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Abstract  

High-performing equation has been step-wisely extracted from artificial neural network 

(ANN) simulation and subsequently applied for the prediction of the dielectric properties of 

pure and impure CO2. Data of relative permittivity (İr) for pure and impure CO2  were used in 

the ANN to train  different  ANN structures so that the  network can recognise and predict 

CO2 property under different conditions. Analyses of the results from the training showed 

that single-layer ANN model [3-6-1] outperformed others. From this best-performing ANN 

structure, a single mathematical equation was extracted that can be employed in predicting 

İr for pure CO2 and CO2-ethanol mixture, even without access to ANN software. Using this 

ANN-based mathematical model, predictions of the relative permittivity (İr) for pure CO2 and 

CO2-ethanol mixture were performed, under different temperatures and pressures and at 

different ethanol concentrations. Under similar conditions, the output of the model provides 

good match with the original experimental İr.  With increment in ethanol concentration, the 

model correctly predicted the rise in İr for the mixture. Also, it was shown that the İr  rises 

with an increase in pressure but decreases with a rise in temperature. The work showed the 
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reliability and applicability of the ANN in characterizing and predicting the dielectric property 

of pure CO2 as well as its mixture or impurities. The model developed and the techniques 

demonstrated in this work offers immense benefits and guides for researchers, who may 

want to explore the behaviours of a pure compound and its mixtures/impurities using ANN, 

as well as those interested in derived mathematical model from statistical computation tool 

like ANN. 

Keywords: CO2, Relative Permittivity, ANN, Ethanol, Model, Sequestration 

NOMENCLATURE  
Symbol Description 

W Weight assigned by the network 

b Bias assigned by the network 
ĭ Mass fraction of ethanol 
T Temperature 
P Pressure  
İr Relative permittivity  
X Actual  value of parameter of interest 
y Normalised value of  parameter ‘X’ 
E Sum of the transformed weighted normalised variables for each neuron in a layer  
F Tansig-transformed  ‘E’ for each neuron in a layer 

AARE Average absolute relative error  
SSE Sum Squared Error 
NS Nash-Sutcliffe efficiency coefficient 

MSE Mean Squared Error 
Scal Predicted or calculated value 
Sobs Observed or target value 

obsS  Average of the observed output 

N Total number of data points  
n Sequential Count of variable  
NI Number of neurons in the first hidden layer 
N2 Number of neurons in the second hidden layer 
I layer of the network 
i neuron in a network  (first count)  
j  neuron in a network  (last count) 

 

 



1. Introduction  

Currently, there are ever-growing interests in the properties and applications of carbon 

dioxide (CO2), both in the research fields as well as industry. Supercritical carbon dioxide 

(scCO2) has the advantages of having low critical temperature and pressure. These qualities 

can be easily manipulated to desired ends for research and industrial production. Its 

research and industrial prospects are further enhanced by its non-toxicity, non-flammability 

and high purity at low cost, which promotes its use in extraction processes that utilize 

supercritical fluids (Astray et al. 2012).   

On the other hand, CO2 emission has been considered as a major contributor to the global 

warming phenomenon (Abidoye et al. 2015; Abidoye and Das 2014a; Abidoye and Das 

2015). From different emission sources, CO2 and other greenhouse gases migrate to the 

lower atmosphere and form a blanket that reflects heat radiation back to the earth, resulting 

in a global rise in temperature across the surface of the earth. Different measures have been 

taken by stakeholders to check the increasing accumulation of CO2 in the atmosphere.  

Popular measures involve the capture of CO2 from emission sources and the subsequent 

injection into the deep geological media (Bielinski et al. 2008), especially in saline aquifer 

(Chadwick et al. 2008). 

Understanding the properties of CO2 will promote its use in industrial extraction and 

research. Understanding these properties can be enhanced using, for example, electrical 

conductivity and relative permittivity techniques. The relative permittivity (İr) is a measure of 

the electrical polarization of the material (Mahmood et al. 2012) that takes place when an 

electric field is applied, while the electrical conductivity (ı), is a measure of the conduction 

current resulted from an electric field through the material (see, e.g., Solymar et al. 2014; 

Keller 1966). The unique polarization effect of electrical signal on materials, measured as 

relative permittivity, has been utilised by many authors in research. For example, Rabiu et al. 



(2017), Abidoye and Das (2015), Abidoye and Bello (2017)), etc., used the technique of 

relative permittivity to determine the quantity of water and/or gas in the porous media.  

The ability to predict important properties of CO2 will further enhance its monitoring and 

control in geological carbon sequestration. For example, fear has been raised over the 

likelihood of leakage of CO2 from geological carbon sequestration site (Abidoye and Das 

2014a; Abidoye et al. 2015; Das et al. 2014; Little and Jackson, 2010; Schwartz 2014). As a 

result, a number of approaches have been developed to counteract the possibility of 

leakage. These include time lapse satellite imaging (Mathieson et al. 2009), wave speeds 

(Boxberg  et al. 2015), capillary pressure (Pc) and saturation (S) relationship (Plug and 

Bruining 2007; Tokunaga et al. 2013), electrical conductivity and relative permittivity (see, 

e.g., Lamert et al. 2012; Abidoye and Das 2015, 2014a; Abidoye et al. 2015).  

