˆ) dissipative force, which in the absence of
the anomalous Gouy and curvature phases is known to be given
simply by kF z1 2lpdiss á ñ = G ( ) , is now modified by the
inclusion of the additional phase terms By contrast, these phase
anomalies have no effect on the azimuthal f̂ force component.
The analysis shows that, since the effective wavevector is nul-
lified on critical radial distances and changes its sign from
negative to positive around them, there may be novel ways to
handle atoms via LG light beams. A light beam can decelerate
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the atomic motion even in the case where it propagates in the
same direction with the atom.

The mechanical effects of light on atom are very sensitive
to the Doppler shift experienced by a moving atom. If the
atom has a velocity V then the Doppler shift is given by

VD lpd = Q{ } · . This topic has been investigated analyti-
cally by Allen, Babiker and Power, [130], so it now seems
clear (in view of the discussion in section 8.1) that the
Doppler shift too is subject to modifications due to Gouy and
curvature phases for highly twisted light and there are also
consequences in the context of the dynamics of the optical
molasses in such LG beams [241].

14. Atom vortex beams

So far we have been dealing with optical vortex beams and
their effects on atoms, and the key feature of the vortex nature
is the angular momentum property. Vortex beams of a dif-
ferent nature have been contemplated, prompted by the
creation in the laboratory of electron vortex beams [242, 243].
Electron vortex beams are also endowed with the property of
OAM and they are characterized by a wavefunction bearing
the phase factor eilf, as appears in the case of the optical
vortex fields. However, there are marked differences in
electron vortices (EVs) when compared to optical vortices in
that EVs are characterized by the electron mass, electronic
charge and electron spin, all of which introduce new effects
that are absent in the optical vortex case. Studies of EVs and
their interaction with matter are now progressing in both the
theoretical and experimental fronts.

The concept of a vortex beam should apply to any de
Broglie particles and this includes atoms, ions and molecules
—provided that each can be produced in the form of an initial
well defined ordinary beam—but it is unclear how one can
generate the particle vortex in the case of a neutral atom
beam. In both optical and EVs, the production relies on the
generation of a material computer generated mask and dif-
fraction is the physical process through which the vortex
beams are realized.

To create atom vortex beams we need a suitable mask.
The use of an optical mask suitably constructed from laser
light as a diffracting agent appears at first sight as a reason-
able choice. The proposal is that a beam of neutral atoms
diffracted from a suitably constructed optical mask at near
resonance with an atomic transition should lead to the gen-
eration of a discrete set of optical vortex states each endowed
with the property of quantized OAM about the beam axis in
units of ÿ. We analyse this suggestion and seek to define
criteria for the selection of separate atom vortex beams and
discuss prospects for potential applications.

When the atoms are cooled their speed is very small:
consequently their de Broglie wavelength is large and could
be comparable to the laser light wavelength. In this case, the
atomic gross motion exhibits a quantum behaviour with a
dominant wave-like character. One of the most important
effects for the atomic motion where the wave-nature is

exhibited is diffraction [43]. This effect occurs whenever the
atomic wave-packet interacts with anything that shifts its
phase or even its amplitude, through absorption. Diffraction
can split the atomic wavefunction into a coherent super-
position of momentum and/or angular momentum states. To
achieve atomic diffraction atoms are normally sent through a
light field with which they interact for a short time, normally
smaller than Γ

−1 which ensures that the probability of a
spontaneous photon emission is negligible. In this case, when
the detuning is large, the potential which corresponds to the
atom-light interaction is real, acts as a pure phase object and
the interaction potential operates as a thin diffraction grating.
This is known as the Kapitza-Dirac scattering and occurs in
the Raman-Nath limit [244]. Some experiments have shown
that similar effects may arise when the interaction time is
larger than Γ

−1, but in addition we have far-detuning [245].
Over the years, diffraction of electromagnetic fields has

played a key role for the generation of electromagnetic waves
with a phase topological charge such as the optical LG beams
[66]. But diffraction is a general wave effect and is not limited to
light beams. It can also be present in matter waves. The pro-
duction of EV is based on the diffraction of electron waves. The
EVs are beams of electrons with a quantised angular momentum
along the propagation axis [242, 243, 246]. The creation of such
beams has been achieved by passing a plane electron wave
through spiral phase plates [247] or holographic masks [248].

Figure 32. The ratio keff/k as a function of the radial position, scaled
in beam waist units, for a LG mode of wavelength λ=852.35 nm
and indices l=300, p=3. The ratio is given for four different
beam waists: w0=3λ (dotted), w0=5λ (dashed), w0=10λ
(dotted–dashed) and w0=20λ (long dashed). The solid curve is a
scaled plot of the intensity highlighting the regions where the beam
intensity and thus its mechanical effects on atoms are considerable.
The radial distance ρ is scaled in w0 units. Reprinted figure with
permission from [239], Copyright (2016) by the American Physical
Society.
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The quantised OAM constitutes a fundamentally new electron
degree of freedom which could find application in a number of
research areas and raises fundamental issues such as the transfer
of electron angular momentum to matter [249].

As pointed out above, the proposal for the possible rea-
lisation of atom vortex (AV) beams using a diffracting ele-
ment sprang from this background. Prior to this there were a
few theoretical works dealing with atom diffraction. First it
was shown that atom diffraction through a cylindrical optical
lattice with a petal-like structure could give rise to AV beams
with opposite winding numbers [250]. Subsequently, it was
shown theoretically that the existence of atom Bessel beams
was possible [251].

