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Abstract:  

Schedule coordination is a proven strategy to improve the connectivity and service quality for bus network, 

whereas current research mostly optimizes schedule design using the a priori knowledge of users’ routings 

and ignores the behaviour reactions to coordination status. This study proposes a novel bus stochastic 

schedule coordination design with passenger rerouting in case of transfer failure. To this end, we develop a 

bi-level programming model in which the schedule design (headways and slack times) and passenger route 

choice are determined simultaneously via two travel strategies: non-adaptive and adaptive routings. In the 

second strategy, transfer passengers would modify their paths in case of missed connection. In this way, the 

expected network flow distribution is dependent on both the transfer reliability and network structure. The 

upper-level problem is formulated as a mixed integer non-linear program with the objective of minimizing 

the total system cost, including both the operating cost and user cost, while the lower-level problem is route 

choice (pre-trip and on-trip) model for timed-transfer service. A more generalized inter-ratio headways 

scenario is also taken into account. A heuristic algorithm and the method of successive averages are 

comprehensively applied for solving the bi-level model. Results show that when the rerouting behaviour is 

considered, more cost-effective schedule coordination scheme with less slack times can be achieved, and 

ignoring such effect would underestimate the efficacy of schedule coordination scheme. 

Keywords: Public transport; Bus schedule coordination; Stochastic travel times; Passenger transfer; 

Rerouting 
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1. Introduction 

In the era of internet-of-things, travellers expect seamless mobility solutions on the go and have access to 

up-to-the-minute traffic conditions and travel options. Seamless travel requires good public transport 

connectivity and cooperation among different lines. This can be done either before or after transit line 

alignment. Schedule coordination aims at adjusting the timetables or headways so as to make the vehicles 

on different lines arrive at the transfer station simultaneously as possible, which is a proven strategy after 

transit line alignment.  

Although a well-planned synchronized scheme can considerably improve level of service by providing 

seamless transfer solutions, in practice, there exists large number of stochastic attributes in the public 

transport system: travel time, dwell time, adverse weather, demand, etc., which affects the materialization of 

the planned synchronized timetable (Yu et el., 2012; Wu, et al., 2015; Wu, et al., 2016). Such stochastic 

events cause arrival delay to transfer stations and missed connection for passengers. To counter such 

stochastic effect, in practice, transit agencies normally impose sufficient slack times into timetable to 

increase the probability of successful transfer coordination of connecting routes. However, the addition of 

slack times could bring two disbenefits: (1) from users’ perspective, it will increase the on-board waiting 

time for those through passengers, and (2) from the viewpoint of operator, it increases the total round-trip 

time which in turn requires bigger fleet size to provide the same level of service. One of the greatest 

challenges to transit authorities is to improve service reliability and operation efficiency, which involves 

making a difficult trade-off between operation cost (by adding slack times) and the on-time arrival 

performance. Our study explores this idea.  

It has been shown that larger headways (e.g., more than 10 min or even half an hour) make it easier for 

schedule coordination (e.g., Ting and Schonfeld, 2005; Wu et al., 2016), and that passengers perceives the 

value of waiting time twice as much as the in-vehicle travel time (Hollander and Liu, 2007). As a result, the 

extra waiting time costs caused by the transfer failure event will greatly change the relative utility between 

different routes, such that some passengers would modify their routes as response to the status of transfer 

coordination. With the provision of traffic information or route guidance along the trip, dynamic rerouting 

behaviour is prevalent under stochastic travel conditions (Zhao, et al, 2017; Xu, et al, 2017). As indicated in 

the empirical study by Kim et al. (2017), passengers would present lower stickiness on the same route with 

the increase in the number of alternative routes. The performance of transit operation is highly related to the 

temporal and spatial passenger flow distribution and running fleet (Liu and Singha, 2007; Sorrantina et al., 

2006; Wu et al., 2017). The accurate transfer demand and transfer waiting time given to the operators are 

important determinants for the reservation of slack times and fleet management. As the first step towards an 

efficient transit system, understanding and modelling the interaction between travel behaviour and schedule 

coordination design can help the transit planners to reasonably allocate and schedule the available fleet in 

fine granularity. Since the amount of slack time is largely determined by transfer demand, one possible 

solution is to provide alternative path to transport passengers between the endpoints of the link affected by 

connection failures such that the stranded passengers are able to resume their journey. Therefore, besides 

imposing slacks, rerouting of passengers is a potential behaviour-driven strategy for delay management in 
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public transport. 

Previous studies on bus schedule coordination generally assumed that behavioral pattern of passengers is 

independent of the synchronized schemes and connection status, which limits the service flexibility and 

operational efficiency. Distinct from prior research, considering passengers’ rerouting behaviour, this paper 

develops an optimization framework for reliable timed transfer while achieving high efficiency that allows 

to react to delayed buses not only by slacks but also by rerouting of passengers. To this end, we first define 

and formulate the concept of rerouting in the context of timed transfer under connection uncertainty, where 

part of transfer passengers modify their paths in case of missed connection. We then solve the optimization 

of coordinated transfer by integrating such users’ routing strategy. The switching rate is determined by not 

only the disutility of acceptable routes, but also the transfer failure rate, both of which are contingent on the 

service headways and slack times. Our findings show that the inclusion of rerouting considerably affects the 

transfer demand and network flow distribution, and more importantly, helps to reduce the unnecessary slack 

times, particularly under supply constraints. We thus suggest that the performance of schedule coordination 

could be improved in an ad-hoc manner, which provides new practical insights for fleet management.  

The rest of the paper is organized as follows. In section 2, a review of previous works and our contributions 

are provided. In section 3, we formulate the model and solution algorithm. Section 4 performs experiments 

to verify the effectiveness of our model. Finally, Section 5 provides conclusion and future works.  

 

2. Literature review and main contributions 

Timetabling and scheduling problems for public transport have received considerable attention for many 

years due to their practical importance. Generally, schedule coordination can be carried out at both planning 

level and operation level. The former seeks to design a timetable to realize simultaneous arrivals at a transfer 

station as possible to reduce the transfer waiting time for passengers. The latter focuses on real-time 

disruption by managing unexpected delays to adhere operation to the pre-designed timetable as much as 

possible.  

Ceder et al. (2001) developed a mixed integer linear programming model for the timetable generation 

problem, with the objective of maximizing the number of simultaneous vehicle arrivals at transfer hubs. 

Later, Eranki (2004) relaxed the synchronization condition proposed by Ceder et al. (2001), and allowed 

arrival time of buses from different lines at the connection nodes is not necessarily the same but within a 

targeted time window. In a more realistic setting, Ibarra-Rojas and Rios-Solis (2012) studied timetable 

synchronization problem for a common-line situation where different bus lines share the same route segment, 

in which bus bunching avoidance is desirable. Later, Ibarra-Rojas et al (2015) further expanded the model 

by considering different planning periods for different lines. The common objective of Ibarra-Rojas and 

colleagues’ work is to improve passenger transfers and reduce bus bunching. In contrast, Wong et al (2008) 

established a mixed integer programming method for non-periodic timetable synchronization problem, 

which is realized by jointly adjusting travel time, dwell time, dispatching time and headways. Recently, Liu 

and Ceder (2017) integrated the timetable synchronization and vehicle scheduling using deficit function. 
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In practice, buses usually operate in a large open-ended environment, which entails large amount of 

uncertainty that prevents vehicles from operating according to schedule and hinders fully realization of the 

efficiency of schedule coordination. As a result, it is difficult to maintain vehicles consistent with the planned 

scheduled determined by deterministic models in uncertain environment. In order to alleviate the uncertainty, 

many studies have focused on inserting control strategies into schedule, either at the planning or operation 

stage.  

At the planning level, the most commonly used strategy is to impose slack times in the timetable. Ting 

and Schonfeld (2005) developed a model of schedule coordination by optimization of headways and slack 

times, with the objective of minimizing the net total costs. Chowdhury and Chien (2011) studied the schedule 

coordination problem in an intermodal transfer station in New Jersey Coast Line, where passenger transfer 

between train and bus as well as between buses. The design variables to be optimized include vehicle size, 

headways and slack times. Thereafter, Wu et al. (2015) investigated a timetabling model by adding slack 

times onto mitigate the travel time variability. They built upon the original work of Ceder et al. (2001) and 

developed a stochastic integer programming model where decision variables consist of slack times and 

departure times.  

In parallel with studies at the planning level, there also have been a few studies at the operation level 

which attempt to impose real-time control strategies into schedule in a real-time manner, such as holding, 

stop-skip and speed control. As summarized in a review by Ibarra-Rojas et al. (2015), holding is an adaptive 

decision method and is the most commonly used dynamic control strategy that can be implemented at both 

intermediate bus stops and at transfer nodes. The goal of the former is to reduce bus bunching and regular 

headways along a bus corridor, while the latter is to allow well-timed passenger transfers. Ting and Schonfeld 

(2007) developed a dynamic holding control model for a transfer station. Chuang and Shalaby (2007) applied 

holding control to realize connection protection, and evaluated it at an intermodal transfer station in the city 

of Brampton, Canada. Some researchers also applied the holding control to deal with stochastic disturbances 

or delayed arrivals at transfer nodes (e.g. Dessouky et al., 1999, 2003; Chowdhury and Chien, 2001; Yu et 

al., 2012). Daganzo and Pilachowski (2011) proposed an adaptive speed control strategy in a two-way 

looking manner, which is based on the spacing both in the front and rear of each bus. Liu et al (2014) 

proposed an inter-vehicle communication scheme to optimize the schedule coordination, where two 

operational tactics: speed control and holding at transfer point were employed by using real-time information. 

Hadas and Ceder (2010) developed simulation models for transfer synchronization through optimal 

combinations of the selected tactics, such as holding, stop-skipping and short-turning. Nesheli and Ceder 

(2014) refined the simulation framework by the introduction of skip-segment strategy apart from skipping a 

stop. Later, Wu et al. (2016) put forwards a new strategy named “safety control margin” to improve the 

operation efficiency and transfer reliability of schedule coordination, by integrating dynamic holding control 

and slacks at both planning and operation levels.  

The performance of schedule coordination scheme largely depends on the interaction between transport 

supply and the demand side in the bus network. However, most of existing studies on schedule coordination 

assume passengers’ route choice being independent of the timetable, and they choose paths pursuing the 
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minimal cost without considering the transfer connection failure (e.g., Ting and Schonfeld, 2005; Wu et al, 

2016). In other words, passenger routes are predetermined in the optimization process given the planned 

timetable. This assumption is difficult to defend since in reality the passengers’ route choice could change 

with synchronized timetable and transfer reliability. Recent works for timetable synchronization considering 

the interaction between timetabling and passengers’ route choice are Parto et al (2014) and Liu and Ceder 

(2017), assuming that passengers follow a fixed route through the network with given timetable (i.e., static 

user equilibrium). Their models are deterministic in that the stochastic travel time and the resulting 

connection failure has not been considered. However, in the presence of missed connection and rerouting 

decisions along the journey, the passenger flow may not evolve to an equilibrium state. To increase the 

operational accuracy and behavioural realism, it is necessary to capture both the pre-trip and on-trip decisions 

in the context of schedule coordination. Allowing such realistic passenger behaviour presents difficulties to 

the optimization of schedule coordination. The main challenge is how to formulate jointly the departure route 

choice, adaptive on-trip rerouting options and synchronized operation design. 

In this study, we develop a more generalized schedule coordination model into which the transfer 

reliability and the respective behaviour reactions (i.e., rerouting) are explicitly incorporated. The transfer 

reliability refers to the expected probability of successful connection. The reservation of slack times at 

transfer hub could significantly increase the success of transfer coordination, the optimization is performed 

with the view of exploring the optimal headways and slack times to reduce the systematic total costs, 

including user cost and operator cost.  

The contributions of the paper are: (1) we propose a unified framework for modelling route choice (pre-

trip and on-trip) in the context of schedule coordination, where the transfer passengers may modify their 

originally planned path in the event of missed connection. The model is scalable allowing passengers to 

modify the path choice multiple times; (2) we build the interdependencies between uncertainty of bus delay 

arrival times, the transfer failure rate and rerouting probability, in which way the interaction between the 

schedule design and route choice is handled; (3) we demonstrate that by including rerouting behaviour in the 

travel strategy, more cost-effective schedule plan with less slack times can be materialized. To the best of 

our knowledge, this is the first attempt in optimizing bus schedule coordination scheme by integrating 

transfer reliability and adaptive rerouting behaviour from the systematic point of view. 