Electrical and dielectrical properties of CO2 have been employed by many authors to 

investigate the behaviour of the gas under different conditions. Eltringham (2011) and Astray 

et al. (2012) investigate relative permittivity of the mixture of CO2 and ethanol, under 

supercritical condition. Their works aim at exploring the industrial potential of the mixture.  

Also, Abidoye and Das (2014a, 2015) measure the electrical conductivity and relative 

permittivity of CO2 under supercritical condition in geological media saturated with water. 

Their work aim at demonstrating the monitoring technique for CO2-water flow in porous 

media, using electrical and dielectrical properties of CO2. Similarly,  Dethlefsen et al. (2013) 

and Lamert et al. (2012) utilize electrical conductivity (ı) of CO2 and water to demonstrate 

feasibility of monitoring CO2 in the subsurface. 

The above discussions point to the relevance of the electrical and dielectrical properties of 

CO2 in the research and industrial fields. In the case of geological carbon sequestration, 

different conditions (temperature and pressure) exist in the subsurface that may lead to 

variations in the properties of CO2. Thus, a mathematical model is needed to provide a 



platform by which the important properties of CO2 can be predicted under any prevailing 

condition of temperature and pressure.  

However, tackling the challenges in the control as well as monitoring of CO2, in both 

industrial production and carbon sequestration fields, goes beyond the understanding of the 

properties of pure CO2. This is because the CO2 stream often comes with impurities or exists 

as a mixture.  For example, Wang (2015) shows that CO2 captured from oxyfuel combustion 

contains condensable and non-condensable impurities. Condensable impurities include SO2, 

while non-condensable impurities include Argon, N2 and O2. Thus, monitoring and controlling 

the CO2 stream involves understanding its behaviour in conjunction with other impurities. 

Also, the CO2 stream can come in the form of a mixture. A typical case is the CO2-ethanol 

mixture widely used in extraction processes. Eltringham (2011) measured the relative 

permittivity (İr) of the CO2-ethanol mixture, using different concentrations of ethanol. But, the 

work does not provide the relative permittivity for pure CO2. Astray et al. (2012) utilized the 

data from Eltringham (2011), to explore the versatility of ANN in predicting İ r for the mixture. 

The authors found that ANN was more reliable than linear regression.  However, the authors 

did not make the effort to extend the prediction to pure CO2 or to other impurities that may 

be encountered in CO2 stream. Earlier, the work of Michels and Michels (1933) provided the 

İr for pure CO2. Their work shows the influences of pressure and temperature on the relative 

permittivity of CO2 up to 1000 atmospheres (1013.25 bar) between 25 and 150oC. This 

range of conditions is applicable in industrial processes and geological carbon sequestration. 

The aim of the current work is to explore the predictive ability of artificial neural network 

(ANN) by applying it to CO2 and CO2-ethanol system. Not only that the current work further 

aims to extract usable equation from the ANN simulation of the CO2/CO2-ethanol system. 

This stepwise procedure to extract the equation can be learnt by ever-teeming researchers 

that often request for such procedure.  



In the literature, applications of ANN to various areas of science and research abound.   For 

example, Qaderi and Babanezhad (2017) employed ANN in the analysis of operations 

involved in groundwater management.  The authors conducted sensitivity analysis of 

dissolved ions in water and their impacts on water treatment costs. They found ANN as 

suitable in investigating the complex relationship among these parameters. Nabavi-

Pelesaraei et al. (2016) employed ANN techniques in modelling energy consumption and 

greenhouse gas emissions for industrial processes. Lawan et al. (2017) used the technique 

in predicting wind power potential, based on the geographic data of an area. However, these 

authors did not demonstrate the potential of ANN in obtaining any transferrable 

mathematical expression, based on the internal working of ANN and its topology, that can be 

employed by other researchers to fulfil similar tasks. Thus, this work differs from others by 

demonstrating, step-wisely, how to extract mathematical expression from ANN while also 

applying the extracted equation in the simulation of CO2 dielectric property.     

