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Abstract

Background: Heart failure (HF) is characterized by altered myocardial substrate metabolism which can lead to
myocardial triglyceride accumulation (steatosis) and lipotoxicity. However its role in mild HF with preserved ejection
fraction (HFpEF) is uncertain. We measured myocardial triglyceride content (MTG) in HFpEF and assessed its
relationships with diastolic function and exercise capacity.

Methods: Twenty seven HFpEF (clinical features of HF, left ventricular EF >50%, evidence of mild diastolic
dysfunction and evidence of exercise limitation as assessed by cardiopulmonary exercise test) and 14 controls
underwent 1H-cardiovascular magnetic resonance spectroscopy (1H-CMRS) to measure MTG (lipid/water, %),
31P-CMRS to measure myocardial energetics (phosphocreatine-to-adenosine triphosphate - PCr/ATP) and
feature-tracking cardiovascular magnetic resonance (CMR) imaging for diastolic strain rate.

Results: When compared to controls, HFpEF had 2.3 fold higher in MTG (1.45 ± 0.25% vs. 0.64 ± 0.16%, p = 0.009) and
reduced PCr/ATP (1.60 ± 0.09 vs. 2.00 ± 0.10, p = 0.005). HFpEF had significantly reduced diastolic strain rate and
maximal oxygen consumption (VO2 max), which both correlated significantly with elevated MTG and reduced PCr/ATP.
On multivariate analyses, MTG was independently associated with diastolic strain rate while diastolic strain rate was
independently associated with VO2 max.

Conclusions: Myocardial steatosis is pronounced in mild HFpEF, and is independently associated with impaired
diastolic strain rate which is itself related to exercise capacity. Steatosis may adversely affect exercise capacity by
indirect effect occurring via impairment in diastolic function. As such, myocardial triglyceride may become a potential
therapeutic target to treat the increasing number of patients with HFpEF.
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Background
Almost half of all patients who present with clinical
features of heart failure (HF) have preserved left ven-
tricular (LV) ejection fraction (HFpEF). Its prevalence
is on the rise, representing a major burden for health
care services [1]. These patients are often elderly, fe-
male with multiple co-morbidities such as hyperten-
sion and obesity, and typically show a non-dilated LV,
concentric remodelling and abnormal diastolic func-
tion [2]. The diagnostic criteria of HFpEF is based on
clinical features of HF and normal LV ejection frac-
tion (EF) together with evidence of diastolic dysfunc-
tion, LV hypertrophy, left atrial (LA) enlargement and
raised plasma brain natriuretic peptides (BNP) accord-
ing to the current European Society of Cardiology
(ESC) guidelines [3].
However, the current criteria focus on patients with

more advanced stages of the diseases leaving a large pro-
portion of patients with mild diastolic dysfunction and
limiting dyspnoea which may be overlooked in daily
clinical practice. In addition, the vast majority (90%) of
elderly patients with isolated moderate/severe diastolic
dysfunction and normal LVEF not diagnosed to have HF
have limiting dyspnoea [4]. Furthermore, nearly a third
of asymptomatic patients with diastolic dysfunction de-
velop symptoms of breathlessness, oedema or fatigue
over 2 years [5] and this progression is accompanied by
a substantial decrease in survival rate [6]. As a result,
there is a real need for novel and, effective therapeutic
targets to improve the management of the increasing
number of patients with HFpEF.
Myocardial metabolism is a promising therapeutic

target in HF [7]. HF is characterized by impaired myo-
cardial energetics and altered myocardial substrate me-
tabolism with a switch in fatty acid (FA) oxidation
towards glucose oxidation for adenosine triphosphate
(ATP) generation. This metabolic substrate shift may be
a consequence of glucose being energetically more effi-
cient (lower oxygen usage) than fatty acids [7, 8]. Ac-
companying this switch is an imbalance between FA
uptake (which continues to be high) and FA oxidative
metabolism (which is reduced), leading to intracellular
cardiac lipid accumulation. This accumulation provides
a source for non-oxidative metabolism to diacylglycerol
and ceramide, potentially resulting in lipotoxicity, apop-
tosis and cardiac dysfunction [8–10].
Proton (1H) cardiovascular magnetic resonance (CMR)