3. Model formulation  

3.1. Problem description 
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Fig.1 A diagrammatic illustration of passenger rerouting under missed connection in a looped network 

This paper seeks to develop an enhanced stochastic bus schedule coordination model, more specifically 

by modelling the pre-trip and on-trip route choice, and investigates how the passenger route choice interact 

with different operational settings. To achieve so, we firstly present a bus schedule coordination model with 

static route choice without rerouting behaviour, then extend the basic model by explicitly modelling 

passenger rerouting as another way of handling uncertainty. The models are compared under different given 

demands and supply constraints. 

Consider a bus network with time-transfer where a fixed number of passengers want to go from node 1 to 

node 6 (see Fig.1 for illustration). There are two possible itineraries along paths 1 and 2, in which path 1 is 

the shorter path under the condition of successful coordination. For simplicity here we assume that 

passengers take the shortest route to a destination. If the possibility of passengers rerouting is not considered, 

the number of passengers affected by missed connection is the total demand travelling from node 1 to node 

6, which could lead to unnecessary long slack time for node 2. However, if the passengers is allowed to adapt 

their path to the prevailing delay situation, it turns out that the negative effect of missing connection can be 

partially mitigated. There are two options in this case: some passengers would stay at node 2 and wait for 

the next bus on line 2, while the other group may switch to path 2. In other words, they will stay at the 

delayed bus until arriving at node 3 and then reach the destination by transferring to line 3.  

The example shows that the actual demand affected by missed connection is only part of the total demand 

travelling from node 1 to 6. As a result, the detrimental effects of missed connection with rerouting of 

passengers is smaller than those without for the same amount of slack time. In other words, the optimal 

allocated slack times with rerouting behaviour may be smaller than those without rerouting. 

To this end, we define the concept of rerouting behaviour in the context of schedule coordination under 

connection uncertainty as follows: Passengers determine their route beforehand (via checking the route and 

timetables). In case of missed connection, passengers are assumed to compare travel cost to that of the 

currently used path in deciding whether to switch to another alternative. In this way, both pre-trip and on-

trip decisions have been handled in the bus schedule planning.  
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Fig.2 A diagrammatic illustration of trunk-and-feeder network 

Note that whether there exists another alternative path depends on the bus network structure, while the 

swapping demand is determined by utility differences between the originally planned path and alternative 

paths. Generally, bus networks present different topological structures, such as trunk-and-feeder 

(Sivakumaran, K., et al, 2012; Gschwender, A., et al, 2016), looped (Ting and Schonfeld, 2005; Wu et al, 

2016), and ring-radial structure (Chen, et al, 2015; Saidi, S, et al, 2016). For trunk-and-feeder network, as 

shown in Fig.2, any OD pair between two branches should run through the main ‘trunk’ route, thus no 

alternative could be provided by the spatial network. Such a network structure is however beyond the scope 

of this study.  

3.2. Network representation, assumption and notations 

Suppose a general transit network consisting of a set of bus lines and stations (node) where passengers 

can board, alight or transfer. For illustrative purpose, we adopt the network in Huang et al (2016) as an 

example. In this network (Fig.3), a bus line is a fixed path connecting two terminals, for instance, bus line 𝐿1 can be seen to run between terminals 𝑁1 and 𝑁4. A transit link is a segment of a bus line connecting 

two consecutive stations, represented as 𝑁1 𝐿1→𝑁2. A section-based path is represented by a sequence of 

nodes and links used on this trip, e.g., 𝑁1 𝐿1→𝑁2 𝐿3→𝑁4. Due to the consolidation of bus lines in a route section, 

a section-based path can be decomposed into several line-based paths. For example, the section-based path 𝑁1 𝑆1(𝐿1,𝐿3)→      𝑁4 can be extended to two line-based paths: 𝑁1 𝐿1→𝑁4 and 𝑁1 𝐿3→𝑁4.  

    

                          (a)                                     (b) 

Fig.3 Transit network representation using: (a) lines and (b) route sections (adapted from Huang et al., 

2016) 
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Without loss of generality, the assumptions considered in developing the model are the following: 

(A1) Route information, including passenger demand and bus travel time, are known and fixed in the 

planning period. 

(A2) Since the minimal passengers’ walking time at the transfer station can be simply added onto the vehicle 

running time as input, it is reasonable to assume that the transfer time between buses at a transfer station is 

zero. 

(A3) The model focuses on the schedule design over a specific planning horizon in which passenger demand 

and travel time retain their characteristics. However, the model can be extended to incorporate demand and 

running time dynamics in multi-period schedule coordination planning to capture the time-dependent 

operating conditions, which has been left for future research. 

  The notations adopted in this paper are given in Table 1. 

Table 1 Primary notations used in the article 

Notations Definitions 

Indices 𝑘 the bus line index 𝑠 the index of route section 𝑚 indices of transfer nodes 𝑝 the index of transit path 

Model parameters 𝐵 unit vehicle operation cost  𝜇𝑤 value of passenger waiting time and delayed connection time 𝜇𝑐 value of missed connection time 𝑡𝑠 average travel time on link 𝑠 𝐶𝑎 vehicle capacity 𝑓(𝑑𝑚𝑘) the probability density function of delayed arrival at transfer node 𝑚 on line 𝑘 𝜃 the degree of passengers’ perception of the path travel time 

Auxiliary variables 𝐶𝑎𝑠 the capacity of link 𝑠 𝑥𝑠 the flow of link 𝑠 𝑇𝑠 perceived in-vehicle travel time on link 𝑠 𝑄𝑠 boarding demand on link 𝑠 𝑄𝑚𝑘 through demand at transfer node 𝑚 on line 𝑘 𝑄𝑚𝑘𝑘′  transfer demand at transfer node 𝑚 between line 𝑘 and its connecting line 𝑘′ without 
rerouting; or the transfer demand for missed connection with rerouting 𝑄𝑡𝑚𝑘𝑘′  transfer demand for delay connection at transfer node 𝑚  between line 𝑘  and its 
connecting line 𝑘′ with rerouting 𝑓𝑝𝑤 section-based flow of path 𝑝 between OD pair 𝑤 without rerouting  �̇�𝑝𝑤 line-based flow of path 𝑝 between OD pair 𝑤 without rerouting 𝑓𝑝𝑛𝑤  non-adaptive flow of path 𝑝 between OD pair 𝑤 under 𝑛th transfer 𝑓�̅�𝑛𝑤  adaptive flow detouring through alternative path �̅�  between OD pair 𝑤  under 𝑛 th 
transfer 
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𝑓𝑝𝑛𝑤  the expected incoming flow on path 𝑝 under 𝑛th transfer 𝑃𝑟𝑝𝑗𝑤  switching rate at 𝑗th transfer station on path 𝑝 between OD pair 𝑤 𝑃𝑚𝑘𝑘′ transfer failure rate between line 𝑘 and 𝑘′ at transfer node 𝑚 𝑃𝑐𝑝𝑗𝑤  transfer failure rate at 𝑗th transfer station on path 𝑝 between OD pair 𝑤 𝜉𝑠𝑝𝑤  1 if link 𝑠 is the first section of path 𝑝 between OD pair 𝑤, and 0 otherwise 𝜏𝑚𝑘𝑘′ 1 if line 𝑘 and line 𝑘′ share transfer node 𝑚, and 0 otherwise  𝛿𝑠𝑝𝑤  1 if link 𝑠 is on path 𝑝 between OD pair 𝑤, and 0 otherwise 𝑏𝑘𝑝 1 if line 𝑘 is on path 𝑝, and 0 otherwise 𝜑𝑘𝑚 1 if node 𝑚 (not the terminal) is on line 𝑘, and 0 otherwise. 𝜓𝑝𝑗𝑚  1 if node 𝑚 is the 𝑗th transfer station on path 𝑝 between OD pair 𝑤, and 0 otherwise. 𝑍𝑚𝑘𝑘′  inter-cycle transfer waiting time from line 𝑘 to line 𝑘′ at node 𝑚 𝑈𝑝𝑤 the expected travel disutility on path 𝑝 between OD pair 𝑤 �̃�𝑚𝑝  the expected transfer waiting time cost at transfer node 𝑚 on path 𝑝. 𝐶𝑜 operation cost 𝐶𝐼 in-vehicle travel time cost 𝐶𝑤 initial waiting time cost 𝐶𝑐 missed connection cost 𝐶𝑓 delayed connection cost 𝐶𝑔 inter-cycle delay cost 𝐶 system total cost 
Decision variables 𝑠𝑚𝑘 slack time on line 𝑘 at transfer node 𝑚 ℎ𝑘 departure headway on line 𝑘 

3.3. Individual cost formulation without rerouting 

Without loss of generality, we assume the delayed arrival time follow a given distribution. To assure a 

high probability of scheduled transfer at the planning level, slack times are often added into the schedule to 

mitigate the effect of delayed arrival time. The problem of stochastic bus schedule coordination design is to 

determine the headways and slack times that corresponds to the minimum value of total costs, which involves 

the trade-off between various cost components. In order to operate the schedule periodically, the headways 

of different bus lines should be set as common or inter-ratio. This leads to the following two scenarios: 

(a) common headway (CH) where the headways of different bus lines are identical, i.e., ℎ𝑘 = ℎ, where ℎ is the common headway.  

(b) inter-ratio headway (IR) where the optimized headways of different lines are integer multiples of a 

base cycle, i.e, ℎ𝑘 = 𝛽𝑘𝑦, where 𝑦 is the base cycle and 𝛽𝑘 is a positive integer number. If 𝛽𝑘 =1, the integer-ratio headway scenario is equivalent to common headway. In other words, the common 

headway scenario is a special case of inter-ratio headway. 

For coordinated operations, the system costs are determined at the planning level including: initial waiting 

time cost 𝐶𝑤, in-vehicle travel time cost 𝐶𝐼, operating cost 𝐶𝑜, and the induced slack cost 𝐶𝑠 cost caused 

by the introduction of slack times. Moreover, the transfer waiting costs could be separated into two (or three 
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for IR scenarios) components: (a) missed connection cost 𝐶𝑐; (b) delayed connection cost 𝐶𝑓; and (c) for 

IR operation only, the inter-cycle transfer waiting time cost 𝐶𝑔 . We start from extending the schedule 

coordination design model of Wu et al (2016) to include passenger pre-trip and en-route route choices.  

3.3.1 Induced slack time cost 

  The reservation of slack times would induce additional costs for both passengers and operator. From the 

perspective of passengers, it increases the on-board travel time for through passengers; while from 

perspective of operator, it increases the roundtrip time and resulting fleet size. As a result, the induced slack 

time cost takes the following forms: 

      𝐶𝑠 = ∑ ∑ (𝜇𝑤𝑄𝑚𝑘 + 𝐵ℎ𝑘) 𝑠𝑚𝑘𝑘𝑚                                                    (1) 

where the second term represents the product of extra fleet size 𝑠𝑚𝑘 ℎ𝑘⁄  and the unit vehicle operating cost. 𝑄𝑚𝑘 is the number of passenger passing through transfer station 𝑚 on bus line 𝑘 and can be computed 

by: 

      𝑄𝑚𝑘 = ∑ ∑ �̇�𝑝𝑤𝜑𝑘𝑚𝑏𝑘𝑝𝑝𝑤                                                          (2) 

where 𝑏𝑘𝑝 equals 1 if bus line 𝑘 is included in path 𝑝, and 0 otherwise. 𝜑𝑘𝑚 = 1 if node 𝑚 (not the 

terminal) is on line 𝑘, and 0 otherwise.  

Note that in Eq.(2) the path flow here is line-specified, which can be extracted from section-based path 

flow. The number of passengers using each line in a given route section is proportional to its relative 

aggregated frequency (De Cea and Fernández, 1993), thus passenger flow on route section 𝑠 that uses bus 

line 𝑘 can be expressed as: 

       𝑥𝑠𝑘 = 𝜋𝑠𝑘𝑥𝑠, 𝑘 ∈ 𝐴𝑠                                                            (3) 

   In this spirit, for a transfer path consisting of a sequence of bus lines 𝑘, the line-based path flow takes 

the following iterative forms:  

     �̇�𝑝𝑤 = ∏ 𝜋𝑠𝑘𝑓𝑝𝑤𝑘 , 𝑘, 𝑠 ∈ 𝑝                                                       (4) 

 Note that the direct path, where transfer is neglected, is a special case of a transfer path where the number 

of bus lines used by travelers is only one, since there is no other route to be selected as all of the demand 

will travel through route section 𝑠 which coincides with pair 𝑤. 