Therefore, ANN model was employed in this work, to predict relative permittivity of CO2 and 

its mixture under wide range of conditions. The data employed in this work pertain to those 

of pure CO2 as well as its mixture with different percentages of ethanol. The techniques 

demonstrated in this work, provide useful methodologies that can be used by researchers to 

predict pure and binary or even multi-component properties of fluids that serve special 

interests in industry, research fields and public projects. The objectives include the 

development of simple ANN-based equation and the procedure for direct use by researchers 

and other users. The procedure demonstrated in this work is useful in extracting data of 

weights and biases generated during ANN training. Most of the previous works simply 

demonstrated the ability of ANN to match experimental output data without attempting to  

predict  new set of output data. Examples of such can be found   in the works of Hanspal et 

al. (2013). Also, most previous works did not provide any applicable equation or function that 

can be applied by interested readers, even without access to ANN software. Thus, this work 

is unique by not only predicting the experimental output data, but also providing detailed 



stepwise procedure with applicable function that can be learnt and used by readers. Sharifi 

and Mohebbi (2012) also shows the development of mathematical function from ANN.  But, 

their stepwise procedure was far from being detailed compared to this current work.  In the 

essence, this work matches ANN output with experimental data and provides detailed and 

stepwise extraction of equation from ANN, and predicts new output data using the resulting 

equation.  

 
2. Artificial Neural Network (ANN) 

Artificial Neural Network (ANN) is a modelling tool, with special capacity to learn and 

generalize functions from rounds of training.  ANN extracts essential information from data 

fed into its network (Abidoye and Das 2014b; Khashei and Bijari 2014; Wang and Fu 2008). 

In an analogy to the human nervous system, ANN utilizes the elements called ‘neurons’, as 

its building blocks. The neurons are grouped into input, hidden and output layers with 

respective biases, weights and transfer functions  

The network uses special transfer functions to establish the relationships between the inputs 

and the outputs. These are used to manipulate the values of the biases and weights in a 

sequence of training processes.  

To achieve better results, configurations of the ANN play an important role in the 

performance of the networks. The configurations can take the form of single or multiple 

layers.  Detailed ANN configuration techniques are highlighted in subsequent subsection of 

this work. The patterns followed that of Hanspal et al. (2013) and Abidoye and Das (2014b)  

2.1 Data Sources 

In this work, different ANN configurations were trained, using the approaches followed by 

Hanspal et al. (2013) and Abidoye and Das (2014b). The data used were obtained from the 

works of Michels and Michels (1933) as well as Eltringham (2011). The data contain relative 

permittivity of pure CO2 and the mixture of CO2 with ethanol, respectively. The data 

numbering more than six hundred were divided into two parts. The first part was used in 



training while the other was used in the independent validation of the network. Statistical 

details of the data are shown in Tables 1 and 2, for training and independent validation data, 

respectively. The training data were used in actual training of the ANN models.  Following 

the successful training of different ANN models, the best performing model configuration was 

determined, using different statistical criteria, which will be explained in the subsequent 

subsection. Thereafter, the best-performing ANN model was validated, using the 

independent set of data, described in Table 2.     

The data were arranged into input and output and supplied to ANN model for simulation. The 

input parameters contain the mass fraction of ethanol (ࢥ), pressure (P) and temperature (T), 

while the output is the relative permittivity of CO2 (İr) or that of its mixture with ethanol.  

Details of the simulation procedure in MATLAB are described in the subsection 2.2. 

2.2 ANN Development  

Various configurations of ANN were developed and tested to determine the most suitable 

network to be used in predicting physical process and from which mathematical equation 

can be extracted. The tested ANN formats include single and double hidden layers. Program 

file with lines of code was written and implemented in MATLAB to create, train, validate and 

test the networks as well as to generate the goodness of fit of the parameters e.g. correlation 

coefficients and slope for the predicted output (İr). Each network comprises of the input, 

hidden and the output layers.  At the input layer, there are independent variables  comprising 

of the mass fraction of ethanol (ࢥ), pressure (P) and temperature (T), while the output layer 

has the dependent variable, i.e.,  the relative permittivity of CO2 (İr). At the hidden layer, 

there are neurons which are the constitutive units that receive the input and operate on them 

to produce the output.  

MATLAB script of codes were used to divide the dataset randomly into 60, 20 and 20% 

corresponding to the data for training, validation and testing. The training was performed 

with Levenberg-Marquardt function (Marquardt 1963) using back-propagation algorithm. The 

function optimises the parameter of the model curve by minimising the sum of the squares of 

the deviation from the empirical dependent variable. The back-propagation learning 

algorithm operates by iterative adjustment of the weights and biases in response to the error 

value between the predicted and the desired outputs.  



The default performance criterion used in the assessment of the training and testing 

efficiency was the Mean square error (MSE). This relates the calculated outputs from the 

ANN to the actual target (dependent variable) in the training, validation and testing 

processes. The function “mapminmax” was used as a pre-processing procedure to scale the 

inputs in the range of -1 to 1.  

