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Abstract

We develop a Bayesian semiparametric method to estimate a time-varying

parameter regression model with stochastic volatility, where both the error

distributions of the observations and parameter-driven dynamics are unspec-

ified. We illustrate our methodology with an application to inflation.
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1 Introduction

A vast literature has demonstrated the gains from allowing for time-varying parame-

ters in stochastic volatility models (TVP-SV models), when analyzing (macro)financial

data (Primiceri, 2005; Cogley and Sargent, 2005; Stock andWatson, 2007; D’Agostino

et al., 2013; Clark and Ravazzolo, 2015). Due to the presence of the stochastic volatil-

ity component the likelihood function for this class of models is intractable. As a

result, researchers have developed Markov chain Monte Carlo (MCMC) algorithms

for estimating the model parameters (see, for example, Nakajima (2011)).

In this paper, we consider two semiparametric extensions of the TVP-SV model,

utilising a popular Bayesian prior for modelling unknown distributions, the Dirichlet

process (DP) prior (Ferguson, 1973). We first use this prior to model in a flexible

way the distribution of the dependent variable’s innovation and second, to consider

wider class of the distribution of the time-varying parameter’s innovation. The

resulting semiparametric TVP-SV model is referred to as the S-TVP-SV model.

To estimate the model parameters and the unknown distributions, we propose an

efficient MCMC algorithm.

The first semiparametric extension has already been applied in the context of

standard stochastic volatility models (Jensen and Maheu, 2010; Delatola and Griffin,

2011). The second semiparametric extension is novel and constitutes our main

contribution to the Bayesian semiparametric literature on TVP-SV models.

The motivation behind the S-TVP-SV model stems from the empirical literature

on inflation modelling. Recently, evidence has been found of non-normality in mod-

elling inflation persistence, leading to increased interest in non-Gaussian (fat-tailed)

distributions for modelling inflation dynamics (Lanne and Saikkonen, 2011; Lanne

et al., 2012; Chiu et al., 2014; Lanne, 2015). Our point of departure is an autore-

gressive version of the unobserved components with stochastic volatility (UC-SV)

model, proposed by Stock and Watson (2007). Stock and Watson (2007) considered

a UC-SV model that decomposed inflation into a trend and a transitory component
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and assumed fat-tailed error distributions for the observation and state equations

to control for outliers.

In this paper, we generalize the approach of Stock and Watson (2007) to account

for shocks that may not be symmetrically distributed, as economic systems may

react differently in recessions and expansionary periods. Furthermore, if there are

different regimes operating within the sample period, a fat-tailed distribution may

be inadequate to capture this data characteristic. In our proposed model, each of

the unconditional error distributions for the observations and the parameter-driven

dynamics is allowed to follow an infinite mixture of normals.

2 Econometric set up

2.1 The TVP-SV model

Consider the following TVP-SV model

yt = x′

tβ+z′tαt+εt, εt ∼ N(µ, exp(ht)), t = 1, ..., T, (1)

αt+1 = αt+ut, ut ∼ N(0,Σ), t = 0, 1, ..., T−1, (2)

ht+1 = µh+φht+ηt, |φ| < 1, ηt ∼ N(0, σ2
η). (3)

Equation (1) contains two types of coefficients: the constant coefficient vector,

β, of dimension k×1 and time-varying coefficients, αt, of dimension p×1. xt and zt

are the design matrices which do not include an intercept and ht is the log-volatility

at time t.

Equation (2) is a random walk process which is initialized with α0 = 0 and

u0 ∼ N(0,Σ0), where N(·, ·) denotes the normal distribution with the initial state

error variance Σ0 being known.

The error terms εt and ηt are assumed to be independent1 for all t. The error term

1In the context of stochastic volatility models, Jensen and Maheu (2014) assumed that the
errors εt and ηt are correlated and modelled them nonparametrically, using DP priors.
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εt follows a normal distribution with mean µ and time-varying variance σ2
t = exp(ht).

The dynamics of the log-volatility ht = log(σ2
t ) are described by equation (3) which

is a stationary (|φ| < 1) first-order autoregressive process. This process is initialized

with h1 ∼ N(µh/(1− φ), σ2
η/(1− φ2). The parameter φ is the persistence volatility

that measures the degree of autocorrelation in ht, and ση is the standard deviation

of the shock to log-volatility.

We assume the following priors over the set of parameters (β, σ2
η,Σ, µh, µ),

β ∼ N(β0,B), σ2
η ∼ IG(va/2, vβ/2), Σ ∼ IW (δ,∆−1),

µh ∼ N(µ̄h, σ̄h
2), µ ∼ N(µ̄, σ̄2),

where IW and IG denote the Inverse-Wishart distribution and the inverse gamma

distribution, respectively. To guarantee that the persistence parameter φ satisfies

the stationarity restriction, we assume (φ+ 1)/2 ∼ Beta(φa, φβ).

2.2 Two semiparametric extensions

The advantage of Dirichet process modelling results from its theoretical properties,

one of which is the clustering property. A detailed exposition of the statistical

properties of the DP prior is given, among others, by Ghosal (2010).