3.3.2 Missed connection cost at transfer stations  

Missed connection event occurs when the connecting bus leaves before the transfer passengers arrive. 

The missed connection cost is the summation of product of transfer demand and the expected missed 

connection time, which is expressed as follows: 

       𝐶𝑐 = 𝜇𝑐 ∑ ∑ ∑ 𝑄𝑚𝑘𝑘′𝑇𝑐𝑘𝑘′𝑘′𝑘𝑚                                                      (5) 

where 𝑇𝑐𝑘𝑘′represents the expected missed connection time depending on the delayed distribution and slack 
times, of which the detailed derivation is provided in Appendix 1. 

 Similar to the through passenger demand, the calculation of transfer demand concerns with the line-
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based path flow. For the case without rerouting behaviour (passengers select a path a prior and continue 

along it throughout their journey), the transfer flow at transfer station 𝑚 between line 𝑘 and line 𝑘′ can 

be simply expressed as follows: 

     𝑄𝑚𝑘𝑘′ = ∑ ∑ �̇�𝑝𝑤𝑝𝑤 𝑏𝑘𝑝𝑏𝑘′𝑝𝜏𝑚𝑘𝑘′                                                   (6) 

where 𝜏𝑚𝑘𝑘′ = 1 if and only if line 𝑘 and line 𝑘′ share transfer node 𝑚. Otherwise, 𝜏𝑚𝑘𝑘′ = 0.  

3.3.3 Delayed connection cost at transfer stations  

Unlike missed connection case, transfer passengers could make a successful connection by waiting for 

relatively shorter time instead of a full headway. The total delayed connection cost is associated with the 

product of transfer demand and the expected total delayed connection time. Note that for the case without 

rerouting, the formulation of transfer demand is identical to that of missed connection as in Eq.(6). 

 𝐶𝑓 = 𝜇𝑤 ∑ ∑ ∑ 𝑄𝑚𝑘𝑘′𝑇𝑓𝑘𝑘′𝑘′𝑘𝑚                                                       (7) 

where 𝑇𝑓𝑘𝑘′represents the expected delayed connection time (see Appendix 2 for deviation). 

3.3.4 Transfer waiting time under integer-ratio headways  

In IR scenarios, the average transfer demand between two bus lines is related to the integer ratio of two 
headways. This affects the missed connection cost 𝐶𝑐 and the delayed connection cost 𝐶𝑓. Following Ting 

and Schonfeld (2005), since vehicles of two lines encounter at a transfer node every time interval ℎ𝑘ℎ𝑘′ 𝑔𝑘𝑘′𝑦⁄ , the average transfer demand is 𝑄𝑚𝑘𝑘′𝑔𝑘𝑘′𝑦 ℎ𝑘′⁄ , where 𝑔𝑘𝑘′  stands for the greatest common 
divisor of 𝛽𝑘  and 𝛽𝑘′ , i.e., 𝑔𝑘𝑘′ = 𝑔𝑐𝑑 (𝛽𝑘 , 𝛽𝑘′) . Therefore, the missed connection cost and delayed 

connection cost for IR follow the same formulations as those for the CH scenarios in Eqs.(6) and (7), but to 

replace 𝑄𝑚𝑘𝑘′ by 𝑄𝑚𝑘𝑘′𝑔𝑘𝑘′𝑦 ℎ𝑘′⁄ . 

The formulations of induced slack time cost 𝐶𝑠 for IR scenarios are the same as their corresponding CH 

operations as in Eq. (1). This is because the formulations are not related to the transfer demand. 

 Unlike the CH scenario, the inter-cycle transfer waiting cost 𝐶𝑔 should be included in the transfer cost 

in IR scenario. The inter-cycle waiting cost 𝐶𝑔 can be presented as follows: 

  𝐶𝑔 = 𝜇𝑤 ∑ ∑ ∑ 𝑄𝑚𝑘𝑘′𝑚𝑘′𝑘 𝑍𝑚𝑘𝑘′                                                      (8) 

  𝑍𝑚𝑘𝑘′ = ℎ𝑘′2 + 𝑠𝑚𝑘′ − 12𝑔𝑘𝑘′𝑦                                                      (9) 

Eq. (9) represents the total transfer waiting time from line 𝑘 to its connecting line 𝑘′, where 𝑦 is the 

base cycle. The term ℎ𝑘′ 2 + 𝑠𝑚𝑘′⁄  represents the upper bound of the average waiting time for line 𝑘′. The 

second term 𝑔𝑘𝑘′𝑦 2⁄   may be interpreted as the transfer waiting time reduction due to different line 

headways. If the common headway is selected as the solution, the first term is eliminated and the waiting 

time equals to the slack time of that line. 

3.3.5 In-vehicle travel time cost                                                  
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   There may exist common-line corridors in the bus network (Schmöcker et al., 2016), the link-specific 

travel time is associated with the line-specific travel times and relative frequency. let 𝑡𝑠𝑘 be the in-vehicle 

travel time for bus line 𝑘 on route section 𝑠. Then, the expected in-vehicle travel time 𝑡𝑠 on route section 𝑠 is equal to the weighted average of 𝑡𝑠𝑘 of all lines on this route section. That is, 

      𝑡𝑠 = ∑ 𝜋𝑠𝑘𝑡𝑠𝑘𝑘∈𝐴𝑠                                                                (10) 

where 𝐴𝑠 is the set of attractive lines on common link 𝑠. 𝜋𝑠𝑘 is the relative frequency defined as follows: 

      𝜋𝑠𝑘 = 1 ℎ𝑘⁄1 ℎ𝑠⁄ ,  ∀𝑘 ∈ 𝐴𝑠                                                           (11) 

where the joint headway for the common section is the of service frequency of all attractive lines, i.e., ℎ𝑠 =1 (∑ (1 ℎ𝑘⁄ )𝑘∈𝐴𝑠 )⁄ . 

To capture the passenger’s discomfort effect, the perceived in-vehicle travel time is introduced which 

depends on the link flow 𝑥𝑠 and corresponding travel time 𝑡𝑠, which is given by: 

      𝑇𝑠 = { 𝑡𝑠 [1 + 𝑎 ( 𝑥𝑠𝐶𝑎𝑠)𝑏]   𝑓𝑜𝑟 𝑥𝑠 > 𝐶𝑎𝑠𝑡𝑠                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                             

(12) 

where 𝐶𝑎𝑠 represent the link capacity; 𝑎 and 𝑏 are the model parameters. Eq.(12) resembles the Bureau 

of Public Roads (BPR) function in relation to both travel time and the level of congestion. Note that the 

congestion cost of interest here doesn't include the extra delay induced by the leftover passengers. 

 The passenger flow on link 𝑠 is related to the path flow in the transfer network, and can be estimated by: 

    𝑥𝑠 = ∑ ∑ 𝑓𝑝𝑤𝑝𝑤 𝛿𝑠𝑝𝑤                                                              (13) 

where 𝛿𝑠𝑝𝑤  is the indicator, which equals 1 if route section 𝑠 is on path 𝑝 between OD pair 𝑤. 

  In Eq.(12), the capacity on link 𝑠  can be estimated by the product of vehicle capacity and service 

frequency (the reciprocal of headway), i.e., 

      𝐶𝑎𝑠 = γ𝐶𝑎 ℎ𝑠⁄                                                                 (14) 

where 𝐶𝑎 represents the vehicle capacity. γ = 60 min/h if the unit for headway is minutes and the line 

capacity is passengers per hour. 

  As a result, the total perceived in-vehicle time cost can be calculated as the product of the link flow and 

the corresponding perceived in-vehicle travel time and expressed as follows: 

      𝐶𝐼 = 𝜇𝑤 ∑ 𝑥𝑠𝑇𝑠𝑠                                                                (15) 

3.3.6 Initial waiting time cost 

The initial boarding demand includes the passengers originating at intermediate stops and transfer stations. 

The initial waiting time is associated with the departure headways. In the presence of common lines, 

passengers who boarding at the common station can travel by any of the lines. For random passenger arrivals, 

the expected initial waiting time associated with link 𝑠  can be calculated as half of the expected joint 

headway: 
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   𝐸𝑊𝑠 = 12𝐸(ℎ𝑠)                                                                (16) 

where 𝐸(ℎ𝑠)  is the expected joint headway for the common link and can be estimated by the design 

headway, that is, 𝐸(ℎ𝑠) = ℎ𝑠. As the headway becomes larger, passengers are likely to time their arrivals 

with the prescribed arrival/departure times. This can be handled by simply discounting a factor as in Mpccia 

and Laporte (2016), so there is no conceptual difficulty in modelling more complex behaviour. 

The total initial waiting time cost is related to the expected initial waiting time and the boarding demand. 

The waiting time on link 𝑠 catering to a total boarding demand 𝑄𝑠 is 𝑄𝑠 ∙ 𝐸𝑊𝑠. Summing up the link-

specific waiting time yields the total waiting time as follows: 

      𝐶𝑤 = 𝜇𝑤 ∑ 𝑄𝑠𝑠 𝐸𝑊𝑠                                                            (17) 

  In the context of schedule coordination, passengers only have to wait for the arrived vehicle at the first 

section of their path, and they could make a relatively smooth transfer in the sequence of their path. The 

corresponding boarding demand on link 𝑠 is:   

      𝑄𝑠 = ∑ ∑ 𝑓𝑝𝑤𝑝𝑤 𝜉𝑠𝑝𝑤                                                             (18) 

where 𝑓𝑝𝑤 is flow on path 𝑝 between OD pair 𝑤 without rerouting. Note that 𝜉𝑠𝑝𝑤 = 1 if link 𝑠 is the 

first section of path 𝑝 between OD pair 𝑤. Otherwise, 𝜉𝑠𝑝𝑤 = 0.  

3.3.7 Total system cost 

Following Wu et al. (2016), the line-specific operation cost is the product of required fleet size 𝑇𝑘 ℎ𝑘⁄  

on line 𝑘 and the unit operation cost. Summing up the line-specific operation cost yields the total operation 

cost as:  

   𝐶𝑜 = ∑ 𝐵𝑇𝑘ℎ𝑘𝑘                                                                    (19) 

 Then system total cost is the summation of user cost and operation cost, that is: 
   𝐶 = 𝐶𝑠 + 𝐶𝑐 + 𝐶𝑓 + 𝐶𝑔 + 𝐶𝐼 + 𝐶𝑤 + 𝐶𝑜                                             (20) 

3.4. Cost formulation for coordinated operation with rerouting 

3.4.1 Model of passenger rerouting behaviour 

In this section, we introduce passenger rerouting behaviour, where transfer passengers modify their route 

in the event of missed connection. We analyze the effect of rerouting behaviour on the network flow 

presentation, more specifically the formulations of transfer and through demand. The route choice decision 

during the entire journey could be divided into two phases, namely, pre-trip and on-trip. A customary 

approach to describe the passenger route choice is user equilibrium or transit assignment (e.g., Yu, et al, 

2015; Parto et al, 2014; Szeto and Jiang, 2014). However, after an implementation of bus schedule 

coordination scheme, the network flow could not achieve an equilibrium state in the presence of inherent 

transfer unreliability and the resulting rerouting behaviour, hence it is problematic to take the equilibrium-

based indexes for demand representation in the context of schedule coordination with connection uncertainty. 

As such, the results of user equilibrium or transit assignment models only represent the pre-trip route choice. 
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Fig.4 Illustration of stochastic rerouting process 

Whether a passenger will keep her originally planned path once encountering a missed connection is a 

stochastic process. Assuming that a passenger would not modify their transfers for more than twice, the 

route-searching process for a passenger traveling is illustrated in Fig.1. The solid line represents the 

originally planned path made at the pre-trip stage, while the dashed lines represents the en-route alternative 

paths. The stochastic effect that the given passenger modifies the path when she encounters a transfer can be 

represented by a probability. If the given passenger modifies the path, she keeps this path until reaching the 

destination. The individual route-searching process can be regarded as a stochastic process. In the current 

problem, consider the trip chain of a given passenger, the state variable is whether the given passenger is 

stick to the originally planned path, while the initial state of the given passenger is the originally planned 

path at the pre-trip state. The probability of a state is related to the transfer failure rate and switching rate as 

will be derived below. 