In the training process, the epochs and goals were used as the stopping criteria, regulating 

the number of iterations and the error tolerance, respectively. Epoch is the maximum 

number of times all of the training sets are presented to the network while goal refers to the 

maximum error tolerance to be met by the developed network. Therefore, the training stops 

if the error goal or the maximum number of epoch is reached. Epoch of 200 and a goal of 

zero were set in this work. Different network configurations were constructed and each 

configuration differs in the number of hidden layers or neurons. The number of neurons was 

gradually increased for either single or two-hidden layers. The illustration of the layers in the 

ANN configurations is ANN [X-N1-Y] and ANN [X-N1-N2-Y] for single and double hidden 

layers, respectively. “X” refers to the input layer and its value denotes the number of 

independent variables, “N1” and “N2” represent the first and the second hidden layers, 

respectively and their number represent the number of neurons in that layer. “Y” is the output 

layer and its number refers to the number of the dependent variable. The following are the 

different ANN configurations tested: 

Single-layer ANN configurations:  

ANN[3-1-1], ANN[3-2-1], ANN[3-3-1], ANN[3-4-1], ANN[3-5-1], ANN[3-6-1] 

Double-layer ANN configurations: 

ANN[3-2-1-1], ANN[3-2-2-1], ANN[3-3-1-1], ANN[3-3-2-1], ANN[3-4-1-1] 

Table 1: Statistics of the input and output variables (training/model data) 

 Mass fraction  
of ethanol, ࢥ (-) 

Temperature, 
T (K) 

Pressure, 
P (MPa) 

Relative 
permittivity, İr (-) 



Maximum 0.21 423.39 98.35 3.68 

Minimum 0 303.40 3.46 1.03 

Arithmetic 
Average 0.07 341.03 

 
23.36 
 

1.90 

Standard 
deviation 

 
0.11 
 

13.99 

 
 

12.83 
 
0.94 
 

 

Table 2: Statistics of the input and output variables (validation data) 

 Mass fraction  
of ethanol, ࢥ (-) 

Temperature,  
    T (K) 

Pressure, P 
(MPa) 

Relative 
permittivity, 
İr (-) 

Maximum 0.152 333.3 98.332 2.72 

Minimum 0 298.5 0.104 2.56 

Arithmetic 
Average 0.062 310.1 

 
21.093 
 

2.65 

Standard 
deviation 

 
0.076 
 

7.29 
 

 

14.598 
 
0.86 
 

 

2.3 Performance Assessment for ANN Models 

The performances of different ANN configurations were evaluated with different statistical 

models, using the approach of Abidoye and Das (2014b). These statistical models are 

expressed below: 

A. Sum Squared Error (SSE) 

This describes the total deviation of the predicted values (Scal) from the target values (Sobs): 

 



N

i
calobs SSSSE

1

2

         (1) 

Where N = Total number of data points predicted, Sobs= observed or target value of İr,   and 

Scal = predicted or calculated value of the İr. 



B.  Average Absolute Relative Error (AARE) 

This is the average of the relative errors in the prediction of a particular variable and it is 

expressed as a percentage. Lower values of AARE indicate better model performance. It 

can be computed as follows:  

100
1

1







N

n obs

obscal

S

SS

N
AARE         (2) 

C.  Nash-Sutcliffe Efficiency Coefficient (NS) 

The Nash-Sutcliffe efficiency coefficient is used to describe the accuracy of model outputs in 

relation to observed data. A value of NS equal to 1 depicts a perfect match between 

observed data and outputs.  Therefore, the closer the model efficiency is to unity, the more 

accurate the model. NS is computed as follows: 

 
  

 


2

2

1
obsobs

obscal

SS

SS
NS          (3) 

Where obsS  = average of the observed output. 

 D. Mean squared error (MSE) 

Mean squared error measures the average of the squares of the errors between the 

observed value (Sobs) and the predicted or estimated value (Scal). For number of data points 

or cases, N, MSE can be obtained by averaging the SSE as, 

  


N

n
calobs SS

N
MSE

1

21
                    (4) 

Note: In this work, ‘n’ is the sequential data count and ‘i’ is the sequential neuron count   

2.4 Procedure for Developing ANN-based Equation from Weights and Biases 

As said earlier, mixtures of CO2 with other compounds are often employed in industry to 

achieve better results in extraction processes. Also, impurities are often encountered in CO2 

stream obtained from the different emission sources, from which CO2 is captured for 

geological carbon sequestration. The impure CO2, being transported through the pipeline to 

http://en.wikipedia.org/wiki/Expected_value


geological storage site, poses unforeseen dangers to the pipeline and even storage aquifers.  

Therefore, developing a simple equation to detect or quantify the amount of these impurities 

through the determination of different İr for pure CO2 and its mixtures, under different 

conditions, will be of immense benefits in research and industry. Steps followed in this work 

can be employed to achieve this objective.  

 

Figure 1: Typical network arrangement in a single-hidden layer ANN model  (Mathworks Inc., 

USA). In the figure there are 3 input variables and 1 output 

Figure 1 shows the typical arrangement in a single-hidden layer configuration of ANN model. 

