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The homeostasis of T cell populations depends on migration, division and death of

individual cells (1). T cells migrate between spatial compartments (spleen, lymph nodes,

lung, liver, etc.), where they may divide or differentiate, and eventually die (2). The

kinetics of recirculation influences the speed at which local infections are detected

and controlled (3). New experimental techniques have been developed to measure

the lifespan of cells, and their migration dynamics; for example, fluorescence-activated

cell sorting (4), in vitro time-lapse microscopy (5), or in vivo stable isotope labeling

(e.g., deuterium) (6). When combined with mathematical and computational models,

they allow estimation of rates of migration, division, differentiation and death (6, 7). In

this work, we develop a stochastic model of a single cell migrating between spatial

compartments, dividing and eventually dying. We calculate the number of division events

during a T cell’s journey, its lifespan, the probability of dying in each compartment and

the number of progeny cells. A fast-migration approximation allows us to compute these

quantities when migration rates are larger than division and death rates. Making use of

published rates: (i) we analyse how perturbations in a given spatial compartment impact

the dynamics of a T cell, (ii) we study the accuracy of the fast-migration approximation,

and (iii) we quantify the role played by direct migration (not via the blood) between

some compartments.

Keywords: T cell, stochastic model, continuous-time Markov chain, single cell, cellular fate, migration,

division, apoptosis

1. INTRODUCTION

T cells are descendants of bone marrow progenitors that migrated to the thymus and underwent
processes of maturation, gene rearrangement and selection (8). The surface of a T cell is populated
with tens of thousands of copies of a T-cell receptor. A repertoire of T cells is maintained in a
mammal’s body that enables recognition of and response to the many benign and pathogenic
microorganisms that are encountered over its lifetime, although the T-cell receptor of any
individual cell only recognizes a tiny fraction of them (9, 10). An individual T cell may circulate
between different tissues of the body for months or years, never encountering cognate antigen.
Their interactions with self antigens, generally weak, are occasionally strong enough to cause
one round of cell division. Strong interaction between the T-cell receptor and non-self antigens,
mounted on MHC on the surface of antigen-presenting cells in lymph nodes (11), initiates a
programme of multiple rounds of cell division and phenotypic changes that generate effector and
memory T cells with different lifetimes and migration patterns (2, 12–15).
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Blood is a dynamic conduit through which T cells pass, in
homeostasis and during immune responses (16). Blood is also the
only tissue from which it is easy to obtain samples of T cells from
healthy humans, although only about two percent of the body’s
T cells are in the blood at any one time (17, 18). The fraction
of T cells found in a particular tissue depends on how likely a
T cell is to enter the tissue and on how long it stays there. At
any one time, for example, the fraction of T cells in lymph nodes
and spleen is large, not because a T cell in the blood is most
likely to go there, but because, when they do enter, they remain
there a long time (3). Direct counts of T cell numbers in organs
of mice are sometimes possible (19, 20); direct measurement
of the kinetics of recirculation is more difficult. Mathematical
models of the full kinetics of recirculation are the basis of a
systematic extrapolation from measurements to residence times
and migration probabilities.

Ganusov and Auerbach (3) constructed a model, based on
experimental data, in which the migration history of a T cell
consists of short intervals in the blood (less than a minute each)
between longer sojourns in lung, liver, spleen and lymph nodes.
We adopt their star-shaped migration topology pattern here. We
also adopt a Markov description, in which the next event in the
lifetime of a T cell (migration, division or death) is stochastic, but
governed by parameters that depend only on the cell’s current
position. We treat a division event as the birth of one new cell,
that follows the same rules as its mother, and a continuation
of the life of another. In our modeling, we have in mind the
homeostasis of naive CD4+ T cells, without explicitly taking the
effect of aging (15, 19, 21) into account.

Novel labeling techniques are providing an increasing amount
of information about recirculation and other properties at the
single cell level (4–6), which lead to new hypotheses and new
experiments aimed at elucidating the kinetic properties of a cell’s
journey. Techniques such as staining or barcoding are ideal for
quantifying dynamics at the single cell level, since they are able
to track individual cells, their interactions with the extra-cellular
environment and other cells and to help understand single cell
lifetime dynamics (22, 23).

Although they are able to provide a substantial amount of
quantitative data, experimental techniques are still far from being
able to provide a full picture of lymphocyte dynamics in vivo,
even in mice (24, 25). Thus, a partnership between experimental
and in silico approaches is required. Deterministic continuous
time models (based on ordinary differential equations) are the
usual approach to study the kinetics of cell recirculation (7, 26,
27) when describing large cell populations. On the other hand,
these deterministic approaches can miss some crucial behavior
due to the stochastic nature of cellular heterogeneity and cellular
interactions (28, 29). Stochastic processes are more appropriate
when studying observables at the single cell level, instead of at
the population level (30, 31).

This work is inspired by these new experimental techniques,
and by the work of Ganusov and Auerbach (3), where the authors
analyse the kinetics of lymphocyte recirculation. Our aim is to
show how new analytical approaches can be applied to these
systems to study the stochastic journey of a single cell during
its lifetime. Based on the assumption that there are many more

migration events than division and death events, we propose
a fast-migration approximation. Finally, we carry out a range
of numerical experiments to test the approximation, and to
show the impact that cellular events occurring in a given spatial
compartment can have on the whole system.

2. THEORY

2.1. Description of the General Model
We consider a model of a T cell that migrates between
different spatial compartments, where it may divide one or more
times, before ultimately dying. Inspired by the representation
of Ganusov and Auerbach (3, Figure 2), these compartments
can represent blood, lymph nodes, lung, liver, spleen and Peyer’s
patches. We denote the blood compartment by B and denote M
additional compartments by {C1, . . . ,CM} (see Figure 1).