The error term εt, is assumed to have an unspecified functional form based on

the following Dirichlet process mixture (DPM) model

εt|ϑt, ht ∼ N(µt, λ
2
t exp(ht)), ϑt = (µt, λ

2
t ), t = 1..., T ,

ϑt
i.i.d
∼ G,

G|a,G0 ∼ DP (a,G0), (4)

G0 = N(µt;µ0, τ0λ
2
t )IG(λ

2
t ;

e0
2
, f0

2
),

a ∼ G(c, d),
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where µh in the stochastic volatility equation is set to zero for identification rea-

sons. The unspecified functional form of the distribution of εt, given in (4), was first

proposed by Jensen and Maheu (2010).

According to specification (4), the conditional distribution of εt given ht and ϑt

is Gaussian with mean µt and variance λ2
t exp(ht). The ϑt = (µt,λ

2
t ) is generated

from an unknown distribution G. For the prior base distribution G0 we assume

a conjugate normal-inverse gamma, N(µt;µ0, τ0λ
2
t )IG(λ

2
t ;

e0
2
, f0

2
). A gamma prior

distribution G(c, d) is placed upon a, which is the precision parameter (positive

scalar). As a tends to infinity G converges pointwise to G0.

One can show that the unconditional distribution of εt follows an infinite mixture

model with time-varying means and variances. So our DPM model is able to capture

asymmetries and multiple modes that may characterize the data.

Furthermore, to capture the uncertainty about the distribution of ut, we impose

on it the following novel flexible structure,

ut|ωt,Σ ∼ N(0, ω−1
t Σ), t = 1, ..., T − 1,

ωt
i.i.d
∼ Gω, (5)

Gω|aω, G0ω ∼ DP (aω, G0ω = G( eω
2
, eω

2
)),

aω ∼ G(cω, dω).

The positive scale parameter ωt in (5) comes from an unknown discrete distri-

bution Gω. The Dirichlet process prior in (5) is defined by the parameter aω and

the base gamma distribution G0ω. As the precision parameter aω tends to infinity,

Gω converges pointwise to G0ω. In this case, the unconditional distribution of ut is

a multivariate Student-t distribution with eω degrees of freedom and as eω increases

the error distribution mimics the Normal distribution. For small values of aω the

unconditional distribution of ut is a finite mixture of multivariate normals, each of

which has the same mean. Therefore, our semiparametric approach for the distri-

bution of ut can capture the potential clustering in the mixing scalar parameter of
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the innovation’s covariance matrix.

The TVP-SV model combined with the DPM models of (4) and (5) produces

the semiparametric TVP-SV model (S-TVP-SV model).

3 Posterior analysis

3.1 The MCMC algorithm for the S-TVP-SV model

Define

y = (y1, ..., yT ), α = (α1, ...,αT ), h = (h1, ..., hT ),

θ = (ϑ1, ..., ϑT ), ϑt = (µt, λ
2
t ), ω = (ω1, ..., ωT−1).

Our MCMC scheme for the semiparametric model consists of two parts. In part

I, we update the parameters (β, Σ, σ2
η, α, h, φ) and recover the error terms {εt}

T
t=1

and {ut}
T−1
t=1 . We sample α using the simulation smoothing algorithm of De Jong

and Shephard (1995). To update the volatility vector h we apply the approach of

Chan (2015), which is not based on Kalman-filter methods but on the precision

sampler of Chan and Jeliazkov (2009).

Having calculated the error terms {εt}
T
t=1 and {ut}

T−1
t=1 , we update, in part II,

the DP parameters (θ,ω, a, aω) using marginal methods, since the DP is integrated

out; see, for example, Escobar and West (1995) and MacEachern and Müller (1998).

Details of the MCMC algorithm for the semiparametric model along with a

simulation study are given in the Online Appendix.

3.2 Posterior predictive density of the error term εT+1

A key quantity of interest in density estimation and an important feature of Bayesian

inference is the posterior predictive density. With respect to the S-TVP-SV we

obtain from the sampler the out-of-sample posterior predictive density for the (one-

step ahead) error term εT+1 conditional on the data ΩT = (y,XT ,ZT ), where XT =
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(x1, ...,xT ) and ZT = (z1, ..., zT ) which is given by

f(εT+1|ΩT ) =

∫
f(εT+1|θ

∗, hT+1, a)π(θ
∗, hT+1, a|ΩT )dθ

∗dhT+1da. (6)

≈ 1
L

∑L

l=1 f(εT+1|θ
∗(l), h

(l)
T+1, a

(l)),

where θ∗ = (ϑ∗

1, ..., ϑ
∗

M)′, M ≤ T is the set of unique values from θ, with ϑ∗

m=(µ∗

m,

λ∗2
m ), m = 1, ...,M and M is the number of clusters in θ (see also Online Appendix

for further details). θ∗(l) and a(l) are simulated samples of θ∗ and a respectively

and h
(l)
T+1 is a posterior draw generated from N(φ(l)h

(l)
T , σ

2(l)
η ). L is the number of

iterations after the burn-in period. The predictive density of εT+1 conditional on

θ∗(l), h
(l)
T+1 and a(l) is a mixture of a Student-t density and Normal densities, namely,

f(εT+1|θ
∗(l), h

(l)
T+1, a

(l)) =
a(l)

a(l) + T
qt(εT+1|µ0, (exp(h

(l)
T+1) + τ0)f0/e0, e0)

+ 1
a(l)+T

∑M(l)

m=1 n
(l)
mN(εT+1|µ

∗(l)
m , exp(h

(l)
T+1)λ

∗2(l)
m ), (7)

where qt(.|m, v, u) is the Student-t distribution with mean m, degrees of freedom

u and scale factor v. The quantity nm is explained in the Online Appendix.