The figure shows that the model has three input variables (e.g., ࢥ, T and P) and one output 

variable (e.g., İr). ‘w’ and ‘b’ represent the weights and biases, respectively. Their values are 

randomly assigned by the network. In the hidden layers, there are neurons, whose number 

depends on the choice or design of the user. In this work, different numbers of neurons are 

tested in the configurations of both single and double-hidden layers. In the case of a double 

hidden layer, two hidden layers will be shown in Figure 1, instead of one. In the figure, the 

transfer function associated with the hidden layer is called ‘Tansig’. It is shown with a curve 

in the hidden layer. In the output layer, the associated transfer function is ‘Purelin’ and it is 

shown as a straight line.  

The procedure in developing ANN-based equation involves the extraction of necessary data 

from the operational procedure of ANN.  The steps include the following:  

A. Normalization of the input data (input layer) 



ANN begins operation with the normalization of the input data. The function used for the 

normalization in our simulation is called mapminmax, which scales inputs and targets so that 

they fall in the range 1 to -1, corresponding to the highest and lowest values, respectively.  

The equation for mapminmax is shown in equation (5). 

min
minmax

minminmax y
)XX(

)xx(*)yy(
y 




                        (5) 

where ‘y’ is the normalised value of X, ‘ymax’ is 1, ‘ymin’ is -1, ‘X’ is the actual  value of 

parameter (independent variable) of interest, ‘Xmin’ is the minimum value of the parameter of  

interest, ‘Xmax’ is the maximum value of the parameter of interest.  

Having defined the normalisation function (mapminmax), the first task was that each of the 

input parameters in our work (i.e., ࢥ, T and P) be expressed in normalised form, using 

equation (5). The normalised values of ࢥ, T and P are represented as )(norm , )(normT , and 

)(normP , respectively. Their sequential counts in the data list are represented as: 
n)norm( , 

n)norm(T , and 
n)norm(P , respectively, 

 

B. Weight assignments at  the hidden layer  

Following normalization of input variables, the assignments of weights and biases to the 

normalised variables, were performed. In Figure 1, this process is indicated with ‘W’, ‘b’, 

referring to weights (W) and biases (b) that were automatically generated by the network. 

The relationship is linearly developed using the equation: 

  


j

i
ilnnormPilnnormTilnnormilnil bPWTWWE

1
,)(,,)(,,)(,,,, ***      (6) 

where ‘Wl,i,כ’, ‘Wl,i,T’ and ‘Wl.i,P’ refer to the weights assigned, respectively to the Mass fraction 

of ethanol (ࢥ), Temperature (T) and Pressure (P) in association with the  particular neuron (i)  

at the hidden layer (l). ‘bl,i’ is the bias at the particular hidden layer (l) assigned to the neuron 



(i). 
n)norm( , 

n)norm(T , and 
n)norm(P , are the nth values of normalised  ࢥ, T and P, respectively. 

‘El,i,n’ refers to the nth sum of the weighted normalised variables, based on the weight 

assignment in association with ith neuron at the particular hidden layer (l). ..j is the last count 

of neuron in the network. 

C. Transfer function at the hidden layer 

Following Figure 1, the next step in developing the ANN-based model requires mathematical 

operation on the last step, using Tansig transfer function. The function is mathematically 

expressed as: 

1
)2exp(1(

2
)(

,,

,,,, 



nil

nilnil E
FETansig         (7) 

It must be noted that the description above was limited to the single-hidden layer model for 

the sake of simplicity. In the case of the double-hidden layer, there will be two levels of 

‘Tansig’ transfer function and each one is to be treated, separately.  

D. Weight assignments and Purelin transfer function at the output layer  

Still following the schematic of Figure 1 (for single-hidden layer network), at the output layer,  

it can be observed that the step following ‘Tansig’ transfer function is the assignment of  

weights and biases, followed by the application of ‘Purelin’ transfer function. For this output 

layer, the weights and biases were also generated by the network. They are then assigned 

to the previous variable (Fl,i,n)  as shown in equation (8), using ‘Purelin’ function: 

  o

j

i
nilioo bFWa 

1
,,, *                      (8) 

Where ‘Wo,i’ refers to the weight at the output layer  (o) attributed to each neuron (i); ‘Fl.i,n’ is 

the previously defined value of the Tansig-transformed variable, associated with the sum of 

the nth normalised input variable at the last hidden layer (l); ‘bo’ is the bias at the output 

layer. ‘ao’ is the normalised final output. 

E. De-normalization of the normalised output 



To get the actual value of the output, there is a need to denormalise the output obtained in 

equation (8). At this step, the normalised output (an) was denormalised, using equation (5). 

In the equation, the task is to get ‘X’, instead of ‘y’. Therefore, ‘X’ is made the subject of the 

formula. 

3. Results and Discussions 

Dielectric property (relative permittivity) can be used to detect the presence of CO2 and/or its 

mixtures or impurities. In this work, efforts are made to describe how ANN model can  be 

used to characterise  the dielectric properties of pure and impure CO2.  This section begins 

with the presentation of results and discussions on the performances of different ANN model 

configurations. This is followed by the section showing results from stepwise procedures 

used in developing an ANN-based model for the prediction of the İr  for pure CO2 and its 

mixture with ethanol. It was emphasized how the techniques can be adopted in other CO2 

mixture/impurities. Finally, the results and discussions on the applications of the model to 

some practical cases of interest are presented.  