The journey of a T cell during its lifetime is summarized by the
diagram in Figure 1. A cell can migrate between compartments,
divide or die (reaching the state ∅). Our model is an absorbing
continuous-time Markov chain (CTMC) Y = {Y(t) : t ≥ 0}
defined on the space of states S = {B,C1, . . . ,CM ,∅}, where
Y(t) identifies the position of the cell at time t ≥ 0. We note
that division does not affect the position of the cell, Y(t), and
therefore, we keep division events in our description as events
that leave the process in the same state, as described in Figure 1.
When tracking a given T cell, if a division event occurs, one of the
two resulting cells is the daughter, while the other is taken to be
the original cell.

Our aims are: (i) to show how the dynamics of a T cell (see
Figure 1) can be studied by means of a number of summary
statistics (or stochastic descriptors) in section 2.2, inspired by
current single cell experimental techniques; (ii) to present in
section 2.3 a fast-migration approximation which allows us to
simplify the analysis when migration rates are much larger than
division and death rates; and (iii) to quantify the impact of
changes occurring in a single spatial compartment (section 3).

2.2. Single Cell Descriptors
Recent studies have highlighted the importance of improving the
existing experimental and analytic toolset for continuous single
cell dynamics. While some tools such as TimeLapseAnalyzer (32)
or TLM-Tracker (33) are fully automated, successful in vitro
single cell tracking by long-term time-lapse microscopy usually
requires combined automatedmethods andmanual curation. It is
worthmentioning here the recently developed single cell tracking
and quantification software toolset consisting of The Tracking
Tool and qTFy (34), which allows for robust and efficient analysis
of large amounts of time-lapse imaging data, is not limited to
specific cell types, and allows for some degree of manual curation
after automated processing.

These and similar tools have led to the quantification of
cellular dynamics corresponding to a single cell or the whole
lineage descended from a founder cell. When this cellular
dynamics is represented in terms of a stochastic process
consisting of division, migration and death events, such as the
one in Figure 1, our aim is to define and analyse a number
of summary statistics that can be compared to the dynamics
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FIGURE 1 | Schematic description of the model. The nodes represent spatial compartments where the CD4+ T cell can be located at a given time. The arrows

connecting them represent the migration of the cell between compartments, with migration rates {(ξB,Cj , ξCj ,B), j ∈ {1, . . . ,M}}. Division events are represented by

curved arrows with rates λB and {λCj , j ∈ {1, . . . ,M}}. Finally, the state ∅ represents the death of the cell (with different death rates µB and {µCj , j ∈ {1, . . . ,M}},

depending on the location where cell death takes place).

observed experimentally, at least in in vitro experiments. In
particular, the Markovian representation of the process in
Figure 1 allows us to make use of first-step arguments to
analyse a number of summary statistics for the cellular dynamics.
In this section, we present the summary statistics of interest
together with exact formulæ for their computation, while the
mathematical details to obtain these expressions can be found in
the Appendix.

These summary statistics are directly inspired by data
obtained from the experimental analysis of single cell dynamics

and cell pedigrees. For example, when analysing a single founder
B cell in in vitro experiments, Hawkins et al. (35) were able to

obtain data regarding its lineage tree and quantified the times

for cell division and death of the founder and descendent cells
[see Figure 2A in Hawkins et al. (35, Supplementary Material)].
Similar dynamics and analysis can be found in Piltti et al. (36,
Figure 2) for in vitro experiments with neural stem cells. On
the other hand, if one was to consider a simulation of the

stochastic process described in Figure 1, a realization would

resemble Figure 2. In the same manner, in Reinhardt et al.

(37), the authors show how the time-course of OT-II counts

can be tracked in different locations in vivo (blood, spleen,

lymph nodes, . . . ). This experimental setup contains valuable
information about total counts or even cumulative numbers in
each spatial compartment. For long enough times, these counts
could be directly linked to the total number of divisions in each
compartment. This kind of long-time experiments can be found,
for instance, in Masopust et al. (38) where CD8+ T cells were
tracked for almost three months, or in Sathaliyawala et al. (39)
where the count is made in humans at the time of death of
the donors.

Motivated by these experimental achievements, we introduce
different stochastic descriptors (also known as summary

statistics). Not all of them can be straightforwardly quantified
but, interestingly, combined they give information about specific
aspects of the cellular dynamics that are unattainable using
standard population dynamics approaches. In particular, the
process in Figure 2, similarly to that in Hawkins et al. (35,
Supplementary Material, Figure 2A) or Piltti et al. (36, Figure
2), can be quantified in terms of the following statistics:

• Lifetime of a CD4+ T cell and number of division events of
this cell during its lifetime,

Ti = “lifetime of a given cell starting in compartment i”

= inf {t ≥ 0 : Y(t) = ∅ | Y(0) = i},

Ni = “for a given cell starting in compartment i,

number of division events until it dies′′,

for i ∈ {B,C1, . . . ,CM}. If we define mi = IE(Ti) and m̂i =

IE(Ni), one can show that

mB =

(

µB +

M
∑

i=1

ξB,Ci −

M
∑

i=1

ξB,CiξCi ,B(µCi + ξCi ,B)
−1

)−1

×

(

M
∑

i=1

ξB,Ci (µCi + ξCi ,B)
−1 + 1

)

,

mCi = (µCi + ξCi ,B)
−1
(

ξCi ,BmB + 1
)

, i ∈ {1, . . . ,M} ,

m̂B =

(

µB +

M
∑

i=1

ξB,Ci −

M
∑

i=1

ξB,CiξCi ,B(µCi + ξCi ,B)
−1

)−1

×

(

M
∑

i=1

ξB,CiλCi (µCi + ξCi ,B)
−1 + λB

)

,

m̂Ci = (µCi + ξCi ,B)
−1
(

ξCi ,Bm̂B + λCi

)

, i ∈ {1, . . . ,M} .
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FIGURE 2 | One realization of the stochastic process shown in Figure 1, and interpretation of the summary statistics. The dynamics mimics that of Hawkins et al.