3.3 Model comparison

We conduct Bayesian model comparison, using the Deviance information criterion

(DIC) (Spiegelhalter et al., 2002) and cross-validation predictive densities. Further

details on how to implement these methods are provided in the Online Appendix.
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4 Empirical application

We use data on US quarterly consumer price index (CPI) inflation from 1948Q1 to

2013Q2. For modelling inflation persistence, we consider the following autoregressive

TVP-SV (AR-TVP-SV) model,

yt = α1,t + α2,tyt−1 + εt, εt ∼ N(0, exp(ht)), t = 1, ..., T,

αt+1 = αt + ut, ut ∼ N(0,Σ), t = 0, 1, ..., T − 1,

ht+1 = µh + φht + ηt, |φ| < 1, ηt ∼ N(0, σ2
η),

where yt = 400 ∗ log(lt/lt−1) denotes the CPI inflation and lt is the quarterly CPI

figure. We plot yt in Figure 1.

1950 1960 1970 1980 1990 2000 2010
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0

5
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15

20

Figure 1: The inflation path from 1948Q1 to 2013Q2.

In the semiparametric version of the AR-TVP-SV model, denoted as the AR-S-

TVP-SV model, the error terms εt and ut follow the DPM models of (4) and (5),

respectively2. For comparison purposes, we also estimated the AR-TVP-SV model,

2A limitation of the semiparametric model is that mixing over the time-varying parameters
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with the errors εt and ut being Student-t distributed. We refer to this model as

AR-St-TVP-SV. The St-TVP-SV model is presented in the Online Appendix.

After discarding the first 80000 draws, we run the sampler for 150000 iterations.

To monitor convergence we use the CD statistics of Geweke (1992) and the inef-

ficiency factor (IF); see, for example, Chib (2001). For the AR-S-TVP-SV model,

we chose the same hyperparameters for the priors as in the simulation study (see

Online Appendix).

The estimation results are presented in Table 1. Across all models of Table 1,

all the parameters but µh are significant. Based on the DIC and CV values (Table

1), the AR-S-TVP-SV model has the best fit to the data. The AR-TVP-SV model

is the least preferred model.

-15 -10 -5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

 

 
AR-S-TVP-SV model
AR-St-TVP-SV model

Figure 2: Posterior predictive densities for ε.

The posterior predictive density of the error term εt for the AR-S-TVP-SV model,

which is plotted against that of the AR-St-TVP-SV model (Figure 2), indicates that

the distribution of the dependent’s variable innovation is nonnormal (with kurtosis

5.6254 and skewness 1.9735). This empirical finding is supported by the fact that

scaled covariance matrix fails to capture the regime switching behavior of the Sims and Zha (2006)
model. A change from one regime’s parameter values to another is only possible if the mixture
representation of the parameter innovations is mixed over the mean vector of the normal kernel.
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the semiparametric model requires M = 4.3764 clusters to fit the data (Table 1).

The parametric models inflate the volatility parameter ση to compensate for the

excess kurtosis found in the data; the estimated degrees of freedom v1 for the AR-

St-TVP-SV is 9.3842.

The path of the posterior estimates of exp(ht) obtained from the semiparametric

model shows high inflation volatility during the Great Moderation and the Great

Recession (Figure 3).

1950 1960 1970 1980 1990 2000 2010
-20

-10
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20

30

40
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Posterior mean
2SD bands

Figure 3: Evolution of exp(ht) obtained from the AR-S-TVP-SV model; posterior
mean (blue), two standard deviation bands (red).

Also, the AR-S-TVP-SV model highlights some degree of clustering in the mixing

scalar parameter of the innovation’s covariance; the number of clusters in ω was

found to be Mω =4.0796 (Table 1)-Mω is explained in the Online Appendix.

Figure 4 presents the estimates of αt for the AR-S-TVP-SV model. As can be

seen, there is apparent time-variation in these estimates, highlighting the importance

of allowing for time-varying parameters. Similar results were produced by the rest

of the models (see Online Appendix).
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Figure 4: Evolution of αt obtained from the AR-S-TVP-SV model; posterior mean
(blue), two standard deviation bands (red).