3.1 ANN Models 

As stated earlier, different configurations of the ANN models were tested to effectively and 

efficiently predict the relative permittivity (İr) of the pure CO2 and its mixtures/impurities.  This 

testing of different configurations is necessary to ensure that the most reliable ANN structure 

is applied to learn the trends and relationships in the range of data used. The well-trained 

ANN model, having the best performance criteria, can then be used to predict the İ r values 

applicable to the cases and conditions of interest. Therefore, this subsection presents the 

results of the training, validation and testing, as well as the performances of the different 

ANN model configurations.  



The performances in training, validation and testing as well as the post-training regression 

are shown in Figures 2 and 3 for the single-layer (ANN[3-6-1]) model. For this configuration, 

the “3” in the notation refers to the total number of variables in the input (i.e., mass fraction of 

ethanol, pressure and temperature), the following “6” refers to the number of neurons, used 

in the first layer (the only layer in the single-layer case), while the last “1” denotes the 

number of parameter in the output (i.e., İr). Figure 2 shows how the mean squared error 

(MSE) decreases, during training, validation and testing, as the number of epoch increases. 

This eventually culminates in the optimal performance during validation at 43rd  epoch, 

having MSE value of 2.0x10-4, approximately.    

 Figure 2: Training and Learning Profile of Single-layer model-ANN[3-6-1] 



 

Figure 3: Post-Training Regression Analysis of ANN[3-6-1]. 

This behaviour shows that the network learns better,  as the number of epoch increases. 

The post-training regression analysis (Figure 3) shows the linear regression fit to the data 

points, matching the predicted output to the actual target. With a correlation coefficient (c) of 

0.999, it can be inferred that the ANN model has performed very well.    

The performances of all models are depicted and compared below: 

3.2 Performances of ANN models 

Performance-evaluation   models listed in subsection 2.3 are used to compare and judge the 

performances of all ANN models trained in this work.  Figures 4 to 7 show the performances 

of these models. 

For the sum squared error (SSE) criterion, Figure 4 shows the results.  The figure shows that 

as the number of neurons increases, the error decreases.  For the single-layer model, the 

reduction in error becomes very noticeable as the number of neurons is more than two. The 

least SSE was obtained when there are six neurons in the single-hidden layer model, i.e., 



ANN [3-6-1]. The model has the SSE of approximately 0.2596.  For the double-hidden layer 

models, the SSE becomes very low when the neurons in the first and second hidden layers 

are more than two, i.e., ANN [3-2-2-1]. For the double-hidden layer models, the SSE 

(0.3877) is least with ANN [3-4-1-1]. By comparison, it can be readily concluded that the 

ANN [3-6-1] shows the best performance, judging from SSE values. 

 

Figure 4: Sum squared error (SSE) for all ANN models in the prediction of relative 

permittivity (İr) for pure CO2 and CO2/ethanol mixture. 

The other criterion used in assessing the performance was average absolute relative error 

(AARE). The results are shown in Figure 5.  The performance pattern in this case was 

similar to that shown for SSE.  However, in comparison, AARE is higher than SSE for all the 

models. Like before, ANN [3-6-1] has the least error, with AARE of 0.9946. 
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Figure 5: Average absolute relative error (AARE) for all ANN models in the prediction of 

relative permittivity (İr) for pure CO2 and CO2/ethanol mixture. 

The Nash-Sutcliffe Efficiency Coefficient indicates the efficiency of the prediction made by 

the models. Figure 6 shows that many of the models have high efficiency.   

 

Figure 6: Nash-Sutcliffe efficiency coefficient for all ANN models in the prediction of relative 

permittivity (İr) for pure CO2 and CO2/ethanol mixture. 

Thus, the models have good reliability in the prediction of the relative permittivity for the pure 

CO2 and its mixture. However,    critical inspection of the figure shows that ANN[3-6-1] has 

the highest efficiency, with approximate  NS value of 0.9994. 
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Similarly, the correlation coefficient (R2) was employed to judge the performances of the 

models. This is depicted in Figure 7. The closer the coefficient to 1, the better the 

performance of the model. The Figure shows that the ANN [3-6-1] continues to exhibit the 

best performance.  

 

 

Figure 7: Correlation Coefficient (R2) for all ANN models in the prediction of relative 

permittivity (İr) for pure CO2 and CO2/ethanol mixture. 