This was followed by the experimental creation of a
Bessel beam of de Broglie matter waves [252]. The Bessel
beam was produced by the free evolution of a thin toroidal
atomic BEC which has been set into rotational motion.

The proposal of AV beams from free atoms involved
similar ideas to those used in the generation of EV beams
[253]. By free atoms we mean atoms in the form of a beam
(thermal, BEC, etc) that propagates in free space and is dif-
fracted by a properly tailored light field (a light mask). The
short interaction time during the diffraction results in a phase
imprint on the atomic wave function [254]. In a recent report,
it has been shown that on using a light mask with a spiral like
intensity pattern the diffraction gives rise to AV beams. These
could be used as a mechanism for the generation of atomic
Ferris wheel beams [255] whereby the diffraction involves a
spiral-like light mask, which plays a role similar to that played
by a spiral-like phase plate for the production of vortex light
and electron beams [256]. The new element here is, as is the
case with the OV and EV beams, that the generated AV
beams are focused at different points along the beam propa-
gation axis. By properly focusing these beams it is possible to
make them interfere. The interference of two AV beams with
opposite winding numbers leads to atom Ferris wheel beams.
These are the atomic counterparts of the optical Ferris wheel
beams with the characteristic petal-like transverse intensity
patterns [100]. In what follows, we discuss the creation of
atom vortex beams first by using fork-like light masks fol-
lowed by the case of spiral light masks.

14.1. Diffraction through a fork-like light mask

The creation of a fork-like mask is achieved when we inter-
fere a LG beam with a Gaussian (G) beam. The propagation
direction of the G wave is considered to be slightly tilted at an
angle β with respect to z-axis. Both beams are assumed to be
polarised along the y-direction. The electric field of the G
beam is given by
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Gaussian wave amplitude. The total electric field of this
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It is instructive at this stage to consider the following num-
erical example. We assume that the LG beam has a beam
waist wLG,0=15 μm. The winding number of the LG beam
is taken as l=1 and its power is 81 μW. Both beams have
wavelength λ=589.16 nm. This is the wavelength which
can excite the S P3 32

1 2
2

3 2- transition in a Na atom which
has a saturation intensity IS=64 W m−2. The Gaussian beam
has a beam waist equal to wG,0=200 μm and its power is 8.2
mW. The G beam propagation direction is tilted at an angle
equal β=50 with respect to the LG beam propagation
direction. The spatial distribution of the total intensity is
displayed in figure 33.

A two-level atom interacting with the above field has a
Rabi frequency I x y z, , ,2 2r fW µ µ( ) ∣ ( )∣ , which at z=0
is given by,
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On interacting with the mask field, the atom experiences an
optical dipole potential. In the case of far detuning such that
Ω/Δ=1, we have for the dipole potential
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The dipole potential acts on the atom in its ground state and
results in the diffraction of the atom over a short interaction time
τ. We assume that the atom enters the potential at the time
t=−τ and its state function at that instant is Ψ(ρ, f,−τ). After
the diffraction process, the atomic state function is at time t=0
and is given by
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On substituting for U from equation (202), we have
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The physical interpretation of the above expression is that
the diffraction process through the optical potential over the
short period of time τ is in the form of a phase imprint on the
initial wave function [256]. This is the basic principle of vortex
sorting in BECs. Substituting for Ω from equation (201), we
have
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where A, B and C are functions of ρ only and are defined by
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The last exponential factor involving dependence on kx and f

can be expressed as a sum over Bessel functions Jn(z) using the
Jacobi–Anger identity, namely
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The initial state function of the atoms prior to entering the
interaction region (i.e. at time t=−τ) is best discussed with

reference to a practical scenario involving a cold atomic wave-
packet. Such a wavepacket is considered to have a transverse
Gaussian profile with a typical cross-section of dimensions of
the order of tens of microns. Thus, we can write
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where ŝ is the transverse size of the atomic wavepacket, KdB
z is

the atomic wavevector along the z-direction and N is a nor-
malisation factor.

Equation (208) shows that the atomic state function is
made up of a series of atom vortex states each labelled by the
index n=0,±1,±2, K. and each is endowed with angular
momentum nlÿ propagating at an angle θn relative to the z-
axis given by
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The central component is such that n=0, which is an Airy-
type state function and carries no angular momentum.
Explicitly, we have
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Figure 33. Intensity of the total light field (at z=0) made up by the interference of the LG beam with a tilted Gaussian wave. The LG beam
has a beam waist wLG,0=15 μm. The winding number of the LG beam is taken as l=1 and its power is 81 μW. Both beams have
wavelength λ=589.16 nm. This is the wavelength which can excite the S P3 32

1 2
2

3 2- transition in a Na atom which has a saturation
intensity IS=64 W m−2. The Gaussian beam has a beam waist equal to wG,0=200 μm and its power is 8.2 mW. The G beam propagation
direction is tilted at an angle equal β=50 with respect to the LG beam propagation direction. The inset displays the corresponding
contour plot.
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while the first order states are those for which n=±1
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These state functions correspond to atomic beams carrying
orbital angular momenta ±lÿ. Note that lÿ is the OAM of the
LG beam which was required to construct the fork pattern.
This angular momentum is seen here as having been trans-
ferred to the atomic beams to the lowest diffraction order. The
situation is depicted schematically in figure 34. For practical
purposes, it is desirable to be able to ensure that the atomic
vortex beams are well separated, with minimum or no over-
lap. This requirement clearly depends on the parameters used
to generate the diffraction pattern and the amplitude of a
given component depends on the initial state and the
corresponding Bessel function. The process described above
is in fact a Raman-Nath diffraction and there are certain cri-
teria in which the Raman-Nath regime applies, namely (i) that
the width of the initial atomic beam must be large compared
with the spatial extent of the diffracting potential and (ii) that
the transverse kinetic energy of the atoms as they enter the
diffraction region should be smaller than the maximum
energy of the atom-light field interaction.