spectroscopy (CMRS) allows the non-invasive measure-
ment of myocardial lipid (triglyceride) content [11], and
by using this technique, we and others have demon-
strated that cardiac steatosis occurs in several situations
that are characterised by diastolic dysfunction; aortic
stenosis, metabolic syndrome, obesity and type 2 dia-
betes mellitus [12–14]. Whilst steatosis [15] and reduced

myocardial energetics [16] have both been shown to be
present in HFpEF, metabolic characterization assessing
both myocardial triglyceride (MTG) and energetics
within the same cohort of patients with HFpEF and their
relationship with cardiac function and exercise capacity
have not previously been explored. The focus of this
study was to investigate MTG content and energetics in
patients with mild HFpEF and their relationship with
cardiac function and exercise capacity.
CMR feature-tracking (CMR-FT) is a technique re-

cently developed that can quantify strain and diastolic
strain rate based on standard CMR cine balanced steady
state free precession (bSSFP) images independent of
additional sequences, with considerably reduced post
processing time, and has been shown to have good
agreement with CMR tissue tagging [17]. Although
CMR tissue tagging is the gold standard for measuring
cardiac strain, increased scanning time due to acquisi-
tion of additional tagging sequences and processing time
limits its routine use [17]. We used multi-parametric
cine CMR and multinuclear CMRS (1H and 31P) to in-
vestigate metabolic changes in HFpEF, and their rela-
tionships with diastolic function (diastolic strain rate)
and exercise capacity, as measured by maximal oxygen
consumption (VO2 max).

Methods
Study population
A group of 27 patients with HFpEF defined by the pres-
ence of symptoms or signs of HF, a non-dilated LV with
LVEF ≥50% and evidence of abnormal diastolic function
on Doppler echocardiography were prospectively en-
rolled between 2011 and 2018 [18, 19]. Additionally, we
performed cardiopulmonary exercise testing (CPET) to
confirm their exercise limitation by measuring VO2 max
(VO2 at peak exercise). Patients were enrolled if their
VO2 max was < 80% predicted for age and gender, with
a pattern of gas exchange that would indicate a cardiac
cause of exercise limitation. Patients who had diabetes
mellitus, uncontrolled hypertension, significant valvular
disease, previous myocardial infarction, coronary revascu-
larization, previous cardiac surgery, contraindications to
CMR or estimated glomerular filtration rate < 30ml/min
were excluded. Fourteen age, gender and body mass index
(BMI) matched healthy controls without a history of heart
disease, diabetes, hypertension or dyslipidaemia were also
recruited. They were identified from the local population
by word of mouth and poster advertisements around hos-
pital and university. Controls were included if they were
65 years or older, asymptomatic, not on any medications
and had no cardiac abnormalities detected on electrocar-
diogram (ECG) or CMR. All study participants fasted for
at least 6 h prior to CMR and CMRS and were scanned at
around the same time of the day.
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Study protocol
All study participants underwent resting transthoracic
echocardiography, 31P-CMRS (n = 20 for HFpEF and
n = 10 for controls) and 1H-CMRS in addition to the
standard CMR imaging. All HFpEF patients and a
subgroup of healthy controls (n = 9) underwent CPET.

1H cardiovascular magnetic resonance spectroscopy
Myocardial 1H spectra were obtained from the mid inter-
ventricular septum as previously described [11]. In short,
spectroscopic acquisitions were performed using ECG
trigger at end-expiration to minimize motion artefacts.
Water-suppressed spectra were acquired to measure car-
diac lipid, and spectra without water suppression were ac-
quired and used as an internal standard. Spectroscopic
stimulated echo (STEAM) sequence with an echo time
(TE) of 10ms was used. Five to six water-suppressed scans
(5 averages each; repetition time (TR) of at least 2 s) were
acquired in mid-diastole in a series of single breath-holds
of about 10 s each. Next, a water spectrum (3 averages; TR
of at least 4 s) was acquired in a single breath-hold to use
as internal reference. Spectra were analysed using a cus-
tom Matlab (Mathworks, Natick, Massachusetts, USA)
implementation of AMARES (Advanced Method of
Accurate, Robust and Efficient Spectroscopic) and the
AMARES algorithm in jMRUI (Java-based Magnetic
Resonance User Interface) as previously described [11].
Myocardial triglyceride content was calculated as a per-
centage relative to water: (signal amplitude of lipid/signal
amplitude of water) × 100%.