Based on the above criteria and results, it can be concluded that ANN [3-6-1] is the best-

performing configuration trained in this work. In comparison with publication from other 

authors, the work of Nabavi-Pelesaraei et al. (2016) shows that their best network, having 

nine neurons in each of the double hidden layers has the R2 value of 0.987. Even the RMSE 

value in their work is 0.054. Though, the complexity of the relationship may differ in their 

work compared to this work, yet the values show our model has been sufficiently trained to 

exhibit optimum performance in independent data prediction. As a result, this model (ANN[3-

6-1]) was used in developing the ANN-based equation for predicting İr of pure and impure  

CO2. The equation was also applied to independent cases of interests.  These activities are 

presented in the following subsections. 
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3.3 ANN-based equation 

As stated earlier, the objective of this work is to develop an ANN-based model, with which 

the properties of the mixture and/or impurities of CO2 can be easily determined.  The steps 

in developing the model were already highlighted in section 2 of this work. 

Following the lead from subsection 2.4, the equations of normalization for the independent 

variables in the data used in the current work are, 

1343.9norm                     (9)

057.6T016668.0Tnorm                    (10) 

073.1P0211.0Pnorm                    (11) 

Where ࢥnorm, Tnorm and Pnorm are the normalised values of ࢥ, T and P, respectively (see 

equation (5)). 

Equation (6) expresses the assignments of weights and biases to the normalised variables 

at the hidden layer of the network.   The listed weights and biases in Table 3 are simplified 

aggregates for each of the input variables, based on the six neurons in ANN [3-6-1].  The 

arrangement in the table simplifies the mathematical operations occurring between 

equations (6) and normalised input variables obtained from equation (5). Individual 

normalised variables are already expressed in equations (9), (10) and (11). The weights and 

biases indicated in the Table 3 are aggregates of the results obtained after the simplification.  

Thus, ‘E’ value can be readily determined by multiplying the appropriate weights (in Table 3) 

with actual values of the independent variables in the equation (6).  

Still following the lead provided in the subsection 2.4 and Figure 1, the next step is the 

‘Tansig’ transfer function for ‘E’ at the hidden layer. The expression for the transfer function 

is expressed in equation (7).  This step was followed by weight assignment at the output 



layer (see Figure 1 and equation (8)). Then, the resulting expression was denormalized, as 

described in the subsection 2.4 

The final expression for İr after denormalization is shown in equation (12), 

3324.4F1379.1F2223.0F3926.1F1234.0F0837.3F7234.2 654321r           (12) 

where ‘Fl,i,n’ is given as ‘Fi’  for each of the six neurons in ANN [3-6-1], as defined in equation 

(7). The subscripts 1…6 are for the six neurons in the singe hidden layer.  

Therefore, interested readers only need to determine ‘E’ (using equation (6) and Table 3) 

which is then used to determine ‘F’ using equation (7). The ‘F’ is then substituted into 

equation (12) to determine the target relative permittivity (İr) of pure CO2 and/or its mixture 

with ethanol. 

Table 3: List of aggregate weights and biases for the normalised input variables used in 

determining ‘El,i,n’ (see equation 6)*  for ANN [3-6-1]** 

Neurons(i…j) Weight, W1,i,ࢥ Weight, W1,i,T Weight, W1,i,P Biases, b1,i 

1 -2.56406 0.013246 -0.07972 -3.3363 
2 -4.35511 0.011508 -0.00139 -2.18585 
3 -1.97208 0.067772 -0.00354 -21.663 
4 -3.7875 0.012443 -0.09534 -2.50458 
5 26.76083 0.001232 0.008589 -1.78352 
6 4.94227 -0.01721 0.072141 5.249718 

*This is a single-hidden layer case. Thus, ‘1’ is indicated for ‘l’ in the symbols, i.e., W1,I,ࢥ 

** The weights and biases given have incorporated the coefficients and constants in the normalization 
equations (9), (10) and (11). Thus, users only need to use the actual values of ࢥ, T and P in the 
equation (6) together with weights (W) and Biases (b) in Table 3 to determine E. 
 

3.4 Prediction of the İr 

Having successfully established a new model in the previous sections of this work, based on 

ANN [3-6-1], efforts are now made to use the model in predicting the behaviour of İ r for CO2-

ethanol mixture, under existing and new conditions. The first set of data used for the 

predictions were earlier described in Table 2, which were independent experimental data 

deliberately separated to perform validation task of the best-performing model.  Furthermore, 



hypothetical conditions of temperature and pressure as well as ethanol concentration were 

employed to further test the predictive ability of the model.   

Figure 8 shows the effectiveness of equation (12) in predicting the new set of data at 

different pressures. The validation data (see Table 2), at different pressures, were selected 

for prediction, using the new equation. This selection of data was done to avoid overlapping 

use of the data already used to train the model. From Figure 8, it is clear that the ANN model 

captures the trend in the relative permittivity and pressure for wide range of pressure values, 

with slight deviation occurring at peak pressure values, e.g., above 80 MPa. 

 

Figure 8:  Prediction of the experimental data, using equation (12). 