14.2. Diffraction through a spiral light mask

The creation of a spiral mask is achieved when a Gaussian
beam is passed through a thin lens of width d, refractive index
n and focal length f. Then the electric field of the Gaussian
beam is given by:
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On interference of this beam with a LG donut beam l, p(=0),
we have for the total electric field:
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The intensity of this light field has a spiral profile in the
transverse plane, as illustrated by the following numerical
example. We assume that both beams have equal beam waists

Figure 34. (a) Diffraction of the atoms through the light mask involving an LG donut beam of winding number l=2. The LG beam travels
along the z-axis and the tilted beam is in the (x, z) plane in a direction tilted with respect to the LG beam. (b) After the diffraction process
different atom vortex states are shown separated in space and are labelled n=0,±1,±2, ... with the nth vortex carrying orbital angular
momentum nlÿ. Reprinted figure with permission from [253], Copyright (2014) by the American Physical Society.
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w0=15 μm, equal wavelengths λ=1 083.33 nm. The
Gaussian beam has a power of 0.3 μW while the LG beam
has a power 1.4 μW. The wavelength corresponds to the
transition S P2 23

1
3

2- in the 4He atom. The winding number
of the LG beam is l=2, while the lens is characterised by the
following parameter values: d=0.5 mm and f=100 μm.
The intensity of the total light field with the characteristic
spiral transverse profile is presented in figure 35.

The atom interacting with the above field experiences a
potential given in equation (202) with a Rabi frequency Ω(ρ,
f) whose square modulus is given by
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In the scheme shown in figure 36, a BEC which has been
released from a trap moving in free space is directed towards
the light mask and made to interact with it for a short time
interval and gets diffracted by the optical dipole potential. We
assume that the BEC initially occupying the ground state of
the trap and immediately after its release enters the interaction
region at time t=−τ. To a good approximation, the con-
densate wave-function can be considered as a Gaussian one as
described in equation (209).

After the diffraction, the atomic wave function acquires a
phase imprint and so has the form,
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where Δ1 = ωL1 − ω0. Using equation (216) and the Jacobi–
Anger equation, this becomes:
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and E 2G LG 1r r r= W W D( ) ( ) ( ) . The diffraction pattern
consists of AV beams, with a quantised angular momentum
along z-direction equal to mÿ. These AV beams are focused at
the points mπ/λa = mf along the z-axis. This is a rather
simpler diffraction pattern than that in the case of the fork-like
mask described in the previous subsection. Here, the different
AV beams are in focus in different planes along the propa-
gation direction, while in the fork-like mask case they prop-
agate in different directions. Equation (218) indicates that the
diffraction pattern is made up of a term Ψ0 with no OAM
content and different diffraction orders of opposite winding
numbers Ψ±m which means there is a quantized OAM mÿ

along the propagation axis.
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The two AVs with opposite angular momenta m are
defocused over mf and mf- respectively.

Figure 35. Intensity of the total light field (at z = 0) made up by the interference of the LG beam with the G beam. The inset to this figure
shows the corresponding contour plot. The parameters used are as follows. Both beams have equal beam waists w0=15 μm, equal
wavelengths λ=1 083.33 nm. The Gaussian beam has a power of 0.3 μW while the LG beam has a power 1.4 μW. The wavelength
corresponds to the transition S P2 23

1
3

2- in the 4He atom. The winding number of the LG beam is l=2, while the lens has d=0.5 mm and
f=100 μm.
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The spiral diffraction scheme could be exploited for the
generation of an atom Ferris wheel beam [255]. This is the
atomic counterpart of the light Ferris wheel beam because the
probability distribution at a plane transverse to the atomic pro-
pagation direction has a characteristic petal-like structure similar
to the optical Ferris wheel transverse intensity pattern [100]. The
fact that the generated AVBs are all focused on a straight line is
the main advantage of the spiral diffraction scheme. If we can
shift the focus of one AVB with winding number m- , without
disturbing the focus of all the other AVBs, then we can make it
interfere with the AVB of winding number +m and generate the
atom Ferris wheel. This can be achieved by the interaction of a
suitably tailored vortex light field which can cause a second
phase imprint on the AVB with winding number m- . This
imprint does not act on the other AVBs if we apply a spatially
inhomogeneous magnetic field that makes all the rest of the
AVBs very far detuned from the light field, so the associated
phase shift is negligible.

The realization of atom vortex beams would open up a new
area of atom optics in which atoms carrying OAM interact with
each other, or with other forms of matter. Further theoretical
studies and various applications should be anticipated including
atom interferometry; the functioning of LG light mask as a dis-
persive prism for de Broglie wavelengths; the encoding and
processing of quantum information in atom vortex states entan-
gled with other states such as motional or spin atomic states; the
interference of atomic vortices with opposite winding numbers
and building quantum entanglement in the infinite dimensional
Hilbert space of atom vortex states.

15. Artificial gauge fields and their origins

The significant advances made in the cooling and trapping of
atomic motion have had impact on diverse branches of
modern physics. In particular, there have been related activ-
ities in condensed matter physics [43]. This is mainly due to
the possibility of engineering different forms of optical lat-
tices which led to the creation of new synthetic condensed
matter [257] paving the way to the demonstration of exotic
topological phases of such systems [258]. Such applications
involving light–matter interactions are a part of a broader area
of investigation in modern physics, namely quantum
simulations.