(35, Supplementary Material, Figure 2A) and Piltti et al. (36, Figure 2). In this example, M = 2, and a striped color identifies the original cell being tracked. A given

color indicates the spatial location of each cell (red: blood, blue: C1, green: C2). In this realization, GB = 11, NB = NB(B)+ NB(C1)+ NB(C2) = 1+ 0+ 1 = 2. The

compartment before death is C2.

We note that although we only report here expressions for
the mean values, the Laplace-Stieltjes transform of Ti, as
well as the complete probability mass function of Ni, can be
explicitly obtained.

• It is clear that the number of division events can be split
as Ni = Ni(B) +

∑M
k=1 Ni(Ck), where Ni(j) is the number

of division events of a given cell taking place in the spatial
compartment j ∈ {B,C1, . . . ,CM}. The mean values (and
the complete probability mass function, see section 1 in the
Appendix) of these random variables Ni(j), m̂i(j) = IE(Ni(j)),
can also be analytically computed:

m̂B(B)=

(

µB+

M
∑

i=1

ξB,Ci−

M
∑

i=1

ξB,Ci (µCi+ξCi ,B)
−1ξCi ,B

)−1

λB ,

m̂Ci (B) = (µCi + ξCi ,B)
−1ξCi ,Bm̂B(B) , i ∈ {1, . . . ,M} ,

m̂B(Cj) =

(

µB +

M
∑

i=1

ξB,Ci −

M
∑

i=1

ξB,Ci (µCi + ξCi ,B)
−1ξCi ,B

)−1

×
ξB,CjλCj

µCj + ξCj ,B
, j ∈ {1, . . . ,M} ,

m̂Ci (Cj) = (µCi + ξCi ,B)
−1(ξCi ,Bm̂B(Cj)+ 1i=jλCi ),

i, j ∈ {1, . . . ,M} ,

where 1A is a function equal to 1 if A is satisfied, and equal
to 0 otherwise.

• One can identify the spatial compartment where the cell dies,
in terms of the following probabilities

βi(j) = “probability that the cell starting in compartment i,

dies in compartment j′′

= P(Y(Ti) = j) , i, j ∈ {B,C1, . . . ,CM} .

These probabilities are given by

βB(B)=

(

µB+

M
∑

i=1

ξB,Ci−

M
∑

i=1

ξB,Ci (µCi+ξCi ,B)
−1ξCi ,B

)−1

µB ,

βCi (B) = (µCi + ξCi ,B)
−1ξCi ,BβB(B), i ∈ {1, . . . ,M} ,

βB(Cj) =

(

µB +

M
∑

i=1

ξB,Ci −

M
∑

i=1

ξB,CiξCi ,B(µCi + ξCi ,B)
−1

)−1

×
ξB,CjµCj

µCj + ξCj ,B
, j ∈ {1, . . . ,M} ,

βCi (Cj) = (µCi + ξCi ,B)
−1(ξCi,BβB(Cj)+ µCi1i=j) ,

i, j ∈ {1, . . . ,M} .

• Finally, the summary statistics introduced above refer to a
single cell, without keeping track of the daughters produced
by cell division. To this end, one can analyse for a given
original cell in Figure 1 its complete genealogy in terms

Frontiers in Immunology | www.frontiersin.org 4 March 2019 | Volume 10 | Article 194

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


de la Higuera et al. Fate of a Naive T Cell: A Stochastic Journey

of the random variable

Gi = “total number of cells within the genealogy of a cell

which starts in compartment i′′,

and the mean values of these random variables, m̃i = IE(Gi),
can be computed as

m̃B =

(

µB +

M
∑

i=1

ξB,Ci − λB −

M
∑

i=1

ξB,Ci (µCi + ξCi ,B − λCi )
−1

× ξCi ,B

)−1( M
∑

i=1

ξB,Ci (µCi + ξCi ,B − λCi )
−12λCi+2λB

)

,

m̃Ci = (µCi + ξCi ,B − λCi )
−1(ξCi ,Bm̃B + 2λCi ),

i ∈ {1, . . . ,M} .

For a particular realization of the stochastic process described
by Figure 1, we show in Figure 2, the definition of this
summary statistics.

We note that if on average, a larger number of division
events take place than death ones, the corresponding
branching process depicted in Figure 2 might explode. This
means that, depending on the parameter values, one might
have P(Gi = +∞) > 0 and thus, IE(Gi) = +∞. We find
that sufficient conditions on the parameters to ensure P(Gi =

+∞) = 0, are given by

ξCi ,B + µCi > λCi , ∀i ∈ {1, . . . ,M} , (1)

M
∑

i=1

ξB,Ci + µB > λB +

M
∑

i=1

ξB,CiξCi ,B

ξCi ,B + µCi − λCi

. (2)

We also note that there is an intuitive interpretation of these
conditions. In particular, for each spatial compartment Ci, the
total rate of removing cells from this compartment (migration
of cells, ξCi ,B, or death, µCi ) needs to be larger than the
corresponding division rate λCi , so that cells do not indefinitely
accumulate in this compartment. This is represented by
Equation (1). On the other hand, it is not enough to export
these cells to a different compartment if these cells cannot die
sufficiently fast in a different compartment after they migrate,
which is summarized by Equation (2), where blood acts as a
special migration hub.