Furthermore, equation (12) was used to test the case of the new set of data, where the mass 

fraction of ethanol was 0.05. The result is shown in Figure 9, for the isothermal temperature 

of 303.4 K. The figure shows that the new equation is effective in matching the new 

experimental data. The İr from the experiment and prediction overlaps over the range of the 

pressure values. This shows that the model can perform effectively well in the face of a new 

set of data.  
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Figure 9:  Prediction of the new data (validation data described in Table 2), using model from 

ANN [3-6-1] 

Likewise, attempts were made at predicting the İr for the same set of data (shown in Figure 

9), but with the mass fraction of ethanol hypothetically increased by 100% i.e., from 0.05 to 

0.1 (see Figure 10). It is clear from the result in Figure 10 that İ r increases with the rise in 

mass fraction of ethanol.    

 

Figure 10: Prediction of the change in İr for ࢥ increased from 0.05 to 0.1 using equation (12) 

(ANN [3-6-1]) 

A similar trend was found using a new set of data, with increase of the mass fraction from 

0.152 to 0.2 with an isothermal condition of 313.1K. The result of this is shown in Figure 11. 
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As before, İr increases with mass fraction of ethanol. Thus, it can be concluded, that the 

presence of ethanol increases the İr of its mixture with CO2. This is similar to the conclusion 

of Eltringham (2011). The author stated that relative permittivity increases with increasing 

mass fraction of ethanol in the mixture.  

 

Figure 11:  Prediction of the change in İr for ࢥ increased from 0.152 to 0.2, using equation 

(12) (ANN [3-6-1]) 

3.5 Effects of Change in Pressure and Temperature on İr 

Aside from predicting change in the mass fraction of ethanol in CO2, it is also interesting to 

know the behaviour of İr under changing conditions of pressure and temperature. Thus, 

efforts were made at testing the performance of the model in predicting İ r at different 

temperatures and pressures, using equation (12). The predicted results, shown in Figure 12, 

show that the  İr increases with pressure for the same mass fraction of ethanol in the 

mixture. In fact, it can be inferred that İr increases linearly with the rise in pressure.  This 

result is similar to the findings of Abidoye and Das (2014a) as well as Mitchel and Mitchel 

(1933).  Mitchels and Mitchels (1933), in their classical work on the permittivity of CO2, 

demonstrate how the permittivity of CO2 increases with pressure. Furthermore, Figure 13 

shows that the İr  for the mixture decreases with increasing temperature. This is a reverse 

trend to that of pressure effect on İr. This conclusion has also been drawn by Eltringham 
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(2011). The author concluded that under the conditions of isothermal pressure dependence,  

İr  is always positive,  while  under the isobaric temperature dependence, it is always 

negative.    

Therefore the model developed in this work can serve well in the determination of impurities 

in CO2, while the procedure can be extended to other popular mixtures of CO2 as well as 

other gases. The results show that while monitoring CO2 behaviour in physical processes, 

the model  and/or method described in this work,  can be used to determine or predict how 

its dielectric property or that of its mixture will behave under different conditions. 

 

Figure 12: Behaviour of İr for CO2-ethanol mixture at different pressures: 10, 11, 15 and 

20MPa. 
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Figure 13: Behaviour of İr for CO2-ethanol mixture at different temperatures: 333.2K, 

366.52K, 370K and 390K 

From the above work, it can be seen that the newly-developed ANN-based model is highly 

effective under different conditions for the original and new sets of data. Therefore, the 

model presented here is effective in predicting the İr for CO2-ethanol mixture, while the 

technique adopted in this work is also effective in determining the impurity content of CO2. 

4. Conclusion  

The application of Artificial Neural Network (ANN) for the prediction of the dielectric 

properties of the mixture or impurities in CO2 has been elaborately demonstrated. By feeding 

data of relative permittivity (İr) for pure and impure CO2 to the network, ANN was effectively 

trained to recognise and predict CO2 property under different conditions. 

Statistical analyses of the different ANN configurations showed that ANN model [3-6-1] 

outperformed the others. From the best-performing ANN structure, this work further 

extracted a single mathematical equation that can be employed in the prediction of the 

relative permittivity (İr) for pure CO2 and CO2-ethanol mixtures, even without access to ANN 

software. Using this ANN-based mathematical model, predictions of the relative permittivity 
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(İr) for pure CO2 and CO2-ethanol mixture were performed, under different temperature and 

pressure and at different ethanol concentrations.  

Under similar conditions, the output of the model provided good matches with original 

experimental İr.  With an increase in ethanol concentration, the model correctly predicted the 

rise in İr for the mixture. It was also shown that the İr rises with increase in pressure but 

decreases with rise in temperature. 

The work showed the reliability and applicability of the ANN in characterizing and predicting 

the dielectric property of pure CO2 and its mixture and/or impurities. The model developed in 

the work gives universal access to users, while the technique demonstrated offers insights 

and a clear guide for researchers, who are interested in similar activities. 
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