11



5 Conclusions

We proposed a novel Bayesian semiparametric time-varying parameter regression

model with stochastic volatility (TVP-SV), where both the error distributions of

the observations and parameter-driven dynamics were left unspecified. The Dirich-

let process was used as a prior to these unknown distributions. We devised an

efficient Markov chain Monte Carlo algorithm to estimate the model parameters

and unknown distributions. An autoregressive version of the proposed model was

applied to inflation persistence. The empirical results showed that the proposed

model had better fit to the data than competing parametric models. For future

research it would be interesting to enrich the proposed semiparametric model with

a nonparametric leverage effect, as macro shocks that have the greatest effect on

the economy are often asymmetrically distributed. Extending the TVP-SV model of

this paper in this direction could prove fruitful relative to existing TVP-SV findings.
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Table 1: Empirical results

Model AR-TVP-SV AR-S-TVP-SV AR-St-TVP-SV

Mean CD IF Mean CD IF Mean CD IF

Σ11 0.2157* 0.642 63.84 0.2808* 0.771 59.20 0.1544* 0.846 37.68
(0.1076) (0.1590) (0.0573)

Σ22 0.0483* 0.271 17.92 0.0679* 0.017 26.14 0.0358* 0.347 6.09
(0.0114) (0.0216) (0.0070)

φ 0.9586* 0.079 53.77 0.9655* 0.004 47.31 0.9674* 0.000 13.03
(0.0276) (0.0232) (0.0233)

µh 0.3664 0.630 7.48 0.2110 0.933 9.22
(0.9169) (0.8628)

ση 0.3964* 0.207 115.85 0.2577* 0.009 113.23 0.2964* 0.010 70.76
(0.1022) (0.0830) (0.0633)

M 4.3764* 0.333 75.07
(2.4396)

Mω 4.0796* 0.477 22.67
(2.1991)

v1 9.3842* 0.242 142.56
(14.0543)

v2 65.8133* 0.088 50.84
(21.5601)

CV 0.4909 0.5234 0.5122
DIC 2501.9 1948.2 2018.8

*Significant based on the 95% highest posterior density interval. Standard errors in parentheses.
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Online Appendix for: Semiparametric Bayesian inference for

time-varying parameter regression models with stochastic

volatility

Dimitrakopoulos Stefanos1

1Department of Economics, Warwick University, Coventry, CV4 7ES, UK

1 MCMC algorithm for the S-TVP-SV model

Part 1

Posterior sampling of β

Update β by sampling from

β|B,β0,α,h,y,θ ∼ N(D0d0, D0),

where

D0 =

(

B−1 +
T
∑

t=1

xtx
′

t

exp(ht)λ2
t

)−1

, d0 = B−1β0 +
T
∑

t=1

xt(yt−z′tαt−µt)

exp(ht)λ2
t

.

Posterior sampling of Σ

Update Σ by sampling from

Σ|δ,∆,α,ω ∼IW
(

δ + T − 1,∆−1 +
T−1
∑

t=1
ωt(αt+1 −αt)(αt+1 −αt)

′

)

.

Posterior sampling of σ2η

Update σ2η by sampling from

σ2η|va, vβ , φ,h ∼IG









va+T
2 ,

vβ+h1
2(1−φ2)+

T−1
∑

t=1
(ht+1− φht)2

2









.

Posterior sampling of α

Update the time-varying parameters by applying the simulation smoother of De Jong and

Shephard (1995) to the following model

ỹt = z′tαt + exp(ht/2)λtǫt, ǫt ∼ N(0, 1), t = 1, ..., T ,

αt+1 = αt + ut, ut ∼ N(0, ω−1
t Σ), t = 0, 1, ..., T − 1,
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where ỹt = yt − x′
tβ − µt.

Posterior sampling of h

Apply the sampler of Chan (2015) to the following model

y⋆t = exp(ht/2)ǫt, ǫt ∼ N(0, 1), t = 1, ..., T , (A.1)

ht+1 = φht + ηt, |φ| < 1, ηt ∼ N(0, σ2η), (A.2)

with cov(ǫt, ηt) = 0 and y⋆t =
yt−x′

tβ−z′tαt−µt

λt
.

To be more specific, the posterior distribution of the volatility vector h is given by

p(h|φ, σ2η,β,θ,y⋆) ∝ p(y⋆|β,θ,h)p(h|φ, σ2η), (A.3)

where y⋆t = (y⋆1, ..., y
⋆
T ). In order to sample from the posterior distribution p(h|φ, σ2η,β,θ,y⋆),

we approximate it by a Gaussian distribution, which is then used as a proposal density within

the Acceptance-Rejection Metropolis-Hastings (ARMH) algorithm (see, for example, Tierney

(1994) and Chib and Greenberg (1995)). Candidate draws from the Gaussian approxima-

tion are generated using the precision sampler of Chan and Jeliazkov (2009), instead of

Kalman-filter based methods.

In particular, it can be shown that the density p(h|φ, σ2η) in expression (A.3) is Gaus-

sian, that is, h|φ, σ2η ∼ N(H−1ĥ, (H ′Σ−1H)−1), where ĥ = (0, ..., 0)′, Σ = diag(σ2η/(1 −
φ2), σ2η, ..., σ

2
η) and H is a lower triangular sparse matrix (with determinant 1-hence, it is

invertible)

H =



















1 0 0 · · · 0

−φ 1 0 · · · 0

0 −φ 1 · · · 0
...

...
...

. . .
...

0 0 · · · −φ 1



















.