2.3. Fast-Migration Approximation
As we show in section 3 for CD4+ T cells in mice, the
migration rates, {(ξB,Ci , ξCi ,B), i ∈ {1, . . . ,M}}, are of the order
of min−1, and division, (λB, λC1 , . . . , λCM ), and death rates,
(µB,µC1 , . . . ,µCM ), are of the order of days

−1. Thus, migration
is several orders of magnitude faster. One can use this fact
to propose a fast-migration approximation for the summary
statistics above, and thus, to study a much simpler birth-and-
death (or branching) process without spatial compartments.

We propose to approximate the journey of the cell under
analysis, and its progeny, by considering a birth-and-death

stochastic process within a single spatial compartment, with birth
and death rates given by

λ̄ = fBλB +

M
∑

i=1

fCiλCi , µ̄ = fBµB +

M
∑

i=1

fCiµCi ,

where fj represents the fraction of time that the cell under study
spends in each spatial compartment j ∈ {B,C1, . . . ,CM}, in the
absence of division and death (i.e., if only migration is considered
in Figure 1). One could imagine that this birth-and-death process
would approximate well the division and death dynamics of the
original one when migration occurs at a much faster rate than
division and death, so that steady state conditions ( i.e., fi values)
for the spatial location of the cell can be assumed before any
division or death event occurs.

In order to compute the fraction fj, one needs to calculate
the steady state probabilities for the process in Figure 1, in the
absence of division and death, which satisfy the following system
of equations

(

fB fC1 . . . fCM

)















−
∑

i ξB,Ci ξB,C1 ξB,C2 . . . ξB,CM

ξC1 ,B −ξC1,B 0 . . . 0
ξC2 ,B 0 −ξC2 ,B . . . 0
...

...
...

. . .
...

ξCM ,B 0 0 . . . −ξCM ,B















=0 ,

(

fB fC1 . . . fCM

)











1
1
...
1











=1 ,

which leads to the solution

fB =
1

1+
M
∑

i=1
Ki

, fCj = Kj
1

1+
M
∑

i=1
Ki

, j ∈ {1, . . . ,M} ,(3)

where we have introduced

Ki =
ξB,Ci

ξCi ,B
, i ∈ {1, . . . ,M} .

Once this birth-and-death approximation has been introduced,
one can propose the following simplifications:

• The average lifetime of the cell in the original model can
be approximated by IE(Ti) ≈ µ̄−1, which is its average
lifetime in the fast-migration approximation, and does not
depend on the initial compartment i. From now on, and when
implementing the fast-migration approximation, we remove
the initial compartment (labeled by i) in the notation.

• The average number of division events during the lifetime
of a given cell in the original model can be approximated

by IE(N) ≈ λ̄
µ̄
, which is the average number of division

events in the fast-migration approximation. Since N =

N(B) +
∑M

k=1 N(Ck), as explained in section 2.2, where
N(j) is the number of division events in compartment j ∈

{B,C1, . . . ,CM}, one can propose IE(N(j)) ≈ λ̄
µ̄
fj.
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• The time for the progeny of a single cell to become extinct
in the original process is not easy to analyse, and was not
considered in section 2.2. Yet, it can be approximated by the
time to extinction of a birth-and-death process with birth rate
λ̄ and death rate µ̄, for one single cell starting the process. This
time follows a phase-type distribution (40), and its mean is

given by−λ̄−1 log
(

1− λ̄
µ̄

)

(41).

• The probability of the original cell dying in compartment j ∈

{B,C1, . . . ,CM} can be approximated by β(j) ≈
µjfj
µ̄
.

• The number of cells in the genealogy of a single cell in the
original process can be approximated by the number of cells
in the genealogy of a branching process with division rate λ̄

and death rate µ̄. In particular, we can write (see section 1 in
the Appendix for further details)

IE(G) ≈
µ̄ + λ̄

µ̄ − λ̄
. (4)

2.4. The Effect of Non-blood Mediated
Migration
Thus far, we have considered that, as described in Figure 1, cells
can only migrate from one compartment to another through
blood. However, in Ganusov and Auerbach (3), the authors made
a compelling case for direct migration between compartments,
namely, non-mediated by blood. In this section, we make use of
the same model as before, but allow for cells in compartment
C1a to migrate directly to compartment C1b. The new scenario
is described in Figure 3, where the dashed arrow is the new
migration rate. Note that, following Ganusov and Auerbach (3),
we do not allow for migration from C1a to blood.

In order to keep the notation consistent, we split the former
compartment C1 into two compartments, labeled C1a and
C1b, respectively. Thus, the process of Figure 1 represents the
dynamics of Figure 3, when one is not interested in deciphering
where exactly a given cell is located in C1 ( i.e., if the cell is in
C1a or C1b).

The summary statistics defined in section 2.2 could be
analyzed for the process of Figure 3 in a similar way, but we do
not present the details here. On the other hand, the fast-migration
approximation can be implemented by considering the steady
state migration dynamics of Figure 3, which leads to the new set
of equations

(

fB fC1a fC1b
. . . fCM

)

×















−
∑

i ξB,Ci ξB,C1a ξB,C1b
ξB,C2 . . . ξB,CM

0 −ξC1a ,C1b
ξC1a ,C1b

0 . . . 0
ξC1b,B 0 −ξC1b ,B 0 . . . 0
...