Quantum simulations are a striking vindication of
Feynman’s prophecy that instead of modelling quantum
effects with the help of conventional computers we might use
simple and controllable quantum systems as quantum simu-
lators [259]. One area of physics where quantum simulations
have found application is condensed matter physics. Many
condensed matter effects are very hard to simulate on a
classical computer, including high-temperature super-
conductivity and quantum magnetism. Computer simulations
are specially hard in cases where electrons are strongly
interacting.

Cold atoms interacting with coherent light fields are ideal
quantum simulators for such cases since some of the para-
meters involved in the interaction can be engineered almost at
will to suit a given model [260, 261]. The Hubbard model and
the superfluid Mott-insulator transition are two famous

Figure 36. Scheme of the diffraction set up. (a) Schematic representation of the diffraction of the atoms through the light mask made up of a
Laguerre–Gaussian beam interfering with a Gaussian beam; (b) after the diffraction process the different atom vortices are focused at
different planes along the propagation axis and are labelled m=0,±1,±2, ... with the mth vortex carrying an orbital angular momentum
equal to lmÿ. Reprinted figure with permission from [253], Copyright (2017) by the American Physical Society.
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examples of problems that can be simulated with cold atoms
in optical lattices [262, 263]. One of the major problems of
quantum simulations is the fact that atoms are electrically
neutral. Therefore, it is, at first sight, quite difficult to simulate
effects involving interactions with electric and magnetic
fields. Over the last decade, schemes have been developed
that can generate artificial Abelian and non-Abelian magnetic
and electric fields when cold atoms interact with coherent
light fields [264].

15.1. Two-level atoms

Currently there are different schemes which have been shown
to lead to the generation of artificial magnetic and electric
fields when atoms either in free space or when trapped in
optical lattices interact with suitably structured light fields
[257]. In the case of free atoms, their interaction with the light
results in an atomic motion that mimics that of a charged
particle subject to a magnetic field. This means that the atom
is subject to a Lorentz-like force [264] causing the atom to
move along a closed path. How does this type of motion
arise? The physical origin of this force is the creation of a
Berry phase acquired by a particle moving in a closed path
[265]. The realisation of artificial magnetism requires the
engineering of situations where a neutral particle is made to
acquire a geometrical phase when it moves along a closed
path C. Thus the focus turned to the Berry phase effect in
atom-light interactions [266, 267]. In this case, the atom-light
coupling gives rise to the so-called dressed states [268]. These
states vary on a short spatial scale (typically the wavelength
of light) and so the generated artificial gauge fields can be
quite intense.

Consider an atom prepared in a dressed state r0c ñ∣ ( )
moving sufficiently slowly to follow adiabatically the local
dressed state rtc ñ∣ ( ) . On completing the trajectory C, it returns
to the dressed state r0c ñ∣ ( ) having acquired a phase factor that
contains a geometric component. The quantum motion of the
atom is formally equivalent to that of a charged particle in a
static magnetic field. Such models have been studied for
different beam configurations for two-level as well as three-
level atoms [264]. It is important to note that the emergence
of these artificial fields requires a coherent interaction
between the light fields and the atoms. Thus, the interaction
time must be limited in values t<Γ −1, with Γ being the
spontaneous emission rate of the excited state.

It is well established that if we make the assumption that
the particle is initially prepared in the internal dressed state

tr1c ñ∣ ( ( ) and proceeds in an adiabatic elimination of the state
tr2c ñ∣ ( ( ) then the interaction of the atom with the light field is

formally equivalent to the motion of a charged particle in a
vector field B and a scalar field V(R) given by [268]
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Here, Ω(R) is the Rabi frequency and f(R) is the phase
of the coherent light field. Note that the generation of an
artificial vector field B demands that both the amplitude and
the phase of the electric field have a spatial dependence and
that a scenario where an atom is initially prepared in the state

r2c ñ∣ ( instead of r1c ñ∣ ( will result in the same scalar potential
energy V but opposite magnetic field B(R). The scalar
potential V can be interpreted as the kinetic energy associated
with the fast micromotion of the particle. This was first
explained for a classical continuous internal degree of free-
dom by Aharonov and Stern [269]. The magnetic field is
related to the Berry’s phase that appears when a quantum
system, here the two-state system associated with the internal
degree of freedom of the particle, is slowly transported round
a contour C, while remaining in one of the eigenstates of its
Hamiltonian [265].

The above theory is valid in the case where the light-
atom coupling strength is far larger than the recoil energy
associated with the exchange of a photon between the atom
and the light field, i.e, k M22 2 W  . However, when we
consider the interaction of an atom with an optical vortex we
need to take into account the fact that the processes of
exchange between light and matter involve both linear and
orbital-angular momentum. The recoil energy in this case is
given by:
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The second term in equation (222) is due to the angular
momentum exchanged for an atom localised at a radial
position ρ from the beam axis. At first sight, it seems that this
angular momentum should be considerably large at small
radial positions. However, an LG beam has a dark core at
small radial positions and thus the probability of an interac-
tion between the beam and the atom near the core is negli-
gibly small. The interaction probability is considerable at
regions where the vortex beam intensity is large. For a LG
beam, with p=0, the intensity is maximum at the radial
coordinate w l 20 0r = ∣ ∣ where the ratio of the values of the
angular to the translational recoil kinetic energy terms is equal
to l k w2 2

0
2∣ ∣ ( ). It is easy to see that this ratio becomes larger

as either the angular momentum lÿ carried by the vortex
photon becomes larger, or the beam waist w0 becomes
smaller. For the parameters and the particular atom interac-
tions which we focus on here, the rotational recoil energy is
negligible but it can be comparable to the translational recoil
energy for smaller beam waists (tighter focusing) and high
winding numbers.