The logarithm of p(h|φ, σ2η) can be written as

log p(h|φ, σ2η) = const− 1
2(h

′H ′Σ−1Hh−2h′H ′Σ−1HH−1ĥ). (A.4)

The density p(y⋆|β,θ,h) in expression (A.3) can also be approximated by a normal den-

sity. By taking the second order Taylor expansion of the logarithm of p(y⋆|β,θ,h) around

h̃, which is the mode of the posterior log p(h|φ, σ2η,β,θ,y⋆) (see below), we have,

log p(y⋆|β,θ,h) ≈ log p(y⋆|β,θ, h̃) + (h− h̃)′f − 1
2(h− h̃)′G(h− h̃),

= const− 1
2(h

′Gh−2h′(f +Gh̃)), (A.5)

where f = (f1, ..., fT )
′ is the gradient vector with ft =

d log p(y⋆t |β,ϑt,ht)
dht

= −1
2 +

1
2y

2⋆
t exp(−ht)
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evaluated at h̃t, t = 1, ..., T and G = diag(G1, ..., GT ) is the diagonal negative Hessian of the

log p(y⋆|β,θ,h), with Gt = −d2 log p(y⋆t |β,ϑt,ht)

dh2
t

= 1
2y

2⋆
t exp(−ht) evaluated at h̃t, t = 1, ..., T .

From (A.4) and (A.5) the logarithm of the posterior distribution of the volatility vector

becomes

log p(h|φ, σ2η,β,θ,y⋆) ≈ const− 1
2(h

′Khh− 2h′kh) = log g(h), (A.6)

where Kh = H ′Σ−1H + G, kh = f + Gh̃ + H ′Σ−1HH−1ĥ and g(h) ∝ N(m̂,Kh
−1),

with m̂ = Kh
−1kh. In other words, the posterior p(h|φ, σ2η,β,θ,y⋆) can be approximated

by a normal density with mean m̂ and precision matrix Kh. This Gaussian approximation

is then used as a proposal density in the ARMH step, where candidate values are obtained

using the precision sampler of Chan and Jeliazkov (2009), instead of Kalman-filter based

methods.

Typically, N(m̂,Kh
−1) is a high-dimensional density and sampling from it can be time-

consuming. Here, we use the precision-based sampler of Chan and Jeliazkov (2009), which

exploits the fact that the precision matrixKh is a band matrix sinceH ′Σ−1H andG are also

band matrices. In particular,Kh is a tridiagonal matrix as its non-zero elements appear only

on the main diagonal and the diagonals above and below the main one. Consequently, we can

compute fast and efficiently the mean m̂ without calculating the inverse Kh
−1, by solving

the linear system Khm̂ = kh. Furthermore, a draw m̃ from N(m̂,Kh
−1) can be obtained,

using the precision sampler of Chan and Jeliazkov (2009): calculate the Cholesky factor C

of Kh such that C ′C = Kh, sample T independent standard normal draws, z ∼ N(0, I),

solve C ′x = z for x by backward substitution and return m̃ = m̂+ x.

The point h̃ around which the second order Taylor expansion is taken in expression (A.5)

is desirable to be the mode of the posterior log p(h|φ, σ2η,β,θ,y⋆) for an efficient sampling.

The negative Hessian of this posterior distribution evaluated at h = h̃ is Kh and the gra-

dient evaluated at h = h̃ is -Khh̃ +kh. To find the mode, we apply the Newton-Raphson

method as follows: 1) Initialize h = h̃(1) for some constant vector h̃(1). 2) Set h̃ = h̃(l) for

l = 1, 2, ..., and compute Kh, kh and h(l+1) = h(l)+Kh
−1(−Khh

(l)+kh) =Kh
−1kh. This

process is repeated until convergence is achieved.

Posterior sampling of φ

Update φ using an independence Metropolis-Hastings algorithm, as in Kim et al. (1998).

Posterior sampling of εt

Calculate εt from εt = yt − x′
tβ − z′tαt, t = 1, ..., T .

Posterior sampling of ut

Calculate ut from ut = αt+1 −αt, t = 1, ..., T − 1.

Part 2

Posterior sampling of {ψt} and {ϑ∗m}
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Since ϑt = (µt, λ
2
t )

iid∼ G, with G being a random (discrete) distribution generated from

a DP prior (see subsection 2.2 of the main paper), the vector θ will contain ties. Let

θ∗ = (ϑ∗1, ..., ϑ
∗
M )′, M ≤ T be the set of unique values from θ. Instead of simulating θ,

we sample the vector of unique values θ∗ and the vector of the latent indicator variables

ψ = (ψ1, . . . , ψT )
′, where ψt = m when ϑt = ϑ∗m, m = 1, ...,M . This reparametrisation

improves mixing (MacEachern, 1994).

Let the vector θ(t) denote all the elements of θ with ϑt removed. The vector θ(t) will

contain M (t) clusters, that is, θ∗(t) = (ϑ
∗(t)
1 , ..., ϑ

∗(t)

M(t))
′, where M (t) is the number of unique

values in θ(t). The number of elements in θ(t) that take the distinct value ϑ
∗(t)
m will be

n
(t)
m =

∑

j1(ψj = m, j 6= t), m = 1, ...,M (t).

The sampler for updating {ψt} and {ϑ∗m} consists of two steps.