31P cardiovascular magnetic resonance spectroscopy
31P-CMRS was performed to obtain PCr/ATP ratio from
a voxel placed in the mid-ventricular septum, with
the subjects lying prone with their heart over the
centre of the 31P heart/liver coil in the magnet iso-
centre as previously described [20]. 31P-CMRS post
processing analysis was performed using a custom
Matlab analysis tool, as previously described [20]. Coil
positioning was confirmed or adjusted with the use of
proton localization images as previously described.
Spectra were acquired using acquisition-weighted 3D
chemical shift imaging (CSI) [21], with 10 averages in
the centre of K-space. The TR was 720 ms and the
acquisition duration was 8 min [22].

Cardiovascular magnetic resonance imaging
Cine CMR images were acquired for cardiac volume
analysis using a 3 T CMR system (Trio, Siemens
Healthineers, Erlangen, Germany) using bSSFP cine im-
aging as previously described [23]. Analysis of cardiac
volumes, function and mass was performed using Argus
post-processing software (Siemens Healthineers). The
systolic circumferential strain and diastolic strain rate

parameters were calculated using feature tracking soft-
ware Circle, Cardiovascular (cvi42®, Circle Cardiovascu-
lar Imaging Calgary, Canada) from the short-axis
bSSFP cine images. The epicardial and endocardial bor-
ders were traced manually at diastole and the software
then tracked the deformation throughout the cardiac
cycle generating values for global circumferential strain
and circumferential diastolic strain rate. In case of in-
sufficient tracking of the endocardial and epicardial
borders, contours were manually corrected and the
tracking repeated.

Transthoracic echocardiography
Transthoracic echocardiography (echo) was performed
using a commercial echocardiographic system (iE33,
Philips Healthcare, Best, The Netherlands). Measure-
ments of LV diastolic function were performed accord-
ing to the guidelines [24]. The following diastolic indices
were obtained; transmitral early (E) and late (A) diastolic
velocities, mitral annular early (e’) diastolic velocity, with
calculation of E/A and E/e’ ratios.

Cardiopulmonary exercise test (CPET)
Cardiopulmonary exercise testing was undertaken using
an upright treadmill or bicycle ergometer protocol with
simultaneous respiratory gas analysis after performing a
spirometry, as described [16]. An incremental ramp
protocol was utilised whereby speed and inclination (for
treadmill) or resistance and speed (for bicycle exercise)
were gradually increased with continual heart rate, blood
pressure and ECG recording. All subjects were exercised
to volitional fatigue, with a corresponding adequate re-
spiratory exchange ratio (RER) achieved as a require-
ment for satisfactory effort defined as RER of > 1.
Maximal oxygen consumption (VO2 max) was deter-
mined by averaging VO2 measures over 30 s of peak
exercise.

Statistical analysis
A priori sample size calculation was performed which was
based on a change in PCr/ATP ratio. With a power of
80% and p < 0.05, a sample size of 18 would be required to
identify a difference of 0.39 in PCr/ATP. As the true effect
size for MTG was unknown in this population, a post-hoc
analysis using MTG was performed which showed that 30
subjects (20 HFpEF and 10 controls) would have a power
of 86%. Data are expressed as mean ± SD for description
of study cohorts and mean ± SE for CMR and CMRS vari-
ables. Categorical data are presented as numbers and per-
centages. Comparisons between the two groups were
performed by non-parametric method due to small sam-
ple size. The Chi-squared test or Fisher’s exact test were
used to compare categorical data as appropriate. Bivariate
correlations were performed in all subjects using Pearson’s
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or Spearman’s method as appropriate. Non-normally dis-
tributed data were log transformed to construct normal
data. Variables with significant correlations with diastolic
strain rate and VO2 max were entered into a stepwise
multivariate model to determine predictors of diastolic
strain rate and VO2 max. A P-value < 0.05 was considered
significant. All statistical analyses were performed with
SPSS (version 21, International Business Machines,
Armonk, New York, USA).