Consider next the case where the two-level atom is
irradiated by a monochromatic LG beam propagating along
the z-direction and plane-polarised, say, along the x-direction.
In this case the atom, which is considered to be near the focus
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z=0, experiences the following artificial vector field:
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The above artificial magnetic field vector has three compo-
nents which appear to have a complex position dependence.
But the field expressions can fortunately be simplified further.
The component Bz along the z-direction has a relatively small
size compared to the other two components. This is easily
seen because of the dependence on k in the denominator of
the Bz expression. Thus, we can safely assume that the arti-
ficial magnetic field at focus lies on the (x, y) plane. We can
have a more detailed picture of the properties of this field by
plotting the magnitude of the magnetic field as well as the
corresponding field lines on the (x, y) plane. Figure 37 dis-
plays the magnitude of the artificial magnetic field, and the
inset to this figure is a vector plot which shows the direction
of the generated artificial field. We have assumed that the LG
beam has a winding number l=1. In figure 38, we also
display the artificial gauge magnetic field for a Gaussian (G)

beam of the same power and beam waist. The light beams
have a wavelength λ=852 nm and so can excite the trans-
ition S P6 62

1 2
2

3 2- in a 133Cs atom which has an excited
state transition rate Γ=2π×5.15 MHz. We assume that
both beams have the same power, and a beam waist equal to

150 μm. The interaction is characterised by a detuning
Δ0=2.5Γ and a Rabi frequency Ω0=9Γ. All the plots
shown below have been generated using the same parameters,
where the magnetic field is in units of B k qw0 0

2= .
From the comparison of the two figures, namely figure 37

and figure 38, it may be deduced that the magnitude of the
artificial magnetic field for a LG is larger than that for a G

beam. Note, however, that as the beam winding number l

increases the magnitude of the generated artificial magnetic
field decreases. The magnetic field in the case of the G beam
has a cylindrical symmetry with a maximum ring area. In the
case of LG beam the magnetic field has cylindrical symmetry
but there are two concentric rings. Moreover, the direction of
the field is opposite in the two rings and can be reversed with a
change of the beam winding number from l to −l. It seems that
the LG beams offer more possibilities for artificial magnetic
field generation. There is thus the possibility of using artificial
magnetic fields generated by LG beams for the creation of
extended regions where the orbital magnetism can be be suf-
ficiently strong to generate states of non-zero circulation. This
is desirable in cases where a superfluid is placed in such
regions in order that its ground state will exhibit a vortex lat-
tice. In addition to the artificial magnetic vector field, there is
also a scalar artificial potential V given by:
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Figure 37.Artificial magnetic field magnitude for a two-level atom (transition S P6 62
1 2

2
3 2- in a 133Cs atom) irradiated by a LG beam with

l=1, while Ω0=9Γ and Δ=2.5Γ. The magnetic field is in units of B k qw0 0
2= .
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Figure 39 displays the artificial scalar potential in atomic recoil
energy units while the inset represents the scalar potential when
the same transition is excited by a Gaussian beam with the
same power and beam waist. It can be seen that the magnitude
of the scalar field generated by a LG beam is smaller than that
generated by the interaction of the atom with a G beam. There

is however a striking difference, namely the appearance of a
donut like profile of the potential in the case of a LG beam, but
not in the G case. This means that the potential will affect
trapping in a LG beam as much as the artificial magnetic field
in the inset affects the trapping in an ordinary Gaussian optical
dipole trap.

Figure 38.Artificial magnetic field magnitude for a two-level atom (transition S P6 62
1 2

2
3 2- in a 133Cs atom). The atom is irradiated by a G

beam while Ω0=9Γ and δ0=2.5Γ. The magnetic field is in units of B k qw0 0
2= .

Figure 39. Artificial scalar field magnitude for a two-level atom (transition S P6 62
1 2

2
3 2- in a 133Cs atom) irradiated by a LG beam.

Ω0=9Γ and Δ0=2.5Γ. The field values are given in recoil energy units.
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15.2. Three-level atoms

The use of two-level atoms for the creation of artificial gauge
fields has a serious drawback arising from the fact the internal
state of the atom is everywhere a linear combination of the
ground and the excited state. The short lifetime of the excited
state imposes a limit on the existence of such potentials. We
may overcome this obstacle by considering the so called ‘dark
sates’ which are possible when we consider atoms with a
three-level lambda configuration [270–272].

In the lambda configuration, we have two ground states 1ñ∣
and 2ñ∣ , which can be two different hyperfine states of an atom,
and an excited state 0ñ∣ . The atom interacts with two resonant
coherent beams. The first one excites the transition 1 0ñ « ñ∣ ∣
while the second excites the transition 1 0ñ « ñ∣ ∣ . These exci-
tations are characterized by Rabi frequencies R1W =( )

R Rexp1 1fW∣ ( )∣ [ ( )] and R R Rexp2 2 2fW = W( ) ∣ ( )∣ [ ( )] respec-
tively. In the analysis of the artificial gauge fields with three-
level atoms in the lambda-configuration, there are two factors
that play important roles, namely the ratio of the two Rabi fre-
quencies ζ and the phase difference of the two beams S. These
factors are defined as follows
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Assuming that the two ground states are at the same energy, we
can neglect the two-photon detuning 021 = . In this case the
interaction Hamiltonian has two eigenstates—namely the dark
one Dñ∣ and the bright one Bñ∣ which are given by:
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It has been shown that when the atom is in the dark state the
artificial vector and scalar fields are given respectively by [271]:
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From this, we deduce that there is a non-vanishing artificial
magnetic field only when there are non-zero gradients of the
relative intensity and phase. This means that such a field cannot
be created using plane waves interacting with the three-
level atom.