Step 1: Sample each ψt according to the probabilities

P (ψt = m|θ∗(t), ψ(t), n
(t)
m , ht) ∝

{

qtm if m = 1, ...,M (t)

qt0 if m =M (t)+1, (A.7)

where ψ(t) = ψ\{ψt} and the weights qt0 and qtm in (A.7) are defined respectively as

qt0 ∝ a
∫

f(εt|ht, ϑt)dG0(ϑt), qtm ∝ n
(t)
m f(εt|ht, ϑ∗(t)m ).

From (A.7), ψt can take the value m = 1, ...,M (t) with probability proportional to qtm.

In this case ϑt, t = 1, ..., T , is assigned to an existing cluster ϑ
∗(t)
m , m = 1, ...,M (t). The

term qtm is proportional to n
(t)
m times the normal distribution of εt evaluated at ϑ

∗(t)
m , that

is, qtm ∝ n
(t)
m exp(−1

2

(

εt − µ
∗(t)
m

)2
/ exp(ht)λ

∗2,(t)
m ).

Also from (A.7), ψt can take a new value m =M (t) + 1 with probability proportional to

qt0. In this case, we set ϑt=ϑ
∗
M(t)+1

and sample ϑ∗
M(t)+1

from the posterior baseline distri-

bution

ϑt = (µt, λ
2
t )|εt, ht, µ0, τ0, e0, f0 ∼ N(µt|µ0, τ0λ2t )IG(λ2t | e02 ,

f0
2 ),

where µ0 =
µ0+exp(−ht)τ0εt
1+exp(−ht)τ0

, τ0 =
τ0

1+exp(−ht)τ0
,

e0 = e0 + 1, f0 = f0 + (εt−µ0)
2

τ0+exp(ht)
.

The term qt0 is proportional to the concentration parameter a times the marginal density

of εt. This density is equal to the Student-t distribution qt(εt|µ0, (exp(ht) + τ0)f0/e0, e0),

where µ0 is the mean, e0 is the degrees of freedom and the remaining term (exp(ht)+τ0)f0/e0

is the scale factor.

Step 2:

Sample ϑ∗m, m = 1, ...,M from the following baseline posterior

4



ϑ∗m = (µ∗m, λ
∗2
m )|{εt}t∈Fm , {ht}t∈Fm , µ0, τ0, e0, f0 ∼ N(µ∗m|µm, τmλ∗2m )IG(λ∗2m | em2 ,

fm
2 ),

where µm =
µ0+τ0

∑

t∈Fm

εt exp(−ht)

1+τ0
∑

t∈Fm

exp(−ht)
, τm = τ0

1+τ0
∑

t∈Fm

exp(−ht)
,

em = e0 + nm, fm = f0 + (ε̃t−µ0)2

τ0+
∑

t∈Fm

exp(ht)
+
∑

t∈Fm

[exp(−ht/2)(εt − ε̃t)]
2,

ε̃t =

∑

t∈Fm

εt exp(−ht)

∑

t∈Fm

exp(−ht)
,

and Fm = {t : ϑt = ϑ∗m} is the set of ϑs sharing the parameter ϑ∗m.

Posterior sampling of a

We sample a following Escobar and West (1995). In particular, we first sample ξ, a latent

random variable, from p(ξ|a,M)∼ Beta(a + 1, T ) and then we sample a from a mixture of

two gammas, p(a|ξ,M)∼ πξG(c +M,d − log(ξ))+(1 − πξ)G(c +M − 1, d − log(ξ)), where

πξ/(1− πξ) = (c+M − 1)/T (d− log(ξ)).

Posterior sampling of {ωt}T−1
t=1

Since ωt, t = 1, ..., T − 1 follows the Dirichlet process prior Gω, realizations of ωt from Gω

will lie in a set of Mω ≤ T − 1 distinct values or clusters ω∗ = (ω∗
1, ..., ω

∗
Mω

), where ω∗
mω

,

mω = 1, ...,Mω is a random draw from G0ω.

Let ω(t) denote all the elements in {ωt}T−1
t=1 excluding the component ωt. The vector

ω(t) will contain ties. Suppose that ω(t) contains M
(t)
ω unique values, (ω

∗(t)
1 , ..., ω

∗(t)

M
(t)
ω

) and

assume also that each of these values appears in ω(t), n
(t)
mω times, where n

(t)
mω =

∑

j1(ψ
ω
j =

mω, j 6= t), mω = 1, ...,M
(t)
ω . The term ψω

t , t = 1, ..., T − 1 is a latent indicator variable such

that ψω
t = mω when ωt = ω∗

mω
, mω = 1, ...,Mω.

From the Pólya-urn process (Blackwell and MacQueen, 1973), one can easily show that

{ωt}T−1
t=1 can be updated from the conditional posterior (continuous-discrete) distribution

p
(

ωt|ω(t),ut, eω,Σ, G0ω

)

∝ q̃t0p(ωt|ut, eω,Σ) +

M
(t)
ω
∑

mω=1

q̃tmωδω∗(t)
mω

(ωt),

t = 1, ..., T −1, (A.8)

where the posterior density of ωt under the prior G0ω is a gamma density, namely

p(ωt|ut, eω,Σ) ∝ p(ut|Σ, ωt)G0ω(ωt)∝ ω
eω+p

2
−1

t e−
ωt(eω+u

′
tΣ

−1
ut)

2 ,

and the weights q̃t0 and q̃tmω are given respectively by q̃t0 ∝ a
∫

f(ut|Σ)dG0ω(ωt)∝ aqt(ut|0,Σ, eω),
where qt denotes the multivariate t-density function, and q̃tmω ∝ n

(t)
mω fN (ut|0, 1

ω
∗(t)
mω

Σ), where

fN denotes the multivariate normal distribution.