...
...

...
. . .

...
ξCM ,B 0 0 0 . . . −ξCM ,B















= 0 ,

(

fB fC1a fC1b
. . . fCM

)











1
1
...
1











= 1 .

One can solve this system of equations to find

fC1a =
fBξB,C1a

ξC1a,C1b

, fC1b
=

fB(ξB,C1a + ξB,C1b
)

ξC1b ,B
,

fCi =
fBξB,Ci

ξCi ,B
, i ∈ {2, . . . ,M} . (5)

Let us introduce

K1a =
ξB,C1a

ξC1a ,C1b

, K1b =
ξB,C1b

ξC1b,B
, K1a,1b =

ξC1a ,C1b

ξC1b,B
,

and K = K1aK1a,1b + K1a + K1b +
∑M

i=2 Ki, to be able to write

fB =
1

K + 1
, fC1a =

K1a

K + 1
, fC1b

=
K1aK1a,1b + K1b

K + 1
,

fCi =
Ki

K + 1
, i ∈ {2, . . . ,M} . (6)

Interestingly, by adding the fractions in compartments C1a and
C1b, we can map this model to the previous one if we define

ξB,C1 = ξB,C1a + ξB,C1b
, (7)

and

1

ξC1 ,B
=

ξB,C1a

ξC1a ,C1b
(ξB,C1a + ξB,C1b

)
+

ξB,C1a

ξC1b,B(ξB,C1a + ξB,C1b
)

+
ξB,C1b

ξC1b,B(ξB,C1a + ξB,C1b
)
. (8)

We note that Equations (7)–(8) imply that the parameters
(ξC1 ,B, ξB,C1 ) can be considered as effective migration rates
between the blood and compartmentC1, whenC1 is merged from
compartments C1a and C1b. The rate of a cell migrating from
the blood to C1a or C1b, if one is not interested in where exactly
it migrates to ( i.e., migration to C1), would then be given by
ξB,C1 = ξB,C1a+ξB,C1b

[see Equation (7)]. On the other hand, for a

cell in C1, the mean time to reach the blood (IE(TC1→B) = ξ−1
C1,B

)
can be computed from the following analysis

ξ−1
C1 ,B

= IE(TC1→B | cell is at C1a)P(cell is at C1a)

+IE(TC1→B | cell is at C1b)P(cell is at C1b) .

Finally, Equation (8) can be derived by noting that

P(cell is at C1a) =
ξB,C1a

ξB,C1a + ξB,C1b

,

P(cell is at C1b) =
ξB,C1b

ξB,C1a + ξB,C1b

,

IE(TC1→B | cell is at C1a) = ξ−1
C1a ,C1b

+ ξ−1
C1b,B

,

IE(TC1→B | cell is at C1b) = ξ−1
C1b,B

.
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FIGURE 3 | New process inspired by Ganusov and Auerbach (3, Figure 2), where T cells can migrate between two compartments (C1a and C1b) without transitioning

through the blood.

3. NUMERICAL RESULTS

In this section we carry out a numerical study to illustrate
our analytical results and the fast-migration approximation,
to compare our analytical results with those obtained from
stochastic numerical simulations, and to show how dynamics
occurring in a particular compartment can have a significant
impact on the whole system. We propose in section 3.1
parameter values for the process described by Figure 1, based
on those considered in den Braber et al. (1) and Ganusov
and Auerbach (3). In section 3.2, we compare analytical
and numerical results with those obtained from our fast-
migration approximation. We analyse in section 3.3 the
role played by the asymmetry in the death rates of the
different spatial compartments. We focus in section 3.4 on the
potential impact of (not blood-mediated) migration between
compartments, inspired by themodel considered in Ganusov and
Auerbach (3).

3.1. Parameters
In Table 1, we provide baseline parameter values obtained
from den Braber et al. (1) and Ganusov and Auerbach (3),
for the model described in Figure 1 with M = 5. These
spatial compartments represent, according to Ganusov and
Auerbach (3), the blood (B), mesenteric lymph nodes and Peyer’s
patches (C1), lung (C2), liver (C3), spleen (C4) and subcutaneous
lymph nodes (C5). In order to show the goodness of the fast-
migration approximation, and to show the impact of spatial
asymmetry in this system, we vary in section 3.2, section 3.3 and
section 3.4 the division and death rates in the different spatial
compartments, so that the values µ and λ in Table 1 should be
considered baseline parameters for CD4+ T cells according to
den Braber et al. (1).

We also note that the model in Ganusov and Auerbach (3)
considers Peyer’s patches and mesenteric lymph nodes as two
different compartments ( i.e., C1a and C1b, respectively, described

TABLE 1 | Parameter values considered in the numerical study. Blood and M = 5

additional spatial compartments as in Ganusov and Auerbach (3, Figure 2).