The microscopic stochastic rerouting behaviour is likely to have an impact on the network flow 

distribution, and requires modifications when applying traditional models. To capture the effect of travellers’ 

decision along the trip chains on the network flow distribution, a two-phase algorithm is proposed to convert 

the individual stochastic process into the aggregate flow swaps. The idea is to partition the route choice 

problem into flow generation and redistribution sub-problems that are solved sequentially, where the results 

for one are data inputs for the next. In the first phase, all users in the system make pre-trip route choice 

decisions and generate the original section-based path flow 𝑓𝑝𝑤 and line-based path flow �̇�𝑝𝑤, which could 

be solved by the transit assignment sub-model (see later in Section 4). In the second phase, a route choice 

option is presented to passengers which can lead to flow swaps. Accordingly, the original network flows 

should to be redistributed. Fig.5 illustrates the unified framework for how original network flow process 

across different model components, in which flow conservation should be ensured in the redistribution. 
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Fig.5 Flow redistribution framework 

Given the original path flow, the adaptive path flow (rerouting demand) can be obtained by the utility 

differences between attractive routes. Subsequently, with the principle of flow conservation, the adaptive 

flow can be calculated based on the original path flow minus non-adaptive path flow. As a result, the actual 

path flow and resulting expected network flows are also known by adding up the non-adaptive and adaptive 

flow for overlapping sections.  
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Fig.6 Illustration of flow redistribution 

To illustrate the flow redistribution, we show in Fig.6, suppose there are two OD pairs: 1→6 and 8→3, 

each of which has an OD demand of 30. Their dominant (or shortest) paths are denoted by solid lines. Let 

us assume that adaptive path flows are 5 and 10, respectively (as shown by dashed lines). On adding up the 

non-adaptive flow and adaptive flow on specific links, the expected link flows for (2, 3) and (2, 6) are 35 (= 

25+10) and 25 (= 20+5). As the original link flows are both 30, we can conclude that the redistributed link 

flows could be either smaller or larger than the original ones. As a result, the network-wide transfer demand 

and through demand should be reorganized accordingly. Since the preceding travel path and following 

alternative path may share the same bus line at a transfer station, the rerouting behaviour would lead to an 

increase of through demand at the expense of reduced transfer demand, of which the effect on the schedule 

coordination design will be investigated in Section 4. 

3.4.2 Transfer failure rate 

The higher missed connection probability, the greater the possibility of passengers reroute. In order to 
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calculate the flow swaps at a transfer node, the concept of transfer failure rate is given, which refers to the 

probability of events where at least one passenger misses the scheduled transfer bus and have to wait for the 

next bus. 

By definition, the transfer failure rate rests with the delayed arrival distribution, and how service 

headways and slack times are configured. More specifically, the transfer failure rate 𝑃𝑚𝑘𝑘′ at specific transfer 
station can be provided as follows, and the detailed derivation is provided in Appendix 3. 

 𝑃𝑚𝑘𝑘′ = ∫ ∫ 𝑓(𝑑𝑚𝑘)𝑓(𝑑𝑚𝑘′)𝑠𝑚𝑘′0ℎ𝑘𝑠𝑚𝑘 𝑑𝑑𝑚𝑘𝑑𝑑𝑚𝑘′ + ∫ ∫ 𝑓(𝑑𝑚𝑘)𝑓(𝑑𝑚𝑘′)𝑑𝑚𝑘−𝑠𝑚𝑘+𝑠𝑚𝑘′𝑠𝑚𝑘′ℎ𝑘𝑠𝑚𝑘 𝑑𝑑𝑚𝑘𝑑𝑑𝑚𝑘′  (21) 

3.4.3 Transfer and through demand after flow redistribution 

As implied previously, passenger rerouting would change transfer demand and through demand at the 

transfer hub. Therefore, compared to the model without rerouting, the system costs with rerouting contains 

four different components: induced slack time cost, the missed connection cost, delayed connection cost and 

transfer waiting time cost under integer-ratio headways. 

Now we discuss the formulations of transfer and through demand after flow redistribution, provided that 

the original line-based path flow �̇�𝑝𝑤 is available. To this end, we introduce two new set of variables (𝑓𝑝𝑛𝑤 , 𝑓�̅�𝑛𝑤  ) to record the number of passengers who stick to path 𝑝  and use the alternative path �̅�  under 𝑛 th 

transfer, respectively. The idea behind this is that the original path flow would be routed into different 

acceptable paths (and thus discounted) once undergoing one transfer. 

Modifying Eq.(6) gives the following transfer demand for missed connection with rerouting behaviour 

as: 

  𝑄𝑚𝑘𝑘′ = ∑ ∑ ∑ 𝑓𝑝𝑛𝑤𝑏𝑘𝑝𝑏𝑘′𝑝𝜏𝑚𝑘𝑘′ + ∑ ∑ ∑ 𝑓�̅�𝑛𝑤 𝑏𝑘�̅�𝑏𝑘′�̅�𝜏𝑚𝑘𝑘′𝑛�̅�𝑤𝑛𝑝𝑤                             (22) 

where the first term denotes the non-adaptive flow, and the second term denotes the adaptive flow from other 

paths. Note that both path 𝑝 and �̅� traverse between line 𝑘 and line 𝑘′. The underlying assumption is 

that the group of swapping passengers would update their route once at most.  

The swapping demand stems from two determinants: (A) the frequency of connection failures, namely, 

the higher failure frequency, the higher likelihood of passenger rerouting. This is because each rerouting 

decision is triggered by missed connection; (B) the switching rate under connection failure, which is 

calculated as the disutility difference between the acceptable paths (As one may see later in this section). 

Since passengers may complete their travel using multiple bus lines, the original path flow should be 

discounted once undergoing a transfer station.  

Proposition 1. Given the transfer failure rate and switching rate at the designated stop, the expected non-

adaptive flow of path 𝑝 between OD pair 𝑤 under 𝑛th transfer can be computed as follows:  

       𝑓𝑝𝑛𝑤 = �̇�𝑝𝑤∏ (1 − 𝑃𝑟𝑝𝑗𝑤𝑃𝑐𝑝𝑗𝑤 )𝑛𝑗=1                                                

where 𝑃𝑟𝑝𝑗𝑤   and 𝑃𝑐𝑝𝑗𝑤   are the switching rate and transfer failure rate at 𝑗 th transfer station on path 𝑝 

between OD pair 𝑤, respectively. 

Proof. Since rerouting behaviour only occurs in case of missed connection, the expected rerouting flow is 
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given by the original flow multiplied with the respective transfer failure rate and switching rate. With the 

conservation of flows, the expected non-adaptive flow for path 𝑝 between OD pair 𝑤 after undergoing the 

first transfer is the difference between the original (pre-trip) flow and the rerouting flow, that is, 

  𝑓𝑝1𝑤 = �̇�𝑝𝑤 − �̇�𝑝𝑤𝑃𝑟𝑝1𝑤𝑃𝑐𝑝1𝑤 = �̇�𝑝𝑤(1 − 𝑃𝑟𝑝1𝑤𝑃𝑐𝑝1𝑤 ) 
  Similarly, the expected non-adaptive flow after undergoing the second transfer can be calculated as 

follows:  

  𝑓𝑝2𝑤 = 𝑓𝑝1𝑤 − 𝑓𝑝1𝑤𝑃𝑟𝑝2𝑤𝑃𝑐𝑝2𝑤 = �̇�𝑝𝑤(1 − 𝑃𝑟𝑝1𝑤𝑃𝑐𝑝1𝑤 )(1 − 𝑃𝑟𝑝2𝑤𝑃𝑐𝑝2𝑤 ) 
  In this vein, it is not difficult to conclude that the expected non-adaptive flow of path 𝑝 under 𝑛th transfer 

could take the following iterative forms: 

  𝑓𝑝𝑛𝑤 = �̇�𝑝𝑤∏ (1 − 𝑃𝑟𝑝𝑗𝑤𝑃𝑐𝑝𝑗𝑤 )𝑛𝑗=1  

Q.E.D. 

Proposition 2. Based on the routing demand conservation constraints, the expected adaptive flow of the 

alternative path �̅� under 𝑛th transfer is given as follows:  

       𝑓�̅�𝑛𝑤 = {�̇�𝑝𝑤𝑃𝑟𝑝𝑛𝑤𝑃𝑐𝑝𝑛𝑤 ,                                           𝑓𝑜𝑟 𝑛 = 1�̇�𝑝𝑤∏ (1 − 𝑃𝑟𝑝𝑗𝑤𝑃𝑐𝑝𝑗𝑤 )𝑃𝑟𝑝𝑛𝑤𝑃𝑐𝑝𝑗𝑤𝑛−1𝑗=1 ,   𝑓𝑜𝑟 𝑛 > 1                           

Proof. When 𝑛 = 1 , the expected adaptive flow of the alternative path �̅�  is simply the original flow 

multiplied by the transfer failure rate and switching rate, i.e., 

      𝑓�̅�𝑛𝑤 = �̇�𝑝𝑤𝑃𝑟𝑝𝑛𝑤𝑃𝑐𝑝𝑛𝑤                                                           

When 𝑛 > 1 , according to Proposition 1, the expected incoming flow of path 𝑝  before undergoing (𝑛 − 1)th transfer is  

      𝑓𝑝,𝑛−1𝑤 = �̇�𝑝𝑤∏ (1 − 𝑃𝑟𝑝𝑗𝑤𝑃𝑐𝑝𝑗𝑤 )𝑛−1𝑗=1  

The conservation of flows requires that the rerouting flow (to alternative path) is the difference of 

incoming flows between (𝑛 − 1)th and 𝑛th transfer on original path, that is, 

     𝑓�̅�𝑛𝑤 = 𝑓𝑝,𝑛−1𝑤 − 𝑓𝑝𝑛𝑤 = �̇�𝑝𝑤∏ (1 − 𝑃𝑟𝑝𝑗𝑤𝑃𝑐𝑝𝑗𝑤 )𝑛−1𝑗=1 − 𝑓𝑝𝑛𝑤 = �̇�𝑝𝑤∏ (1 − 𝑃𝑟𝑝𝑗𝑤𝑃𝑐𝑝𝑗𝑤 )𝑃𝑟𝑝𝑛𝑤𝑃𝑐𝑝𝑗𝑤𝑛−1𝑗=1            

  Taken together, the expected adaptive flow of the alternative path �̅� under 𝑛th transfer is expressed as 

follows:  

     𝑓�̅�𝑛𝑤 = {�̇�𝑝𝑤𝑃𝑟𝑝𝑛𝑤𝑃𝑐𝑝𝑛𝑤 ,                                          𝑓𝑜𝑟 𝑛 = 1�̇�𝑝𝑤∏ (1 − 𝑃𝑟𝑝𝑗𝑤𝑃𝑐𝑝𝑗𝑤 )𝑃𝑟𝑝𝑛𝑤𝑃𝑐𝑝𝑗𝑤𝑛−1𝑗=1 ,   𝑓𝑜𝑟  𝑛 > 1       

Q.E.D. 

   The transfer failure rate at 𝑗th transfer station on path 𝑝 before reaching the destination can be given by: 

       𝑃𝑐𝑝𝑗𝑤 = 𝑃𝑚𝑘𝑘′𝑏𝑘𝑝𝑏𝑘′𝑝𝜏𝑚𝑘𝑘′𝜓𝑝𝑗𝑚                                                     (23) 

where 𝑃𝑚𝑘𝑘′ denotes the transfer failure rate from line 𝑘 to 𝑘′ at transfer node 𝑚. 𝜓𝑝𝑗𝑚 = 1 if node 𝑚 
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is the 𝑗th transfer station on path 𝑝 between OD pair 𝑤, and 0 otherwise. 

To reflect the rerouting decision, we assume that in case of missed connection, passengers would 

compare travel cost of the alternative path to that of the currently used path according to their perceptions to 

decide whether to switch to another alternative, which leads to a switching rate.  

The switching rate can be estimated deterministically or stochastically. For the deterministic case, the 

choice could be modelling based on the travel time difference across alternative routes. In the stochastic 

version of the alternative route selection problem, travellers may perceive the travel time differently. 

Assuming that the perception errors are random independent and identically distributed (i.i.d.) variables 

following a Gumbel distribution, a multinomial logit model can be used to estimate the switching rate under 

connection failure, which is defined as the ratio between the dis-utilities of the acceptable downstream paths. 

Note that various assumptions could be made to model the switch rule and the extension would be 

straightforward. 

      𝑃𝑟𝑝𝑗𝑤 = exp(−𝜃𝑈�̅�𝑗𝑤 ) exp(−𝜃𝑈𝑝𝑗𝑤 )+exp(−𝜃𝑈�̅�𝑗𝑤 )                                                     (24) 

where 𝜃 is the degree of passengers’ perception of the path travel time. 