We do not sample directly from expression (A.8) but instead update the latent indicators

in an analogous way to that for ϑt’s and resample the clusters ω∗
mω

, mω = 1, ...,Mω from the

posterior gamma distribution

5



p(ω∗
mω

|{ut}t∈Fmω
, eω,Σ) ∝ ω∗

mω

eω+p×nmω
2

−1e−
ω∗
mω

(eω+
∑

t∈Fmω

u
′
tΣ

−1
ut)

2 ,

where Fmω = {t : ωt = ω∗
mω

} is the set of ωs sharing the parameter ω∗
mω
.

Posterior sampling of aω

Updating aω is similar to the updating of the precision parameter a.

2 Model comparison

The DIC (Spiegelhalter et al., 2002) adds together the fit of the model and its complexity and

is defined as DIC = D(Θ)+pD. Model fit is measured by the devianceD(Θ) = −2 log f(y|Θ)

where logf(y|Θ) is the log-likelihood function and Θ denotes the vector of all parameters

in the model, that is, Θ=(β, Σ, σ2η, α, h, φ,θ,ω, a, aω)
′. D(Θ) = −2EΘ[log f(y|Θ)|y]

is the posterior mean deviance. Model complexity is measured by the effective number of

model parameters and is defined as pD = D(Θ) −D(Θ) where D(Θ) = −2 log f(y|Θ) and

log f(y|Θ) is the log-likelihood evaluated at Θ, the posterior mean of Θ. Therefore, DIC

= 2D(Θ)−D(Θ). The smaller the DIC, the better the model fit.

The deviance for the S-TVP-SV model is

D(Θ) = −2
∑T

t=1 log

(

1√
2πλ2

t exp(ht)
exp

(

− (yt−x′

tβ−z′tαt−µt)2

2λ2
t exp(ht)

)

)

.

We also apply the leave-one-out cross validation (CV) method that requires the calcula-

tion of the conditional predictive ordinate (CPO),

CPOt = f(yt|y−t) =

∫

f(yt|Θ)f(Θ|y−t) = EΘ|y−t
[f(yt|Θ)], t = 1, ..., T,

where y−t = y \ {yt}. Gelfand and Dey (1994) and Gelfand (1996) proposed a Monte carlo

integration of CPO. More specifically,

ˆCPOt = f̂(yt|y−t) =

(

1

M

M
∑

m=1

(

f(yt|y−t,Θ
(m))

)−1
)−1

,

where

f(yt|y−t,Θ
(m)) = 1

√

2πλ
2(m)
t exp(h

(m)
t )

exp

(

− (yt−x′

tβ
(m)−z′tα

(m)
t −µ

(m)
t )2

2λ
2(m)
t exp(h

(m)
t )

)

,

andM is the number of iterations after the burn-in period. Then for each model we calculate

the average of the estimated CPO values, 1
T

∑T
t=1 f̂(yt|y−t). Higher values of this average

are associated with better “goodness of fit” of a model.
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3 The St-TVP-SV model

Consider the following TVP-SV model,

yt = µ+ x′
tβ + z′tαt + exp(ht/2)

√
ρ1tzt, zt ∼ N(0, 1)

αt+1 = αt + ut, ut ∼ N(0, ρ−1
2t Σ), t = 0, 1, ..., T − 1,

ht+1 = µh + φht + ηt, |φ| < 1, ηt ∼ N(0, σ2η),

where ρ1t follows an inverse gamma prior, ρ1t ∼ IG(v1/2, v1/2) and v1 follows a uniform

prior distribution on the set [3, 120]. The marginal distribution of et =
√
ρ1tzt is a Student-t

distribution with v1 degrees of freedom1.

Furthermore, the positive scale variable ρ2t follows a Gamma distribution, ρ2t ∼ G(v2/2, v2/2)
and v2 is uniformly distributed on the set [3, 120]. The unconditional distribution of ut is a

multivariate Student-t distribution.

To update v1 and v2 we use independence Metropolis-Hastings steps, where the candidate

draws are generated from a truncated normal proposal density in the interval [3, 120].

To update the volatilities we apply the approach of Chan (2015), where now ĥ = (µh/(1−
φ), µh, ..., µh)

′.

4 Monte Carlo experiments

In this section we evaluate the efficiency of the proposed MCMC algorithm for the S-TVP-SV

model.

We generated T=500 data points from the proposed model setting k = 2 (number of fixed

coefficients), p = 2 (number of time-varying coefficients) and assuming also the following set

of true parameter values

β = (3, 0.8)′,Σ = diag(2, 2), φ = 0.8,α1 = (−2, 7)′, ση = 0.1,

where diag(·) is a diagonal matrix. The elements of xt = (x1t, x2t)
′ and zt = (z1t, z2t)

′

for t = 1, ..., T are generated respectively as xjt ∼ U(0, 1) and zit ∼ 0.1U(0, 1) for j, i = 1, 2,

where U(a, b) is the uniform distribution defined on the domain (a, b).