There is a deeper physical meaning of the variables and
parameters involved in equation (227). The gradient ∇S is
proportional to the relative momentum of the two beams,
while 12 2 2z z +( ∣ ∣) ( ∣ ∣ ) is a vector associated with the
centre of mass of the two beams. The suggestion is that to
create an artificial magnetic field the two beams must have a
relative OAM. This is the key feature of the scheme which
has been proposed. Note that the above formalism is valid
provided that the atoms move sufficiently slowly to remain
in the dark state during their motion. This is the adiabaticity

requirement which is formally given by the condition

Ω?F with 1
2

2
2W = W + W∣ ∣ ∣ ∣ the rms (root mean

square) Rabi frequency, which characterizes the energy
difference of the dark state with the remaining ones, and
F v 1 2z z=  +∣ ˙∣ ( ∣ ∣ ), where v is the velocity vector. The
adiabatic condition implies that Ω−1 should be much smaller
than the time taken by an atom to travel a characteristic
length over which the amplitude or the phase of the ratio ζ

changes considerably. For atoms moving along the y-axis
the relevant length is 1/k≈10−7 m. On the other hand, the
Rabi frequency can be of the order of 107 to 108 s−1.
Therefore, the adiabatic condition should hold for atomic
velocities up to meters per second. These estimations do not
take into account the possible lifetime of the dark state due
to adiabatic coupling [272].

Assume that the two beams are different and carry dif-
ferent orbital angular momenta so they are characterized by
wavevectors k k,1 2, winding numbers l1, l2 and Rabi fre-
quencies Ω1(R), Ω2(R). We then have ζ=Ω1(R)/Ω2(R) and
S=lf, where l = l1 − l2 is the difference of the beams
winding numbers. This scheme generates an artificial magn-
etic field B given by:
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which for fields with a cylindrical symmetry as for LG beams
has the final form:
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and there is also a scalar potential given by:
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Unfortunately this scheme again suffers from a drawback:
namely that the two LG beams are simultaneously zero at
points where ρ=0. Thus the adiabaticity condition is vio-
lated. However, the scheme can be adopted when one of the
two beams is a LG beam while the other one is Gaussian as
shown in figure 40. This then offers the advantage that the
effective magnetic field can now be shaped by choosing
proper beams.

Consider an atom irradiated by a LG beam of winding
number l and a G beam. In this case, we end up with the
following artificial magnetic field:
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Equation (231) shows that the magnetic field is directed along
the beam propagation axis, when the two beams are co-pro-
pagating with equal wave numbers so k1−k2≈0. By con-
trast, if the beams are counter-propagating then the field has
an azimuthal component which dominates over the axial one.
However, the azimuthal component comes mainly from the
counter-propagating character of the two beams while the
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axial component comes from the optical angular momentum
of the beam.

We now analyse the magnetic field in the case of co-
propagating and counter-propagating beams when the two
beams irradiate a Cs atom and excite a Λ-transition in the D2
line of the atom, where the common upper level is the 62P3/2

excited state while the two lower levels are the F=3 and
F=4 hyperfine states of 62S1/2. As we see in figure 41, in
the case of counter-propagating fields we obtain a stronger
magnetic field which has a hole at the centre. This is not the
case in the scenario involving co-propagating beams, but the
magnetic field in that case is much weaker.

It has been shown [272] that in this scheme, the effective
magnetic flux through a circle of radius ρ0 is given by:

d
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A l 2
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, 2320
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z
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where 2πÿ is the Dirac flux quantum, and l 0
2z∣ ∣ is the intensity

ratio at the radius ρ=ρ0. The flux Φ reaches its maximum of
2πÿl if the ratio 10

2z ∣ ∣ , i.e. if the intensity of the probe
field exceeds the control field at the selected radius ρ0. Since
the winding number of the light beams can currently be as

large as several hundreds, it is possible to induce a substantial
flux Φ in the atomic cloud. This might enable us to study
phenomena related to filled Landau levels with a large
number of atoms in quantum gases.

15.3. SOVs

One case where it is possible to achieve the requirement of
large gradients which is necessary for the creation of large
magnitudes artificial fields is when a SOV interacts with an
atom in the vicinity of a dielectric/vacuum interface [273]. As
discussed earlier, it is reasonable to adopt a geometrical optics
model in which the light beams involved in the total internal
reflection, leading to the creation of evanescent light, are
specularly reflected at the interface of a dielectric with
vacuum—see figure 26. The SOVs are endowed with OAM;
they are strongly localised and so have very large field gra-
dients. These gradients depend crucially on the refractive
index of the dielectric material and/or the angle of incidence
of the laser beam. This gives us more control parameters with
which we can monitor the properties of the artificial magnetic
fields, specifically their strength and/or their spatial structure.
Indeed we can choose a dielectric with a higher index of
refraction, a larger angle of incidence as well as the para-
meters that determine the field magnitude in the free-space
case like beam intensity, beam waist, Rabi frequency and
detuning. There is also another parameter that will play an
important role, namely the beam winding number l. It appears
that as l increases the magnitude of the magnetic field
increases. This point requires some detailed explanation. As
the winding number increases the beam power is spread in a
larger area. Thus, the intensity of the beam decreases and so
does the Rabi frequency. Thus, the argument that the artificial
magnetic fields become stronger as the winding number of the
beam increases is true only provided that the Rabi frequency
is properly adjusted, either by increasing the intensity or by
decreasing the beam waist [274]. The strongest field is created
if the incident angle of the plane wave is much greater than
the critical angle for the total internal reflection θcr. Then,
however, the magnetic field is considerable in a short range in
vacuum [273]. This makes difficult to trap atomic clouds
sufficiently far away from the surface of the prism-vacuum
interface to avoid the influence of the van der Waals inter-
action between the atom and the dielectric material of the
prism.