For sake of parsimony, the travel disutility is measured in generalized time units. Let us denote by 𝑅𝑝𝑗𝑤  

and 𝑅�̅�𝑗𝑤  the set of next path elements (links or nodes) starting from 𝑗th transfer station on path 𝑝 between 

OD pair 𝑤 . There are two possibilities for the alternative path: (A) the alternative path and originally 

planned path share the same bus line as illustrated in Fig.1, and passengers only need to stay on board for a 

holding time at the transfer station; (B) passengers take the other synchronized bus line as an alternative. 

Note that for a large-scale network a transfer hub may involve with a cluster of attractive routes for 

transferring passengers to choose from. Under such circumstance, the set of alternative routes can be 

generated by k-shortest path algorithm with limiting transfers, for instance the total transfer times cannot be 

more than twice. Therefore, the downstream travel time for designated alternative route is expressed as 

follows:  

 𝑈�̅�𝑗𝑤 = ∑ 𝑡𝑘𝑘∈𝑅�̅�𝑗𝑤 + ∑ ∑ (𝑇𝑐𝑘𝑘′ + 𝑇𝑓𝑘𝑘′ + 𝑍𝑚𝑘𝑘′)𝑏𝑘�̅�𝑘′∈𝑅�̅�𝑗𝑤𝑘∈𝑅�̅�𝑗𝑤 𝑏𝑘′�̅�𝜏𝑚𝑘𝑘′                     (25)                                                   

On the other hand, passengers who stick to currently used path have to wait for the next bus, thus the 

downstream travel time also account for the extra delay time. This can be estimated as the departure headway ℎ𝐿𝑝𝑗𝑤  , where link 𝐿𝑝𝑗𝑤   represents the link immediately connected to the 𝑗 th transfer station on path 𝑝 

between OD pair 𝑤. As a result, the downstream travel time for the originally planned route is obtained, 

similarly as for Eq.(27), by adding the extra waiting time, i.e.,  

      𝑈𝑝𝑗𝑤 = ∑ 𝑡𝑘 +𝑘∈𝑅𝑝𝑗𝑤 ∑ ∑ (𝑇𝑐𝑘𝑘′ + 𝑇𝑓𝑘𝑘′ + 𝑍𝑚𝑘𝑘′)𝑏𝑘𝑝𝑏𝑘′𝑝𝑘′∈𝑅𝑝𝑗𝑤𝑘∈𝑅𝑝𝑗𝑤 𝜏𝑚𝑘𝑘′ + ℎ𝐿𝑝𝑗𝑤                (26)                                              

   Now we derive the formulations of transfer demand for delay connection taking into account both the 

non-adaptive and adaptive path flow. Different to the scenario for missed connection, for delay connection 

scenario, the bus service on connected links are coordinated successfully and passengers would stick to their 
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current path, such that the non-adaptive flow is identical to the incoming flow before transfer. 

   By a modification of Eq. (6) to consider the rerouting behaviour, we have the following formulation of 

transfer demand for delay connection: 

     𝑄𝑡𝑚𝑘𝑘′ = ∑ ∑ ∑ 𝑓𝑝𝑛𝑤𝑏𝑘𝑝𝑏𝑘′𝑝𝜏𝑚𝑘𝑘′𝑛𝑝𝑤 + ∑ ∑ ∑ 𝑓�̅�𝑛𝑤 𝑏𝑘�̅�𝑏𝑘′�̅�𝜏𝑚𝑘𝑘′𝑛�̅�𝑤                           (27) 

where the first term stands for the total incoming flow traversing from line 𝑘 to line 𝑘′, and the second 

term stands for adaptive flow from other paths that is identical to that of Eq.(22). 

Proposition 3. Since passengers travelling along a path may experience a few transfer activities before 

reaching the current transfer station, the expected incoming flow routing into a specific transfer station 

should account for the loss flow (by rerouting effect) at preceding transfer stations. As a result, the expected 

incoming flow entering 𝑛th transfer station (of path 𝑝 between OD pair 𝑤) can be computed as follows:  

     𝑓𝑝𝑛𝑤 = {�̇�𝑝𝑤 ,                                           𝑓𝑜𝑟  𝑛 = 1 �̇�𝑝𝑤∏ (1 − 𝑃𝑟𝑝𝑗𝑤𝑃𝑐𝑝𝑗𝑤 ),   𝑓𝑜𝑟  𝑛 > 1𝑛−1𝑗=1                                         

(28) 

Proof. When 𝑛 = 1, the incoming flow of path 𝑝 between OD pair 𝑤 can be simply represented by the 

original flow, that is, 

 𝑓𝑝1𝑤 = �̇�𝑝𝑤 

 For path 𝑝 between OD pair 𝑤, the expected flow before undergoing the second transfer is identical to 

the expected flow after undergoing the first transfer. With the principle of conservation of flows, the expected 

flow after undergoing the first transfer should be the difference between the expected flow and the rerouting 

flow. 

     𝑓𝑝2𝑤 = 𝑓𝑝1𝑤 − 𝑓𝑝1𝑤𝑃𝑟𝑝1𝑤𝑃𝑐𝑝1𝑤 = 𝑓𝑝1𝑤(1 − 𝑃𝑟𝑝1𝑤𝑃𝑐𝑝1𝑤 ) = �̇�𝑝𝑤(1 − 𝑃𝑟𝑝1𝑤𝑃𝑐𝑝1𝑤 ) 
   Similarly, when 𝑛 = 3, the expected flow before undergoing the third transfer is equal to the expected 

flow after undergoing the second transfer. 

     𝑓𝑝3𝑤 = 𝑓𝑝2𝑤 − 𝑓𝑝2𝑤𝑃𝑟𝑝2𝑤𝑃𝑐𝑝2𝑤 = 𝑓𝑝2𝑤(1 − 𝑃𝑟𝑝2𝑤𝑃𝑐𝑝2𝑤 ) = �̇�𝑝𝑤(1 − 𝑃𝑟𝑝1𝑤𝑃𝑐𝑝1𝑤 )(1 − 𝑃𝑟𝑝2𝑤𝑃𝑐𝑝2𝑤 ) 
   Therefore, the expected incoming flow for 𝑛th transfer can be calculated as follows: 

     𝑓𝑝𝑛𝑤 = �̇�𝑝𝑤∏ (1 − 𝑃𝑟𝑝𝑗𝑤𝑃𝑐𝑝𝑗𝑤 ) 𝑛−1𝑗=1  

   Taken together, the expected incoming flow of path 𝑝 between OD pair 𝑤 under 𝑛th transfer can be 

expressed by the following piecewise function: 

     𝑓𝑝𝑛𝑤 = {�̇�𝑝𝑤 ,                                           𝑓𝑜𝑟  𝑛 = 1 �̇�𝑝𝑤∏ (1 − 𝑃𝑟𝑝𝑗𝑤𝑃𝑐𝑝𝑗𝑤 ),   𝑓𝑜𝑟  𝑛 > 1𝑛−1𝑗=1  

   Q.E.D. 
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   Combining Eq.(30) with Eq.(23), we have: 

      𝑓𝑝𝑛𝑤 = �̃��̅�𝑛𝑤𝑃𝑟𝑝𝑛𝑤 𝑃𝑐𝑝𝑛𝑤                                                                 (29) 

Similarly, with rerouting behaviour, the through demand with rerouting behaviour takes the following 

form: 

    𝑄𝑚𝑘 = ∑ ∑ ∑ 𝑓𝑝𝑛𝑤𝜑𝑘𝑚𝑏𝑘𝑝𝑛𝑝𝑤 + ∑ ∑ ∑ 𝑓�̅�𝑛𝑤𝜑𝑘𝑚𝑏𝑘�̅�𝑛�̅�𝑤                                   (30) 

  In Eq.(32), the first term stands for the through demand on the original path, and the second term stands 

for the rerouting demand swapping from other paths. 

3.4.4 Extension to multiple transfer opportunities 

In a transit network, during a trip, a rider could have multiple transfer opportunities and they may modify 

their choice of transfer point (thus path choice) multiple times (as shown in Fig.7). To capture this effect, 

the adaptive flow of the alternative path �̅� under 𝑛th transfer, 𝑓�̅�𝑛𝑤 , should be redistributed. In this sense, 

the adaptive flow 𝑓�̅�𝑛𝑤  can be treated as “virtual” domain path flow, and is reassigned once the passengers 

undergoing a transfer point. 
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Fig.7 Illustration of stochastic rerouting process with multiple transfer opportunities 

Now we discuss the derivation for 𝑓�̅�𝑛𝑤 . To do so, we introduce a set of variables 𝑓�̅�𝑛𝑟𝑤  and 𝑓�̅�𝑛𝑟𝑤  to 

represent the 𝑟th transfer point on the alternative path �̅�. Then the formulations could be obtained following 

proposition 1. 

  𝑓�̅�𝑛𝑟𝑤 = 𝑓�̅�𝑛𝑤 ∏ (1 − 𝑃𝑟�̅�𝑟𝑤𝑃𝑐�̅�𝑟𝑤 )𝑛𝑟=1  

       𝑓�̅�𝑛𝑟𝑤 = {𝑓�̅�𝑛𝑤𝑃𝑟�̅�𝑟𝑤𝑃𝑐�̅�𝑟𝑤 ,                                           𝑓𝑜𝑟 𝑟 = 1𝑓�̅�𝑛𝑤 ∏ (1 − 𝑃𝑟�̅�𝑗𝑤𝑃𝑐�̅�𝑗𝑤 )𝑃𝑟�̅�𝑟𝑤𝑃𝑐�̅�𝑗𝑤𝑟−1𝑗=1 ,   𝑓𝑜𝑟  𝑟 > 1  
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where the transfer failure rate 𝑃𝑐�̅�𝑟𝑤  and switching rate 𝑃𝑟�̅�𝑟𝑤  can be obtained following Eqs.(23) and (24). 

As we can see, the extension is straightforward and thus the model is scalable. However, in a real situation, 

passengers would generally reach their destinations with no than three times of transfers (Yu et al, 2015; Xu 

et al, 2017), therefore it is reasonable to assume that passengers would not modify their transfers for more 

than twice.  

3.5. Bi-level formulation of the schedule coordination problem 

  The objective of the proposed model is two-fold: one aims to minimize the systematic total costs, including 

the user cost and operation cost, while the other aims to capture the passengers’ pre-trip and on-trip route 

choice behaviour. This gives rise to a master-slave problem: passenger path choice decisions are influenced 

by schedule coordination schemes, and schedule coordination is dependent on passenger demands. Therefore, 

the problem can be formulated as a bi-level programming model. The objective function for the upper level 

optimization is to find out the bus schedule coordination scheme minimizing the total costs. The optimized 

coordination solution is passed to the lower level model. Based on a given schedule coordination scheme, 

the lower level model calculates the expected flow patterns. The system converges when it minimizes the 

total costs. 

The framework of the proposed bi-level programming is presented in Fig. 8. 
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Fig.8 The framework of the bi-level program 

3.5.1 Upper-level schedule coordination problem 

The upper-problem is to determine the headways ℎ𝑘 and slack times 𝑠𝑚𝑘 that minimize the total costs. 

In this study, headways are optimized as integer multiples of the base cycle. Let the base cycle 𝑦 belong to 

a set consisting of several discrete values, i.e., 𝑦 ∈ 𝑌, 𝑌 = {𝑦1,⋯ 𝑦𝑖 ,⋯ 𝑦𝐼}. Similar to Kim and Schonfeld 

(2014), for realism we assume that 𝑦 is selected among {2, 3, 4, 5, 6, 7.5, 10, 12, 15, 20 and 30 min}. Let 𝛿𝑖 denote an indicator representing whether 𝑦𝑖 is selected, then the optimization problem can be converted 

from exploring optimal combination of (𝑦, 𝛽𝑘 , 𝑠𝑚𝑘)  to optimal combination of (𝑏𝑖 , 𝛽𝑘 , 𝑠𝑚𝑘)   Thus, the 

upper-level problem is formulated into a 0-1 mixed-integer nonlinear programming model as follows: 

                              𝑚𝑖𝑛𝐶(𝑏𝑖 , 𝛽𝑘 , 𝑠𝑚𝑘)                                     (31) 

subject to  
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                            ℎ𝑘 = 𝛽𝑘 ∑ 𝑦𝑖𝑏𝑖𝐼𝑖=1                                  (32) 

                              ℎ𝑘𝑚𝑖𝑛 ≤ ℎ𝑘 ≤ ℎ𝑘𝑚𝑖𝑛, ∀𝑘                             (33) 

                        ℎ𝑘 ∈ 𝑍+                                         (34) 

  𝑦𝑖 ∈ 𝑌                                           (35) 

 𝑏𝑖 ∈ {0,1}                                        (36) 

 ∑ 𝑏𝑖 = 1𝐼𝑖=1                                        (37) 

 𝛽𝑘 ∈ 𝑍+, ∀𝑘                                      (38) 

 𝑠𝑚𝑘 ≥ 0, ∀𝑘,𝑚                                   (39) 

The objection function (31) minimizes the system total costs. Eq.(32) guarantees that the line-specific 

headways are integer multiples of the base cycle. Eq.(33) states that the headway should range between a 

minimum and a maximum acceptable headway. Eq.(34) guarantees that headways are integer values. Eq.(35) 

represents that the base cycle is chosen from a set of discrete values. Eq.(36) defines 𝑏𝑖 as binary variables, 

if 𝑦𝑖 is selected, then 𝑏𝑖 = 1, otherwise, 𝑏𝑖 = 0. Eq.(37) guarantees that only one element in in the set is 

selected. Eq.(38) guarantees that the ratios are positive integer values. Eq.(39) guarantees that the slack times 

should be positive values. 