Regarding the generation of the true innovations for the regressions of yt and of αt, we

examine the following case (case 1):

• εt =exp(ht/2)ǫt, ǫt ∼ 0.5N(0.2, 1) + 0.5N(−1, 6), with µ = Exp(ǫt) = −0.4

• ut ∼MV t(0,Σ, 4), where MV t is the multivariate-t distribution with mean 0, covariance

matrix Σ and degrees of freedom 4.

1From a Bayesian perspective, stochastic volatility models with fat tails have been considered by Jacquier
et al. (2004), among others.
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We also considered the following case (case 2): T=1500 and the following set of true

parameter values

β = (−1, 3)′,Σ = diag(5, 5), φ = 0.8,α1 = (2,−2)′, ση = 0.5,

with xjt ∼ 2U(0, 1), zit ∼ N(2, 0.01) for j, i = 1, 2 and

• εt =exp(ht/2)ǫt, ǫt ∼ 0.5N(−1, 1) + 0.5N(3, 3), with µ = Exp(ǫt) = 1

• ut ∼MV t(0,Σ, 6).

In either case, we assume the following proper but sufficiently diffuse prior distributions

β ∼ N(0, 20× I2×2), α1 ∼ N(0, 20× I2×2), σ
2
η ∼ IG(50/2, 0.5/2),

(φ+ 1)/2 ∼ Beta(80, 14), Σ ∼ IW (1, 20× I2×2),

µt ∼ N(0, 4× λ2t ), λ
2
t ∼ IG(5/2, 5/2), ωt ∼ G(50/2, 50/2),

where I2×2 is a 2× 2 identity matrix.

After discarding the first 30000 draws, we run the sampler 60000. To monitor convergence

we use the CD statistics of Geweke (1992) and the inefficiency factor (IF); see, for example,

Chib (2001).

Tables 1 (case 1) and 2 (case 2) report the posterior estimates of the mean and standard

deviation for all the parameters of the S-TVP-SV model. In both cases, the S-TVP-SV

model produces satisfactory estimation accuracy.

Furthermore, in Figures 1 (case 1) and 2 (case 2), the posterior means of α1t and α2t,

follow closely the path of their corresponding true values. Also, almost all the true states

fall inside the two standard deviation bands.

In Figures 3 (case 1) and 4 (case 2) we plotted the true and the estimated out-of-sample

posterior predictive distribution of the error term ε obtained from the semiparametric model.

As can be seen, the S-TVP-SV model is able to mimic well the true nonnormal distribution.

The sampler of the S-TVP-SV model performs well overall.
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Figure 1: Simulated data: Path of the
estimated α1t and α2t for the S-TVP-SV
model; T=500. True path (black), poste-
rior mean (blue), two standard deviation
bands (red).
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Figure 2: Simulated data: Path of the
estimated α1t and α2t for the S-TVP-SV
model; T=1500. True path (black), poste-
rior mean (blue), two standard deviation
bands (red).
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Figure 3: Simulated data. True and esti-
mated out-of-sample posterior predictive
distribution of the error term ε obtained
from the S-TVP-SV model; T=500.
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Figure 4: Simulated data. True and esti-
mated out-of-sample posterior predictive
distribution of the error term ε obtained
from the S-TVP-SV model; T=1500.
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Table 1: Simulated data: T=500

Model S-TVP-SV

True values Mean Stdev CD IF

β1 = 3 2.9775 0.3637 0.549 20.05

β2 = 0.8 1.0464 0.2714 0.941 23.81

Σ11 = 2 2.9195 3.0824 0.073 52.52

Σ22 = 2 1.5804 1.6299 0.962 58.35

φ = 0.8 0.7976 0.0730 0.148 21.56

ση = 0.1 0.1041 0.0110 0.972 28.49

Table 2: Simulated data: T=1500

Model S-TVP-SV

True values Mean Stdev CD IF

β1 = −1 -0.9750 0.1140 0.001 29.19

β2 = 3 2.9770 0.0924 0.007 40.44

Σ11 = 5 6.3537 1.4614 0.647 61.05

Σ22 = 5 6.5565 2.6642 0.961 61.63

φ = 0.8 0.8582 0.0677 0.001 128.52

ση = 0.5 0.3496 0.0156 0.024 128.86
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5 Empirical results
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Figure 5: Evolution of αt obtained from the AR-TVP-SV model; posterior mean (blue), two
standard deviation bands (red).

11



1950 1960 1970 1980 1990 2000 2010
-4

-2

0

2

4

6

8

1t

 

 
Posterior mean
2SD bands

1950 1960 1970 1980 1990 2000 2010
-1.5

-1

-0.5

0

0.5

1

1.5

2
2t

 

 
Posterior mean
2SD bands

Figure 6: Evolution of αt obtained from the AR-St-TVP-SV model; posterior mean (blue),
two standard deviation bands (red).
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