Artificial magnetic fields have been shown that can be
used for creating atomic mirrors [273]. Typically, atom mir-
rors have been based on the optical dipole potential created by
evanescent fields. However, in this context the atoms behave
like charged particles inside an artificial magnetic field, thus
they follow curved trajectories. If evanescent fields are
properly tailored the atoms may be pushed away from the
dielectric-vacuum interface due to a Lorentz-like force. Thus,
in practice, we will have atom mirrors for three level atoms.
In [273], the authors have shown that if a BEC trapped in a
MOT is released and under the influence of the gravity is
directed towards the prism-vacuum interface then the artificial
magnetic field can act to reflect the falling atoms. Their

Figure 40. (a) The energy level scheme for the Λ-type three-level
atom interacting with the two beams. (b) Schematic representation of
the experimental set-up with the two light beams incident on the
cloud of atoms. The first field is of the form ilexp1 fW » , where
each photon carry an orbital angular momentum lÿ along the
propagation axis z. Reproduced from [271]. © IOP Publishing Ltd.
All rights reserved.
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scheme involves the interaction of a three-level atom with two
coherent light fields: one an evanescent wave created by the
total internal reflection of a Gaussian beam and the other is an
ordinary Gaussian beam propagating in free space close to the
surface. In the case of three-level atoms, very strong magnetic
fields can be created when two Gaussian beams are laterally
displaced. These fields can be even larger when the atoms
interact with two laterally displaced evanescent fields [177]. It
remains to be investigated if and how schemes involving
different combinations of SOVs could lead to enhanced arti-
ficial gauge magnetic fields.

Artificial gauge fields with twisted beams have been
realised in more complicated cases involving a tripod scheme
of the light-atom coupling [275, 276]. This is a scheme where
three laser beams drive transitions from three ground states to
a common excited state. This scheme is interesting in the
particular case where two of the beams are circularly polar-
ised with opposite winding numbers l=±1 propagating
along the z-direction, while the third one is linearly polarised
along the y-direction and propagates along the x-direction. In
this case, the generated artificial magnetic field has a leading
term which corresponds to the field of a magnetic monopole
at the origin.

Finally, once again, we note that the schemes presented
here concern the creation of artificial magnetic fields when
twisted beams interact with atoms in free space. Such fields
have also been generated for atoms trapped in optical lattices
with the possibility of creating very strong artificial magnetic
fields. The whole idea is based on the induction of a non-
vanishing phase of atoms moving along a closed path on the
lattice. This phase, proportional to the enclosed area, allows
us to simulate a magnetic flux through the lattice [277]. A
scheme with twisted beams based on this idea has been
proposed to study realizations of a Hofstadter-Hubbard model
on a cylinder geometry with fermionic cold atoms in optical
lattices. The authors showed that the cylindrical optical

lattices achieved with twisted beams can provide a landscape
for the exhibition of fractional quantum Hall physics observed
in this set-up [157].

16. Summary, conclusions and outlook

This review has focused on the interaction of atoms with
structured light, most notably the case of light endowed with
the property of the OAM. The analysis of a wide variety of
phenomena has illustrated how interactions with this kind of
light can give rise to novel features, entirely distinct from (and
in addition to) the phenomena experienced when atoms
interact with more conventional forms of laser light. This
wide range of new effects includes the controllable transfer of
OAM from the light to the centre of mass motion of indivi-
dual atoms or, under certain circumstances, to internal
(electronic-type) motions.

The prospect of engaging OAM with electronic transi-
tions is a matter that has long been of sustained interest, with
investigations continuing in both theory and experiment. The
potential significance of this issue is brought to a sharp focus
on recognizing that, in twisted light, the property of angular
momentum is quantitatively different in individual photons.
Nonetheless one of the first findings was that OAM cannot be
transferred to the internal degrees of freedom of the atom in
an electric dipole transitionthough this might occur in con-
nection with the normally much weaker quadrupole transi-
tions. This difference seems now to have been established
unequivocally, through a range of experimental and theor-
etical studies, including the excitation of an electric quadru-
pole atomic transition involving OAM transfer to a valence
electron in a trapped ion. However, the strong symmetry
principles that play into the difference between dipole and
quadrupole transitions are undermined in molecular systems,
which are necessarily of lower symmetry than atoms.

Figure 41. (Left) The magnetic field arising from the irradiation of a Cs atom by a LG beam and a Gaussian beam which are co-propagating.
(Right) The magnetic field when the Cs atom is irradiated by a LG beam and a Gaussian beam which are counter-propagating. The magnetic
field is in units of B k qw0 0

2= . The Rabi frequency associated with the LG beam is ΩLG,0=9Γ, while the Rabi frequency associated with

the Gaussian beam is ΩG,0=5Γ.
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One of the most prominent and striking features
emphasised by this review is the optical response of atoms
involving azimuthal motion with respect to the input beama
response that can only arise due to the OAM of the light. It
has been shown how dipole interactions between the light and
the atomic centre of mass, with the participation of dipole
transitions between energy levels near resonance, lead to
optical forces and a light-induced torque. Moreover, the
interaction leads to an optical dipole potential acting to trap
the atom in well defined regions of maximal intensity, while
the optical torque acts to keep them rotating in a ring at the
high intensity regionsa phenomenon most readily observed in
the simplest donut modes where quantised superfluid beha-
viour may be manifested.