3.5.2 Lower-level problem 

The lower level model is used to describe the passengers’ route choice behaviour under schedule 

coordination environment. In the first stage, all users in the system make pre-trip decisions in an attempt to 

minimizing their travel costs. This can be also approximated as the equilibrium state. In the second stage, 

the user is confronted with a missed connection upon transfer and he is left with a decision whether to wait 

until the next bus arrives or to take a detour route as an alternative. As a result, the flow patterns should be 

redistributed to account for the connection uncertainty and rerouting effect (As presented in section 3.4).  

Now we discuss the calculation of flow distribution in the first stage, more specifically the original path 
flow 𝑓𝑝𝑤. Since bus line headways are decision variables in the optimization model, it is natural to model 

the flow distribution of pre-trip route choice as a frequency-based transit assignment. It is assumed that each 

passenger would make the trip plan according to the expectation for travel costs. We use a utility-based 

approach to describe traveller’s perceived travel costs.  

As a result, the expected travel disutility 𝑈𝑝𝑤  for any path 𝑝  between OD pair 𝑤  in the transfer 

network can be calcualted as the sum of all of expected travel disutilities on links along this path, including 

the initial waiting time, in-vehicle time, and expected transfer waiting time.  𝑈𝑝𝑤 = 𝐸𝑊𝑠𝜉𝑠𝑝𝑤 + ∑ 𝑇𝑠𝛿𝑠𝑝𝑤𝑠 + ∑ �̃�𝑚𝑝𝑚                                                 (40) 

where �̃�𝑚𝑝 represents the transfer waiting time cost at transfer node 𝑚 on path 𝑝. 

Most of the existing transit assignment models without schedule coordination that assume an arbitrary 

constant (usually a large number) as a transfer penalty (e.g., Yao et al, 2012; Szeto et al, 2013). In the perfect 

(deterministic) schedule coordination, passengers could transfer smoothly between different bus lines. 
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However, in the context of stochastic schedule coordination with uncertain disruptions, the transfer penalty 

would be dependent on the travel time variability and the schedule coordination scheme (headways and slack 

times), as well as the resulting expected transfer waiting time. Since there may exist multiple combinations 

of connecting lines at a transfer station, the expected transfer waiting time at transfer node 𝑚 could be 

approximated by the weighted average of transfer waiting time of connecting bus lines along the path. The 

expected transfer waiting time includes missed connection time, delayed connection time and (if any) the 

inter-cycle transfer waiting time: 

 �̃�𝑚𝑝 = ∑ ∑ 𝜋𝑠𝑘(𝑇𝑐𝑘𝑘′ + 𝑇𝑓𝑘𝑘′ + 𝑍𝑚𝑘𝑘′)𝑏𝑘𝑝𝑏𝑘′𝑝𝑘′𝑘 𝜏𝑚𝑘𝑘′                                    (41) 

As a result, the network flow patterns before rerouting under given schedule plan could be obtained by 

the transit assignment models. With the original (before rerouting) flow patterns, the expected flow 

distribution with rerouting behaviour can be further obtained by Section 3.4.2 to adapt to changing 

operational condition. 

3.5.3 Solution algorithm 

Given a set of headways and slack times, users will choose acceptable paths prior to starting their journey 

and reroute in case of missed connection. Likewise, given a set of flow patterns selected by system users, 

system designers can re-allocate the vehicle resources to avoid extra costs caused by congestion. Then, users 

will choose the new trip chains again. Therefore, we can use this iterative strategy between the upper-level 

and lower-level decisions to reach the optimal solution gradually. The method of successive averages (MSA) 

is used to address the demand assignment problem under a given schedule design, (Poon et al., 2004; Si et 

al., 2016). More specifically, the pseudo code of heuristic algorithm is presented as follows: 

Step 1: Initialization. Let iteration index 𝑧 = 0 and the initial slack times be 0 (i.e.,𝑠𝑚𝑘𝑧 = 0), and initialize 

headways ℎ𝑘𝑧  as a combination of positive values subject to Eq. (32) to (39).  

Step 2: Update. Apply the solution of slack times and headways into the lower-level model and solve it 

using MSA. Obtain a set of solution of passenger path flows 𝑓𝑝𝑤,𝑧+1  and the resulting link flow 𝑥𝑘𝑧+1 . 
Subsequently, the expected network flow after redistribution can be obtained. 

Step 3: Modification. Apply the value of passenger flows 𝑓𝑝𝑤,𝑧+1  solved in Step 2 into the upper-level 

model. Then, search a set of optimum solution of slack times and headways 𝑠𝑚𝑘𝑧+1, ℎ𝑘𝑧+1. 
Step 4: Convergence criteria. Check whether the convergence criterion is satisfied or not. The algorithm 

terminates if the relative gap of traffic flow between the iterations becomes less than a threshold; otherwise, 

let 𝑧 = 𝑧 + 1, and continue the iteration between Step 2 and 3. 

4. Numerical example 

To evaluate the influence of rerouting to schedule planners, a small numerical test is firstly conducted to 

compare the performances of enhanced schedule coordination with rerouting with the base case without 

rerouting. Then, the influence of different operating settings on the model performance is discussed. Lastly, 

we apply the model to a medium-size hybrid bus network and analyse the passengers’ rerouting behaviour 
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on schedule coordination. 

4.1. ExperimentⅠ 

We consider the example corresponding to the network illustrated in Section 3.1 reproduced in Fig.9, the 

hypothetical triangular loop bus network is a three-route network containing 18 links and 9 nodes, of which 

3 nodes are transfer stations. For such a network, all lines interact with each other so that the majority of 

passengers have more than one route option to get to their destinations. The extension of this network to a 

general bus network with more immediate stops would be straightforward. The OD demand matrix for the 

network is asymmetrical and presented in Table 2, and the information of link travel times are summarized 

in the brackets in Fig.7 (the bidirectional link travel times are assumed to be identical).  
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Fig. 9 A triangular loop network 

The transfer reliability mainly depends on bus travel time variability and slack times. Following the 

literature, the exponential distribution is employed to model the arrival delay of buses (Wu et al, 2016; 

Randolph, 2001; Bookbinder and Desilets, 1992). The probability density function and the respective 

cumulative density function of arrival delay are expressed as follows, which is used in the calculation of 

transfer waiting time costs: 

   𝑓(𝑑𝑚𝑘) = { 𝜆𝑚𝑘𝑒−𝜆𝑚𝑘𝑑𝑚𝑘 , 𝑑𝑚𝑘 > 0 0,                        𝑑𝑚𝑘 ≤ 0   and                                            

(42) 

   𝐹(𝑑𝑚𝑘) = { 1 − 𝑒−𝜆𝑚𝑘𝑑𝑚𝑘 , 𝑑𝑚𝑘 > 0 0,                        𝑑𝑚𝑘 ≤ 0  
where 𝑑𝑚𝑘  is the arrival delay of buses; and parameter 𝜆𝑚𝑘 > 0  is the parameter of the exponential 

distribution. 

For exponential distribution, the mean delay and the variation of delay are 1 𝜆𝑚𝑘⁄   and 1 𝜆𝑚𝑘2⁄  , 
respectively. And the delay probability decreases quickly as the delay time increases. With the exponential 

delay arrival assumption, the computation time can be effectively reduced by analytical formulations 

featuring integrable functions. However, in principle, the model can be applied to any distribution of delayed 

arrive time. 

The unit operation cost in Eqs.(1) and (19) is taken as 𝐵 = 0.667$/𝑣𝑒ℎ/𝑚𝑖𝑛. The vehicle capacity 𝐶𝑎 

is taken as 35 pax. Two values of waiting time are taken as 𝜇𝑐 = 𝜇𝑤 = 0.2$/𝑚𝑖𝑛. The delayed parameter 
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in Eq.(42) is set to be 𝜆𝑚𝑘 = 0.25𝑚𝑖𝑛−1. The other default model parameters used are: 𝜃 = 0.9, 𝑎 = 1, 

and 𝑏 = 4. 

 

Table 2. The O/D demand matrix for the sample network (pax/min) 

 Destination 

Origin 1 2 3 4 5 6 7 8 9 

1 0.00 0.1 0.06 0.06 0.1 0.04 0.08 0.06 0.04 

2 0.10 0.00 0.08 0.08 0.00 3.00 0.06 3.00 0.00 

3 0.06 0.05 0.00 0.04 0.04 0.06 0.03 0.03 0.05 

4 0.06 0.04 0.04 0.00 0.04 0.02 0.02 0.00 0.02 

5 0.10 0.08 0.08 0.08 0.00 0.06 0.06 0.06 0.00 

6 0.04 2.00 0.06 0.02 0.02 0.00 0.00 1.00 2.00 

7 0.08 0.1 0.06 0.06 0.06 0.00 0.00 0.08 0.06 

8 0.03 2.5 0.03 0.00 0.01 0.50 0.03 0.00 0.50 

9 0.03 1.5 0.05 0.01 0.00 1.50 0.50 0.50 0.00 

 

Solving the optimization problems for the baseline values yields the results shown in Table 3. The 

outcomes include the optimal headways and slack times, and the individual cost components as well as the 

resultant total costs, distinguished by the base and enhanced version. The base and enhanced version 

represents the schedule coordination model without and with rerouting, respectively. One can see that, 

compared to the base model, it is more beneficial to operate with longer headways for the enhanced model, 

leading to overall lower operation cost 𝐶𝑜 and induced slack time cost 𝐶𝑠. Nevertheless, the transfer costs 
(𝐶𝑐, 𝐶𝑓, 𝐶𝑔) for the enhanced model have been reduced in comparison to the base model. This is because, 

as discussed previously, the number of passengers suffering from connection failure could be reduced when 

rerouting is allowed. Although the incorporation of rerouting results in a longer headway (and therefore 

longer transfer waiting time), this has been overwhelm by the reduced number of transfer passengers who 

have to wait for a full headway. As a result, the total transfer waiting time, which equals to the transfer 

waiting time multiplied by the transfer demand, could still be reduced to some extent. This indicates that 

incorporation of rerouting behaviour leads to longer headways (thus yields fleet size saving) without 

increasing passengers’ costs. 

Table 3. Optimized results for the baseline values 

Variables (min) Base Enhanced 
Cost 

($/min) 
Base Enhanced ℎ𝑘 (ℎ1, ℎ2, ℎ3)a (24, 12, 24) (28, 12, 28) 𝐶 146.53 143.74 

𝑠𝑚𝑘(note) 

𝑠21 (0.88, 1.93) (0.77, 1.84) 𝐶𝑜 16.40 15.11 𝑠22 (0.25, 0.00) (0.01, 0.02) 𝐶𝑤 26.04 26.60 𝑠31 (3.63, 1.62) (3,91, 1.61) 𝐶𝐼 91.90 91.92 𝑠33 (2.29, 3.76) (2.73, 4.18) 𝐶𝑠 1.17 0.92 𝑠61 (0.38, 0.40) (0.10, 0.03) 𝐶𝑐 4.31 2.61 



26 

 

𝑠63 (1.68, 1.31) (1.60, 1.07) 𝐶𝑓 4.57 4.34 

— 𝐶𝑔 2.14 2.24 

Note: The two values in the bracket denote the slack times for the two different directions of the line. 
 

Next, we conduct sensitivity analysis to investigate the relationship between model parameters and 

decision variables, and discuss the implications for transit operation and network design. Since the arrival 

delay at transfer stations are central sources triggering connection failure and adaptive route choice, in what 

follows we begin with investigating the sensitivity to delay arrival uncertainty, followed by the sensitivity to 

total demand. It proceeds to analyse the effect of rerouting on the system performance under supply 

constraints, which is common practice in transit operation. To achieve this, slack times are optimized for 

exogenously specified headways.  