Parameter References Value (min−1)

ξB,C1a
(3) 0.53× 10−2

ξB,C1b
(3) 1.06× 10−2

ξC1b,B
(3) 0.34× 10−2

ξC1a,C1b
(3) 0.34× 10−2

ξB,C1
Equation (7)⋆ 1.59× 10−2

ξC1,B
Equation (8)⋆ 2.60× 10−3

ξB,C2
(3) 1.83

ξC2,B
(3) 2.17

ξB,C3
(3) 0.41

ξC3,B
(3) 1.14

ξB,C4
(3) 5.6× 10−2

ξC4,B
(3) 7.0× 10−3

ξB,C5
(3) 2.6× 10−2

ξC5,B
(3) 3.4× 10−3

µ (1) 1.478× 10−5(∼ 1/47 days−1)

λ (1) 1.458× 10−5(∼ 1/48 days−1)

C1: Peyer’s patches (C1a) and mesenteric lymph nodes (C1b); C2: lungs; C3: liver; C4:

spleen; and C5: subcutaneous lymph nodes. Time units: min−1. (⋆) We have estimated

these parameters combining the parameters in Ganusov and Auerbach (3) according to

Equations (7)–(8).

in section 2.4). We propose in section 3.2 and section 3.3 to
merge these compartments and analyse the cellular dynamics
without deciphering where exactly a given cell in C1 is (i.e., if
the cell is in the Peyer’s patches or in the mesenteric lymph
nodes), by using Equations (7)–(8) to obtain effective migration
rates (ξB,C1 , ξC1 ,B) in Table 1. In section 3.4 we carry out a
numerical study of our second model, described in Figure 3,
where the migration rates (ξB,C1a , ξB,C1b

, ξC1b,B, ξC1a ,C1b
) are those

in Ganusov and Auerbach (3). Finally, we note that for all the
parameter values considered in this section, Equations (1)–(2)
are satisfied.
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3.2. Gillespie Simulations, Analytic Results,
and Fast-Migration Approximation
In this section we set the migration rates {(ξB,Ci , ξCi ,B), i ∈

{1, . . . , 5}} as given in Table 1. In order to show the goodness of
the fast-migration approximation we set

µB = Rµ, µCi = Rµ , i ∈ {1, . . . , 5} ,

λB = λ , λCi = Rλ , i ∈ {1, . . . , 5} ,

for varying values of R > 0. We note that in the rest of the
paper, but this section, we set R = 1. R = 1 corresponds to
a completely symmetric scenario, where all compartments have
death rate µ and division rate λ. For increasing values of R,
the scenario becomes asymmetric, where division in the blood is
less likely to occur compared to division in other compartments,
while death rates are still the same in all spatial compartments.
However, division and death rates for large values of R become
comparable (similar order of magnitude) to migration rates.

In Figure 4, we plot (starting with a single cell in the blood)
a) the mean number of division events in the blood and b) the
mean number of division events in compartments {B,C1,C2},
as a function of log(R). The fast-migration (FM) approximation
mostly provides reliable results when log(R) < 1.0. In this case,
results obtained by simulations agree with the analytic results
(obtained as detailed in section 2.2), and with the fast-migration
approximation (computed as explained in section 2.3). We note
that values log(R) < 1.0 correspond to division and apoptotic
rates of the order of 10−5 − 10−4 min−1, and migration rates
are of the order of 10−3 − 100 min−1. For log(R) > 1.0,
division and death rates become comparable to some of the
migration rates, and the fast-migration approximation provides
results in Figure 4 which significantly differ from those obtained
by numerical simulations and analytic methods. We also note
that even for small values of log(R), other variables of interest
cannot be well captured by the fast-migration approximation.
This is the case for m̂B(B) = IE(NB(B)), the mean number
of division events occurring in the blood for a cell starting
in the blood. While the fast-migration approximation provides
reliable results for log(R) = 0, once log(R) > 0 the true
(analytic) value of m̂B(B) fastly decays to zero. This behavior is
captured by the stochastic simulations in Figure 4B, but not by
the fast-migration approximation.

In Figure 5, we plot a) the probability of the original cell dying
in compartments {B,C1,C2}, and b) the mean total number of
cells in the genealogy of the original cell, as a function of log(R)
and for a cell starting in the blood. Similar comments to the ones
above apply to the results in Figure 5A, where the fast-migration
approximation behaves well for log(R) < 1.0. We also note that
for small values of R we get βB(C1) > βB(B) > βB(C2) for
the cell starting in the blood, which shows the importance of
the migration dynamics in the fate of a given cell. However, the
probability of the cell dying in the blood increases with increasing
values of R as one would expect, since if division and death rates
increase, the starting position of the cell has a larger impact on
its proliferation and death dynamics and the impact of migration
rates accordingly decreases. It is also interesting to note that the
fast-migration approximation provides reliable results for all the

values of R explored in Figure 5B. In this case, we study the mean
number of cells in the genealogy, which is a population-based
descriptor rather than a descriptor only related to a given cell.
This result is striking, since division and death rates for log(R) >

2.0 are of the order of 10−3− 10−2 min−1, which are comparable
to themigration rates inTable 1. Thismight indicate that the fast-
migration approximation could behave better when dealing with
population-based summary statistics, while it is reliable when
analysing single cell descriptors only for small enough values of
the division and death rates (compared to migration rates).

It is also worth noting that simulating stochastic processes
with different timescales is a challenging problem from a
computational point of view, which in our case means simulating
the migration of cells (timescales of the order of minutes), until
some division or death events occur (in days). This is even
more challenging when dealing with a population of cells (see
Figure 5B) rather than a single cell (Figures 4, 5A). For these
computational reasons, 103 stochastic simulations were used to
compute the values in Figure 5B, compared to 104 simulations
for Figures 4, 5A. Thus, our results in Figure 5B illustrate the
need for developing the analytical results of section 2.2, or related
approximations, such as the one in section 2.3, instead of using
standard stochastic simulations to analyse cellular dynamics in
these systems.

3.3. The Role of Different Death Rates in
Different Compartments
We have assumed that death rates are the same in all
compartments. However, taking into account that migration
rates determine the relative weight of each compartment in the
overall behavior of the system, in this section we analyse the role
of different death rates in compartments C1 (where migration
from blood is around six times faster than the reverse) and C3

(where migration from blood is around one third slower than the
reverse) (3).