In more intricate beam configurations, it has been shown
that intriguing new effects can arise through the interplay of
wave polarisation in multiple beams. The simplest casethe
Sisyphus effect in which wave polarization provides a
superior mechanism for cooling atoms (as compared to the
Doppler mechanism) gains an additional capability when
twisted light is deployed. When atomic motion is controlled
in the azimuthal direction, co-propagating beams of slightly
different frequency give rise to rotating petal-like patterns in a
manner similar to a Ferris wheel. Such configurations prove
to offer exotic field distributions that can act to trap and
transport atoms. Nonetheless, our review has also highlighted
some very useful experimental work on the azimuthal Dop-
pler shift, a topic that appears to be worthy of further
exploration.

In another range of developments, we have reported
advances connected with the response of twisted light to
media surfaces, which can lead to SOVs and plasmonic
optical vortices and to extraordinary spin in evanescent
waves. An OAM-endowed surface mode generated by total
internal reflection, like other surface modes, has a small mode
volume and can interact strongly with atoms localised in the
vicinity of the surface. When ions are trapped in large num-
bers in such potential energy wells, which are of essentially
elliptical shape when donut modes are deployed, the resulting
circulation of charge can give rise to a significant current and
an associated magnetic field.

Whilst the relatively simple phase property of twisted
lightits linear dependence on azimuthal angleis well studied
and widely characterized, there are other features of mode
structure that we have shown also deserve attention. By
analysing in detail the case of LG modesprototypical exam-
ples of twisted light, it has been shown that there are subtle
and interesting features associated with beam curvature and
Gouy phase. These are features that are enhanced for highly
twisted modes, especially for atoms localised near the beam
waist, where strong field gradients can lead to diminishing
optical forcesconceivably even their annulment and/or
reversal.

We have also discussed the concept of artificial gauge
fields, exploring their application in the context of atom-field
interactions whereby cold atoms interacting with coherent
light fields constitute effective quantum simulators. Again,
distinctive features arise when two- or three-level atoms

interact with structured light, including SOVs. The optical
engineering of such features is another promising and active
area of current research.

On the basis that twisted light beams in many respects
represent special forms of de Broglie waves, their concept is
clearly generalisable to other de Broglie beams, including
elementary particles such as electrons and neutronseven
atomic and molecular beams. In the case of neutral atoms as
de Broglie waves, it has been shown that generating an atom
vortex beam requires the construction of a light mask to
diffract atoms into vortex beam states. The predicted atom
vortices are still to be realised in the laboratory, as indeed
other types of de Broglie vortex beams. However, one can
reasonably speculate that their realization would open up a
new area of atom optics in which atoms carrying OAM
interact with each other, or with other forms of matter.

Further theoretical studies and various applications may
be anticipated, including atom interferometry; the functioning
of an LG light mask as a dispersive prism for de Broglie
wavelengths; the encoding and processing of quantum
information in atom vortex states entangled with other states
such as motional or spin atomic states; the interference of
atomic vortices with opposite helicity, and building quantum
entanglement in the infinite dimension Hilbert space of atom
vortex states.

Although the main remit of this review has been to
highlight the interaction of individual atoms with structured
light, larger numbers of atoms can be trapped in ordered
arrays known as optical lattices, ideally by the use of holo-
graphic optical traps. The possibility of controlled engage-
ment with two or more particles introduces problems that are
only readily addressed with particles significantly larger than
atoms. For example, micron-sized particles or nanoparticles
or groups of particles within groups can be individually and
programmably steered by beam-dithering (time-sharing)
techniques.

While the obvious problem with atoms is the need to
overcome thermal motion, which is only feasible at very low
temperatures, another quite different feature can then come
into play. Groups of atoms, optically trapped at temperatures
sufficiently low that their de Broglie wavelength is less than
the mean atomic spacing, can undergo transition into a BEC,
in which the whole assembly responds as a system with a
single corporate wavefunction. A transnationally cold BEC
assembly of atoms can exhibit a limited number of bulk
motions [278], and Lembessis and Babiker have shown how
the interference of counter-propagating LG beams, with
opposite sign so that their torque effects add, can produce
rotation [279]. Furthermore, a significant feature of rotating
BECs is that they can exhibit vortices. Indeed, this is the most
significant kind of bulk behaviour that an essentially loca-
lized, rotating assembly can exhibit. Here, the angular
momentum conveyed by multiply-connected LG traps
enables quantized vortex states to be identified, revealing the
distinctive BEC character [280].

In addition to the production of such states through the
combined action of several optical vortex beams [281–283], it
has also been shown how a single non-paraxial LG beam can
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excite a superposition of such states [284]. Nonetheless, in
most studies of this topic, atomic condensate vortices are
engineered without the use of optical vortices, and the subject
lies beyond the scope of the present review.

The outlook for the interaction of twisted light with matter
seems set to extend in new work to explore different avenues in
which either the form of structured light in other forms plays the
key ingredient in the interaction, or the matter with which the
light interacts is itself considered in different forms. There are
rich possibilities to explore in connection with multiple beams in
various configurations, especially inviting the development of
both theory and experiment for the specific interaction of twisted
light with twisted matter in bulk solid-state materials.
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