 

4.1.1 Sensitivity to arrival mean delay 

Fig. 10 presents the averaged optimal slack time under various levels of arrival delay. It can be seen that 

the averaged slack times for both models tend to increase initially with the mean delay before decreasing. 

This is because that the delay arrival is assumed to be exponentially distributed, the variance of delay 1 𝜆2⁄  

also increases with the mean delay1 𝜆⁄  . This suggests that the system needs more slack time when the 

uncertainty is higher. However, adding more slack times would be undesirable when the arrival delay 

uncertainty is higher than a threshold. 

 

Fig. 10 Averaged optimal slack time under different mean delays 

 

(a)                                       (b)  

Fig. 11 System costs under various mean delays: (a) transfer cost; (b) total cost 
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Fig. 11 shows the key cost components of schedule coordination under different mean delays: total transfer 
cost (𝐶𝑐 + 𝐶𝑓 + 𝐶𝑔) and total system cost (𝐶). It is found that the transfer cost and systematic total cost 

generally increase as the mean delay increases. However, there is a sudden drop in transfer cost when the 

mean delay is higher than 4.3 min. This is because the increase of the mean delay changes the optimized 

headways, which in turn affects the transfer cost. The costs of the enhanced model are consistently lower 

than those of the base one, and the gap between them is negligible when the mean delay 1 𝜆⁄  is lower than 

1.3. The reason is that the probability of missed connection is higher when the arrival delay becomes larger, 

under which circumstance the rerouting bebaviour takes more effect. Accordingly, lower system total cost 

can be expected.  

4.1.2 Sensitivity to total demand  

Since bus departure headways rest with the demand for the service, here we first analyse the optimized 

headways of both base and enhanced models at different demand levels, and the results are presented in 

Table 4. The first observation is that schedule coordination with integer-ratio headways outperforms that 

with a single common headway in all scenarios. This implies that the demand or route length is significantly 

different among the bus routes. As the demand level grows proportionally, the optimal headways decrease, 

and the optimal headways of Lines 1 and 3 versus Line 2 remain no less than 2 before the demand ratio 

reaches a critical value (1 and 1.4 for the base and enhanced case, respectively). Beyond that, the ratio 

between them becomes smaller than 2. This indicates that the integer-ratio headway may be more economical 

for schedule coordination at low demand. In addition, we observe that the headways are reduced after 

incorporating rerouting behaviour in the model, suggesting that the fleet size can be saved and thus 

economically advantageous. This is because allowing rerouting will mitigate the negative effect of missed 

connection, less buses then are needed.  

 

Table 4. Optimized headways at different demand ratios (min) 
 Base Enhanced 

Ratio ℎ1 ℎ2 ℎ3 ℎ1 ℎ2 ℎ3 
0.2 56 28 56 60 30 60 

0.4 40 20 40 45 20 45 

0.6 32 16 32 35 15 35 

0.8 30 15 30 32 16 32 

1 24 12 24 28 12 28 

1.2 21 12 21 27 12 27 

1.4 21 12 21 21 12 21 

1.6 18 12 18 20 12 20 

1.8 16 12 16 18 12 18 

2.0 16 12 16 18 12 18 
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Fig. 12 Averaged optimal slack time under different demand levels 

Fig.12 presents the averaged optimal slack time under different demand levels. We observe that the slack 

times decrease with the increment of the demand volume in a nearly exponential way. This is expected since 

at higher demand, the service headway will be shorter and any missed connection becomes less frustrated 

for transfer passengers, thus less slack times are needed to relief the travel time variability. In addition, at 

low demand, the slack times for the enhanced model are smaller than that of the base one, and the gaps are 

negligible when the demand ratio is larger than a critical value (e.g., 1.2 in this example). There are two 

possible reasons for this. First, the slack times are linked closely to service headways, while the headways 

for both variants are close at relatively heavy demand as shown in Table 6. Second, according to Eq.(28), as 

the headway becomes shorter, the travel time of the originally planned route would be reduced in spite of 

connection failure, such that passengers are less likely to modify their routes (and therefore the switching 

rate has been reduced).  

 

4.1.3 Sensitivity analysis under supply constraints 

While it is shown that incorporating rerouting in the optimization of schedule coordination without any 

supply constraints could lead to cost saving, it is not uncommon for a transit operator to face with supply 

constraints in practice due to budget or fleet size limitation. Therefore, from the standpoint of operator, it is 

important to understand the schedule performance with such consideration. To further investigate whether 

the enhanced model is advantageous under supply constraints, slack times are optimized for exogenously 

specified headways. This resembles finding the optimal schedule plan in the context of a constant fleet size. 

For simplicity and clarity, we focus on verifying the slack times and system costs under the optimal headway 

for base demand, that is, fixing headways at ℎ1 = 24𝑚𝑖𝑛, ℎ2 = 12𝑚𝑖𝑛, ℎ3 = 24𝑚𝑖𝑛. 
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(a)                                        (b)  

Fig.13 Optimal slack times for various mean delays: (a) typical slack time; (b) mean slack times 

 

Fig.13 presents the typical optimized slack times (𝑠22, 𝑠62) and averaged slack time for various mean 

delay. It is found that the mean slack times are smoother than in Fig.10, which is because the slack times are 

optimized with predetermined headways. As the mean delay increases, the typical slack time shows an 

upward trend before hitting the threshold and then decreases drastically to 0. More importantly, the typical 

slack times and average slack time characterized by rerouting effect are considerably shorter than those of 

the base model. The saving for the average slack time made by rerouting appears to get enlarged when the 

mean delay is larger than 1.1. This may be explained by the fact that the slack time setting is related to the 

trade-off between the transfer demand and through demand, while as per discussed, the immediate effect of 

passenger rerouting is the reduction of transfer demand and the increase of through demand. Since rerouting 

is triggered by transfer failure, more chance of connection failure and rerouting can be expected when the 

arrival delay uncertainty is higher. As mentioned before, the reservation of large slack times is inefficient 

since it leads to additional vehicle holding and trip time. In other words, the allocated slack time on the other 

hand means the efficiency of schedule coordination. Therefore, these results suggest that by introducing the 

rerouting behaviour, more cost-effective synchronized schemes with less slack times can be realized. 

 

Fig. 14 Averaged optimal slack time for different demand levels under given headways 

We further analyse the change pattern of average slack times for different demand ratios under given 

headways and the results are shown in Fig.14. The scenarios differ in two dimensions: whether the rerouting 

is allowed and arrival delay uncertainty is high or moderate. It is clear that the average slack times increase 
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with the demand level. This is because transfer volume grows proportionally with the total demand, and 

when headways are fixed, more slacks are needed to relieve the travel time variability and reduce the transfer 

costs. Interestingly, the rerouting effect could reduce slack time reservation under various demand ratio, and 

the improvement is greater for the high delay scenario (𝜆 = 1 4⁄ ). For example, the slack time saving for 

high delay scenario are 37.3% and 23.1% for 0.2 and 2 demand ratio, respectively; whereas for moderate 

delay scenario are 24% and 11%, respectively. (In this study the saving is calculated as (𝑛𝑜𝑛𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 − 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒) × 100 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒⁄ ). This is explainable from the fact that rerouting effect is 

more active under higher delay arrival uncertainty as discussed previously. These results give us a practical 

managerial insight that, in the context of supply constraints, rerouting can improve performance by a greater 

degree when the arrival delay is higher and demand level is lower. 

  

Fig.15 Averaged optimal slack time versus value of missed connection time 

  Similarly, by increasing the value of missed connection time (𝜇𝑐) while fixing the values of other user’s 

time components, the average optimal slack times are sketched in Fig.15. One can see that the average slack 

times increase as the value of missed connection time increases, suggesting that coordinated transfer should 

be encouraged. Similar as shown before, the slack times of enhanced model are considerably smaller than 

those of the base one, and the gaps between them are larger when the arrival delay uncertainty is higher.  

 

4.2. ExperimentⅡ 

This section analyses the passenger flow pattern with rerouting behaviour. Consider a medium-size hybrid 

network shown in Fig.16 with 4 bus lines and 3 transfer stations. Stations 1 to 3 are common line stops 

shared by line 1 and line 2. The transfer coordination at the immediate stations along the common line are 

ignored since in reality the link travel time might be different across bus lines and it required additional effort 

in synchronization timetable from the terminal as suggested by Ibarra-Rojas et al (2012) and Ibarra-Rojas 

and Muñoz (2016), which is out of the scope of this study. This network can be viewed as an extended 

version of the simple triangular network as shown in Fig.6, where line 1, 2 and 3 constitutes a triangular loop 

network while line 3 combined with line 4 are equivalent to a trunk-and-feeder network. The trip rate for 

each OD pair is assumed to be 0.5pax/min, and the link travel times are provided in Table 5. For simplicity 

the link travel times in both directions are assumed to be identical. Once again the exponential distribution 

is used for delayed arrival distribution function, of which in the base case the delay parameter 𝜆𝑚𝑘 =
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1/8𝑚𝑖𝑛−1 is fixed for all transfer nodes and on all lines.  

Table 5. Link travel times (min) for the bus network 

Link 1-2 2-3 3-4 4-5 5-6 6-7 4-8 8-9 8-10 10-11 

Travel time 5 6 5 4 6 5 7 6 5 4 

Link 5-8 5-12 12-13 13-14 13-18 16-17 17-18 13-19 19-20 20-21 

Travel time 6 7 4 5 7 5 8 6 6 5 

 

 
Terminals

Transfer stations

Stations

1 2 3 4

5

6

7

8

9

1011

12

13

14
15

16 17 18

19

20 21Line 1

Line 2

Line 3

Line 4

 

Fig.16 A medium-size hybrid bus network (adapted from Xu et al., 2017) 

Table 6. Passenger flow distribution for some typical O-D pairs 

O-D pair Path node sequence Path flow Rerouting flow Rerouting flow/Path flow  

15→1 15,14,13,12,5,4,3,2,1 0.348 0.007 2.03%   

 15,14,13,12,5,8,4,3,2,1 0.152 - -   

15→4 15,14,13,12,5,4 0.346 0.041 11.8%   

 15,14,13,12,5,8,4 0.154 - -   

16→2 16,17,18,13,12,5,4, 0.347 0.033 9.6%  

 16,17,18,13,5,8,4 0.153 - - 

16→3 16,17,18,13,12,5,4,3 0.345 0.041 11.9%  

 16,17,18,13,12,5,8,4,3 0.155 - -  

17→2 17,18,13,12,5,4,3,2 0.346 0.033 9.67%  

 17,18,13,12,5,8,4,3,2 0.154 - - 

17→4 17,18,13,12,5,4 0.344 0.041 11.9%  

 17,18,13,12,5,8,4 0.156 - - 

To illustrate how the passenger flow distribution changed by rerouting behaviour, the detailed results for 
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some typical O-D pairs are analysed. There are two paths for these O-D pairs, and their alternative paths are 

branched from a transfer station (node 5). For example, one of the paths for OD pair 15→1 is line 3→line 1 

transferring at node 5, while the alternative path is line 3→line 2 transferring at node 8. Table 6 presents the 

originally planned path flow and the rerouting flow for typical O-D pairs. One can see that a considerable 

proportion of the passenger flow is migrated into the alternative path with connection uncertainty, ranging 

from about 2% to as high as 12%. 

Table 7. Rerouting flow factor after doubling mean arrival delay at node 5 

Factor𝑓(𝜆−1) 𝑓(2𝜆−1)⁄  

O-D pair 

𝑓(2) 𝑓(4)⁄  𝑓(4) 𝑓(8)⁄  𝑓(8) 𝑓(16)⁄  

15→1 0.831 0.957 0.987 

15→4 0.802 0.951 1.026 

16→2 0.801 0.946 1.030 

16→3 0.803 0.952 1.026 

17→2 0.802 0.947 1.031 

17→4 0.804 0.953 1.030 

As missed connection is the main source triggering rerouting behaviour, how the change of vehicle 

arrival delay parameter affects the passenger flow distribution deserves some discussion. To this end, we 

investigate the evolution of rerouting flow factor, i.e., 𝑓(𝜆−1) 𝑓(2𝜆−1)⁄ , when the delay parameter 1 𝜆⁄  at 
node 5 is doubled and the results are shown in Table 7. One can see that, as the delay parameter increases, 

the factor tends to increase, indicating that more passenger flow is migrated into the alternative path when 

the delay parameter becomes higher. When the delay parameter reaches a threshold, i.e., 1 𝜆⁄ = 8, the factor 𝑓(8) 𝑓(16)⁄   is very close to 1. As mentioned before, since the delay arrival time is assumed to follow 
exponential distribution, its variance 1 𝜆2⁄  will increase as the mean delay 1 𝜆⁄  increases. This implies 

that 8 is already a high delay parameter, and any increment of rerouting flow could become more difficult 

though increasing the parameter.  