Figure 6A shows the impact of varying the death rate µC1

in compartment C1 (with respect to the one in Table 1 µC1 =

µ, shown as a vertical solid line). It is interesting to note how
compartment C4 is one of the most sensitive to this parameter
in spite of the fact that we are only changing the death rate of
compartment C1. The rationale behind this result is related to
the relative immigration to emigration rates in each compartment.
In particular, using the migration rates of Table 1 we find K1 =

6.115,K2 = 0.843,K3 = 0.360,K4 = 8.000,K5 = 7.647 (namely,
immigration in C1 is 6.115 times larger than emigration). The
three compartments with higher immigration/emigration ratios
are C1, C4 and C5. Thus, when µC1 increases, the weight of the
dynamics is shifted to the compartment with the highest such
ratio. On the other hand, in Figure 6B, as compartment C3 has
low K3 = 0.360, the most sensitive probability of death with
respect to parameter µC3 is βB(C3).

Similarly, Figure 7A shows the effect of changing µC1 on the
mean lifetime of a cell. Again, the role ofKi is very relevant.While
in both cases (changing µC1 or µC3 ) the mean lifetime decreases
(as expected), the effect is milder in the case of µC3 . This is
related to the fact that, due to the reduced immigration rate into
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FIGURE 4 | Effect of changing the value of R on (A) the mean total number of division events m̂B, and (B) the mean number of division events occurring in

compartment j, m̂B(j), for j ∈ {B,C1,C2}. We consider a single cell starting in the blood. Analytic solution (solid), fast-migration approximation (dashed) and 104

stochastic simulations (dots).

FIGURE 5 | Effect of changing the value of R on (A) the probability of the cell dying in compartment j, for j ∈ {B,C1,C2}, and (B) the mean total number of cells in the

genealogy of the original cell, m̃B = IE(GB). We consider a single cell starting in the blood. Analytic result (solid), fast-migration approximation (dashed) and 104, for (A),

and 103, for (B), stochastic simulations (dots).

FIGURE 6 | Effect of varying µCi
on the probability βB(j) of dying in different compartments j ∈ {B,C1, . . . ,C5}, for a cell starting at blood. (A) Varying µC1

; (B) Varying

µC3
. The vertical black line represents the value µ.
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compartmentC3, the odds of finding the cell in that compartment
are relatively low. On the contrary, as the cell spends more time
in compartment C1, varying the death rate in that compartment
increases/decreases quickly themean lifetime when the death rate
decreases/increases, respectively.

Finally, in Figure 7B we show the mean number of cells
produced by a single cell during its lifetime (the size of the
offspring tree). Again, in the case of compartment C1, reducing
slightly the death rate produces a transition from finite to
infinite number of descendants, which is directly related to
the conditions given by Equations (1)–(2), and relates to the
asymptotic behavior observed in Figure 7B. In this case, small

changes in the parameters might have a huge impact on the cell
population dynamics.

Overall, these analyses show that, not only migration rates,
but the ratio between immigration and emigration rates affect
the overall dynamics of the system. Thus, analysing these ratios,
and their interplay with the apoptotic and proliferation rates, can
help to identify the most relevant locations of the immune system
related to the fate of a single cell.

3.4. The Role of Direct Migration Between
Compartments
To test the relevance of migration between compartments (as
emphasized in Ganusov and Auerbach (3)) we compute the
fractions, fB, fC1a , . . . , fC5 using the parameters from Table 1.
We have

fB = 0.042 , fC1 = 0.255 , fC2 = 0.035 , fC3 = 0.015 ,

fC4 = 0.334 , fC5 = 0.319 ,

where, as we defined above, fj represents the fraction of time
that the cell under study spends in each spatial compartment
j ∈ {B,C1, . . . ,CM}, in the absence of division and death.
Furthermore, in Figure 8 we show the dependence of these
fractions on the rate connecting compartments C1a and C1b,
ξC1a ,C1b

. Clearly, as ξC1a ,C1b
→ 0, compartment C1a becomes a

sink of cells so that fC1a → 1 and the rest tend to 0.

3.5. Sensitivity Analysis
For the original model in Figure 1, we can use Equation (3) to
compute the sensitivitymatrix S. Using the parameters inTable 1,
we find that the matrix S is given by

















−6.7 · 10−1 4.1 −8. · 10−4 6.8 · 10−4 −1.5 · 10−3 5.5 · 10−4 −2.5 · 10−1 2.0 −5.1 · 10−1 3.9

1.2 · 101 −7.3 · 101 −4.9 · 10−3 4.1 · 10−3 −9.3 · 10−3 3.4 · 10−3 −1.5 1.2 · 101 −3.1 2.4 · 101

−5.6 · 10−1 3.5 1.9 · 10−2 −1.6 · 10−2 −1.3 · 10−3 4.6 · 10−4 −2.1 · 10−1 1.7 −4.3 · 10−1 3.3

−2.4 · 10−1 1.5 −2.9 · 10−4 2.4 · 10−4 3.6 · 10−2 −1.3 · 10−2 −8.9 · 10−2 7.2 · 10−1 −1.8 · 10−1 1.4

−5.4 3.3 · 101 −6.4 · 10−3 5.4 · 10−3 −1.2 · 10−2 4.4 · 10−3 4.0 −3.2 · 101 −4.1 3.1 · 101

−5.1 3.1 · 101 −6.1 · 10−3 5.2 · 10−3 −1.2 · 10−2 4.2 · 10−3 −1.9 1.5 · 101 8.4 −6.4 · 101

















,

where the rows stand for fB, fC1 , . . . , fC5 and the columns for
ξB,C1 , ξC1 ,B, . . . , ξC5,B. That is, matrix S is defined so that

S12 =
∂fB

∂ξC1 ,B
S21 =

∂fC1

∂ξB,C1

, . . . .