With transfer failure and the rerouting flow, demand transition may occur from transfer passengers to 

through passengers at a designated transfer station, which further results in the change of the schedule 

coordination planning. This supports the conjecture mentioned in Fig.5 that rerouting could lead to the 

change in transfer demand (and thus through demand). Therefore, the results suggest that passenger rerouting 

cannot be ignored in the context of schedule coordination and connection uncertainty. 

5. Concluding remarks 

  Rerouting can efficiently deal with uncertainties. However, the issue of bus schedule coordination design 

with rerouting of passengers has not been fully addressed before. This study proposed a new model for 

stochastic bus schedule coordination design, providing that passengers can adjust their route in case of 

missed connection. To build the linkage between the expected network flows and transfer reliability, we 

developed a bi-level programming model wherein the schedule design (headways and slack times) and 



33 

 

passenger route choice are determined simultaneously. The upper-level problem is designed to minimize the 

system total costs (user cost and operator cost), while the lower-level problem is a route choice (pre-trip and 

on-trip) model for timed-transfer service. A heuristic algorithm and MSA have been jointly applied for 

solving the bi-level model.  

This model was exemplified by a simple triangular loop bus network and a medium-size hybrid network 

with ubiquitous rerouting behaviour. Experiments revealed that effect of rerouting should not be ignored in 

the design of schedule coordination. Results showed that the incorporation of dynamic rerouting behaviour 

leads to longer headways (thus yields fleet size saving and economic benefit) without increasing passengers’ 

costs. Another interesting finding is that in the context of supply constraints (i.e., given headways), more 

cost-effective schedule coordination schemes with less slack times can be achieved, and the improvement is 

greater when the arrival delay uncertainty is higher. These findings indicate that ignoring such behavioral 

characteristic would induce idle capacity in the transit system, including higher costs for the operators, thus 

underestimate the efficacy of schedule coordination scheme and lead to potential planning errors. Therefore, 

the resultant model provides more options (i.e., rerouting) and flexibility for planners to tackle uncertainties 

more effectively. In view of these findings, we recommend that a properly designed transfer-based network 

with well-connected routes and real-time information can improve the efficiency of transit system and deal 

with disruptions more cost-effectively.  

This study stepped out an innovative analytical framework for incorporating demand assignment and 

rerouting behaviour in stochastic schedule coordination design, which paves the way for new research 

directions. For instance, while this article focuses on the schedule design over a specific planning horizon in 

which passenger demand and travel time retain their characteristics, future research can extend the lower 

level model to other more realistic, dynamic transit assignment models, and incorporate demand and running 

(and delayed) time dynamics in multi-period schedule coordination planning to capture the time-dependent 

operating conditions. Additionally, the proposed framework could be extended to joint optimization of 

optimum transit network layout and schedule coordination. 
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Appendix 1. Derivation of missed connection time 𝑇𝑐𝑘𝑘′  
The event of missed connection occurs when the connecting bus leaves before the transfer passengers 

arrive. Assuming the delayed arrival times on different lines are statistically independent, then the joint 

probabilities of simultaneous arrivals could be attained by multiplying the arrival probabilities of each 

individual bus line. Let 𝑘′denote the bus line connecting to line 𝑘 at transfer node 𝑚 (which also holds 

in the following appendices). There are two possible cases formulated as follows: 

Case A. The bus on one line arrives at transfer node behind schedule while the connecting bus on another 
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line arrives before schedule. The expected missed connection time is:  ∫ ∫ [ℎ𝑘′ − (𝑑𝑚𝑘 − 𝑠𝑚𝑘)]𝑠𝑚𝑘′0
ℎ𝑘𝑠𝑚𝑘 𝑓(𝑑𝑚𝑘)𝑑𝑑𝑚𝑘𝑓(𝑑𝑚𝑘′)𝑑𝑑𝑚𝑘𝑑𝑑𝑚𝑘′ 

Case B. Both buses arrive at transfer node behind schedule, while the bus on one line arrives after the 

connecting bus on another line. The expected missed connection time is:  ∫ ∫ [ℎ𝑘′ − (𝑑𝑚𝑘 − 𝑠𝑚𝑘)]𝑓(𝑑𝑚𝑘)𝑑𝑑𝑚𝑘𝑓(𝑑𝑚𝑘′)𝑑𝑚𝑘−𝑠𝑚𝑘+𝑠𝑚𝑘′𝑠𝑚𝑙
ℎ𝑘𝑠𝑚𝑘 𝑑𝑑𝑚𝑘𝑑𝑑𝑚𝑘′ 

   Then the expected missed connection time is the sum of the waiting time for these two scenarios:  

       𝑇𝑐𝑘𝑘′ = ∫ ∫ [ℎ𝑘′ − (𝑑𝑚𝑘 − 𝑠𝑚𝑘)]𝑠𝑚𝑘′0ℎ𝑘𝑠𝑚𝑘 𝑓(𝑑𝑚𝑘)𝑑𝑑𝑚𝑘𝑓(𝑑𝑚𝑘′)𝑑𝑑𝑚𝑘𝑑𝑑𝑚𝑘′ +      

             ∫ ∫ [ℎ𝑘′ − (𝑑𝑚𝑘 − 𝑠𝑚𝑘)]𝑓(𝑑𝑚𝑘)𝑑𝑑𝑚𝑘𝑓(𝑑𝑚𝑘′)𝑑𝑚𝑘−𝑠𝑚𝑘+𝑠𝑚𝑘′𝑠𝑚𝑙ℎ𝑘𝑠𝑚𝑘 𝑑𝑑𝑚𝑘𝑑𝑑𝑚𝑘′                                                

 

Appendix 2. Derivation of delayed connection time 𝑇𝑓𝑘𝑘′  
The calculation of delayed connection cost should account for three possible options: 

Case A. Both buses are not late. Then the waiting time is 𝑠𝑚𝑘 − 𝑑𝑚𝑘. The expected waiting time could be 

calculated using integration:  ∫ ∫ (𝑠𝑚𝑘 − 𝑑𝑚𝑘)𝑠𝑚𝑘0 𝑓(𝑑𝑚𝑘)𝑑𝑑𝑚𝑘𝑓(𝑑𝑚𝑘′)𝑑𝑑𝑚𝑘′𝑠𝑚𝑘′0  

Case B. The bus on one line arrives before schedule but the bus on another line arrives behind schedule. 

Then the transfer waiting time for passengers is 𝑑𝑚𝑘′ − 𝑠𝑚𝑘′ + 𝑠𝑚𝑘 − 𝑑𝑚𝑘 . The expected waiting time 

could be calculated as:  ∫ ∫ (𝑑𝑚𝑘′ − 𝑑𝑚𝑘 − 𝑠𝑚𝑘′ + 𝑠𝑚𝑘)ℎ𝑘′𝑠𝑚𝑘′ 𝑓(𝑑𝑚𝑘)𝑑𝑑𝑚𝑘𝑓(𝑑𝑚𝑘′)𝑑𝑑𝑚𝑘′𝑠𝑚𝑘0  

Case C. Both buses arrive behind schedule, but the bus on one line arrives before its connecting bus on 

another line. Then the transfer waiting time for passengers is 𝑑𝑚𝑘′ − 𝑠𝑚𝑘′ + 𝑠𝑚𝑘 − 𝑑𝑚𝑘 . The expected 

waiting time is:  ∫ ∫ (𝑑𝑚𝑘′ − 𝑑𝑚𝑘 − 𝑠𝑚𝑘 + 𝑠𝑚𝑘′)𝑠𝑚𝑘−𝑠𝑚𝑘′+𝑑𝑚𝑘′𝑠𝑚𝑘 𝑓(𝑑𝑚𝑘)𝑑𝑑𝑚𝑘𝑓(𝑑𝑚𝑘′)𝑑𝑑𝑚𝑘′ℎ𝑘′𝑠𝑚𝑘′  

Consequently, summing up the expected waiting time for all possible options yields the total delayed 

connection time: 

  𝑇𝑓𝑘𝑘′ = ∫ ∫ (𝑠𝑚𝑘 − 𝑑𝑚𝑘)𝑠𝑚𝑘0 𝑓(𝑑𝑚𝑘)𝑑𝑑𝑚𝑘𝑓(𝑑𝑚𝑘′)𝑑𝑑𝑚𝑘′𝑠𝑚𝑘′0          

      +∫ ∫ (𝑑𝑚𝑘′ − 𝑑𝑚𝑘 − 𝑠𝑚𝑘′ + 𝑠𝑚𝑘)ℎ𝑘′𝑠𝑚𝑘′ 𝑓(𝑑𝑚𝑘)𝑑𝑑𝑚𝑘𝑓(𝑑𝑚𝑘′)𝑑𝑑𝑚𝑘′𝑠𝑚𝑘0  

  +∫ ∫ (𝑑𝑚𝑘′ − 𝑑𝑚𝑘 − 𝑠𝑚𝑘 + 𝑠𝑚𝑘′)𝑠𝑚𝑘−𝑠𝑚𝑘′+𝑑𝑚𝑘′𝑠𝑚𝑘 𝑓(𝑑𝑚𝑘)𝑑𝑑𝑚𝑘𝑓(𝑑𝑚𝑘′)𝑑𝑑𝑚𝑘′ℎ𝑘′𝑠𝑚𝑘′  
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Appendix 3. Derivation of transfer failure rate Eq.(21) 

   The transfer failure rate, or missed connection probability depends on the delayed arrival distribution, 

and how service headways and slack times are configured. There are two possible outcomes: 

Case A. The bus on one line arrives behind schedule at transfer station but the connecting bus on another 

line arrives before schedule, that is, 𝑑𝑚𝑘 > 𝑠𝑚𝑘 and 𝑑𝑚𝑘′ < 𝑠𝑚𝑘′ . Then the respective probability is:  

           𝑃(𝑑𝑚𝑘 > 𝑠𝑚𝑘 ∩ 𝑑𝑚𝑘′ < 𝑠𝑚𝑘′) 
         = 𝑃(𝑑𝑚𝑘 > 𝑠𝑚𝑘)𝑃(𝑑𝑚𝑘′ < 𝑠𝑚𝑘′)        

         = ∫ ∫ 𝑓(𝑑𝑚𝑘)𝑑𝑑𝑚𝑘𝑓(𝑑𝑚𝑘′)𝑑𝑑𝑚𝑘𝑑𝑑𝑚𝑘′𝑠𝑚𝑘′0ℎ𝑘𝑠𝑚𝑘  

Case B. Both buses arrives behind schedule, but the bus on one line arrive before the connecting bus on 

another line. Then the respective probability is:  

          𝑃(𝑑𝑚𝑘 > 𝑠𝑚𝑘 ∩ 𝑑𝑚𝑘′ > 𝑠𝑚𝑘′ ∩ 𝑑𝑚𝑘 − 𝑠𝑚𝑘 > 𝑑𝑚𝑘′ − 𝑠𝑚𝑘′)  

        = ∫ ∫ 𝑓(𝑑𝑚𝑘)𝑓(𝑑𝑚𝑘′)𝑑𝑚𝑘−𝑠𝑚𝑘+𝑠𝑚𝑘′𝑠𝑚𝑘′ℎ𝑘𝑠𝑚𝑘 𝑑𝑑𝑚𝑘𝑑𝑑𝑚𝑘′     

Summing up the two probabilities yields the overall transfer failure rate: 𝑃𝑚𝑘𝑘′ = ∫ ∫ 𝑓(𝑑𝑚𝑘)𝑓(𝑑𝑚𝑘′)𝑠𝑚𝑘′0ℎ𝑘𝑠𝑚𝑘 𝑑𝑑𝑚𝑘𝑑𝑑𝑚𝑘′ + ∫ ∫ 𝑓(𝑑𝑚𝑘)𝑓(𝑑𝑚𝑘′)𝑑𝑚𝑘−𝑠𝑚𝑘+𝑠𝑚𝑘′𝑠𝑚𝑘′ℎ𝑘𝑠𝑚𝑘 𝑑𝑑𝑚𝑘𝑑𝑑𝑚𝑘′                             
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