While this matrix is informative, it does not reflect
a property of Equation (3); namely, that the relevant
quantities are not migration rates themselves but, rather,
the immigration/emigration ratio for each spatial compartment.
Thus, one can obtain a simpler version of the sensitivity matrix
with respect to the ratios Ki, i ∈ {1, . . . , 5}:

S̃ =

















−1.7× 10−3 −1.7× 10−3 −1.7× 10−3 −1.7× 10−3 −1.7× 10−3

+3.1× 10−2 −1.1× 10−2 −1.1× 10−2 −1.1× 10−2 −1.1× 10−2

−1.5× 10−3 +4.0× 10−2 −1.5× 10−3 −1.5× 10−3 −1.5× 10−3

−6.3× 10−4 −6.3× 10−4 +4.1× 10−2 −6.3× 10−4 −6.3× 10−4

−1.4× 10−2 −1.4× 10−2 −1.4× 10−2 +2.8× 10−2 −1.4× 10−2

−1.3× 10−2 −1.3× 10−2 −1.3× 10−2 −1.3× 10−2 +2.8× 10−2

















,

where each row corresponds to a given fraction, fj, and with
the columns representing (K1,K2,K3,K4,K5), where K1 =

6.115,K2 = 0.843,K3 = 0.360,K4 = 8.000,K5 = 7.647, so that

S̃ij =







∂fB
∂Kj

if i = 1 ,
∂fCi−1
∂Kj

if i 6= 1 .

Due to some symmetries in Equation (3) with respect
to Ki, the reduced sensitivity matrix has many repeated
entries. Biologically, this is a remarkable result as it shows
that events occurring in different compartments can affect
equally a given one. Another conclusion can be derived from
the sign of the elements of S̃. These signs can be easily
understood by noting that, since Ki represents the fraction
of immigration to emigration events in a given compartment,
the higher Ki the higher the probability of finding a cell in
compartment Ci.

4. DISCUSSION AND CONCLUSIONS

We propose a mathematical model for the migration,
proliferation and death of a CD4+ T cell, and focus on a
number of observables which refer to the single cell journey
during its lifetime, as well as to the dynamics of its progeny. We
have presented analytical methods to study these observables
and have provided conditions for this cellular system not to
explode. A fast-migration approximation can be proposed when
migration events occur significantly faster than division and
death, so that steady state conditions can be assumed for the
spatial location of the cell.
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FIGURE 7 | Effect of changing the value of one death rate, µCi
on (A) the mean lifetime, IE(TB), and (B) the mean number of cells in the genealogy, IE(GB), for a cell

starting at blood. The vertical black line represents the value µ.

FIGURE 8 | Effect of the migration rate ξC1a,C1b
on the fraction of time spent

in each compartment, fj , for j ∈ {B,C1a,C1b,C2, . . . ,C5}. The vertical black

line represents the value ξC1a,C1b
in Table 1, as in Ganusov and Auerbach (3).

Our numerical results show that most of the stochastic
observables under study can be properly captured by means of
the fast-migration approximation, when migration rates are (at
least) one order of magnitude larger than division and death
rates. The fast-migration approximation is able to appropriately
capture the mean number of cells in the genealogy of a given
cell, even when migration events occur at a similar rate to those
of division and death events. It is also worth mentioning that
our numerical results illustrate how perturbing a single rate
in a given spatial compartment can have a significant impact
on the cellular dynamics and observables corresponding to
other compartments, which indicates the clear interplay between
cellular dynamics in the different spatial compartments, and
which depends on the specific migration structure (and rates) of
the system. Finally, a particular feature of our analytical approach
is that it allows for an exact sensitivity analysis of each of the
observables with respect to each kinetic rate. In this way the

contribution that each particular rate (i.e., event) has on a given
stochastic observable can be assessed.

Recent experimental advances allow us to observe biological
processes at the single cell level, but at the same time these
new experimental techniques are still far from being able to
provide a full picture of migration, division and death events
in vivo. Thus, experimental observations need to be combined
with mathematical and computational models which allow one
to test hypotheses, shed some light on cellular dynamics or to
design new or different experiments. As a consequence, twomain
challenges that directly arise are: (i) to develop new analytical
techniques to study different observables in these cellular
systems, which can be compared to experimental measurements,
and (ii) to propose new and more advanced methodologies for
calibrating these mathematical models by using experimental
data. Although our focus in this work is on (i), our results can
have a direct impact on (ii), since the distributions and mean
values computed in section 2 could be used to calculate the
likelihood function when applying Bayesian statistical methods
for parameter estimation and model calibration.

Finally, it is worth noting that, unlike population dynamics
models (based on collective counts of cells), our stochastic
descriptors have two clear advantages. First of all, they represent
variables directly related to the dynamics of a single cell, and thus,
allow us to bridge between the novel experimental techniques
described in section 2.2 and specific proliferation, death or
migration rates at the cell level. Secondly, our descriptors allow
us to quantify these individual rates. For instance, in practice
only the net division rate can be measured but, combining
descriptors, we can separate birth from death or migration
rates. Naturally, these estimates require the use of both more
sophisticated experiments and parameter estimation techniques
(such as the Bayesian methods mentioned above).
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