Results
Description of patient cohort and baseline characteristics
Sixty-five patients with chronic breathlessness under fol-
low up in the cardiology clinics were identified and
screened in addition to 7 patients who were recruited by
posters. Of these, 37 were eligible to enter the study, of
which the first 31 consecutive patients took part in the
study. Four patients were excluded due to incomplete

study protocol. None of the patients had prior HF ad-
missions, prior insults such as chemotherapy or radi-
ation. None of the patients had been diagnosed or
suspected to have amyloidosis, and CMR did not show
findings suggestive of amyloidosis. Patients with history
of angina, previous myocardial infarction or coronary re-
vascularization were excluded. Although coronary angi-
ography was not performed prior to entering the study,
none of the patients had a history of angina, and they
did not have angina or develop any ischaemic changes
during CPET.
Table 1 shows demographic, clinical, echocardio-

graphic, biochemical and VO2 max results for both
HFpEF and healthy control groups. Both groups were
matched with regards to age, gender, BMI and glucose
and blood cholesterols. Frequency matching instead of
individual (one-to-one) matching was performed which
was based upon proportion of the age and gender for

Table 1 Clinical, echocardiographic and biochemical characteristics

HFpEF (n = 27) Healthy Controls (n = 14) P value

Age (years) 72 ± 7 69 ± 6 0.09

Female, n (%) 18 (67) 8 (57) 0.55

NYHA class, n (%)

I 0 14 (100) < 0.001

II 24 (89) 0 < 0.001

III 3 (11) 0 < 0.001

Body mass index (kg/m2) 29 ± 6 26 ± 5 0.10

Hypertension, n (%) 12 (44) 0 0.04

Atrial fibrillation, n (%) 0 0 –

Beta blockers, n (%) 3 (11) 0 0.53

ARB/ACE inhibitor, n (%) 14 (52) 0 0.004

Diuretics, n (%) 12 (44) 0 0.005

Statins, n (%) 11 (41) 0 0.02

Systolic BP (mmHg) 144 ± 26 132 ± 4 0.15

Diastolic BP (mmHg) 81 ± 12 80 ± 13 0.86

Heart rate (bpm) 68 ± 12 60 ± 12 0.10

E/A ratio 0.69 ± 0.23 0.86 ± 0.24 0.042

E/e’ ratio 10.87 ± 2.61 7.47 ± 2.45 < 0.001

LA size (ml/m2) 31.1 ± 15.4 16.9 ± 6.4 0.003

VO2 max (ml/min/kg) 17.7 ± 3.3 27.8 ± 7.7 0.004

Blood glucose (mmol/L) 5.4 ± 0.9 4.8 ± 0.4 0.07

Free fatty acids (mmol/L) 0.49 ± 0.28 0.54 ± 0.19 0.10

Triglycerides (mmol/L) 1.26 ± 0.37 1.13 ± 0.45 0.44

LDL (mmol/L) 2.45 ± 0.71 3.17 ± 1.05 0.03

HDL (mmol/L) 1.52 ± 0.41 1.60 ± 0.41 0.59

BNP (pmol/L) 15.6 ± 9.4 6.8 ± 3.8 0.01

Values are mean ± SD or percentages
ACE Angiotensin-converting enzyme-inhibitors, ARB Angiotensin-receptor antagonist-II, BNP Brain natriuretic peptide, HDL High-density lipoprotein, HFpEF Heart
failure with preserved ejection fraction, LDL Low-density lipoprotein

Mahmod et al. Journal of Cardiovascular Magnetic Resonance           (2018) 20:88 Page 4 of 10



both cohorts. It was challenging to achieve equal num-
ber of controls to the HFpEF group, as a significant
number of healthy elderly subjects had to be excluded
due to concomitant medical problems. Although the age
(72 vs 69) and gender (67 vs 57%) were not perfectly
matched, the differences are numerically small (3 years
for age and 10% for gender), and statistically they were
not significant (p > 0.05). All HFpEF patients had (1)
signs or symptoms of HF, (2) normal LVEF and LV cavity
size, (3) evidence of mild diastolic dysfunction on Dop-
pler echocardiography, and, additionally (4), objective
evidence of cardiac cause of exercise limitation on
CPET. We decided to use the latter as an additional in-
clusion criterion, as this provided evidence of a cardiac
cause of exercise intolerance in our mild HFpEF popula-
tion, rather than being attributed to physical decondi-
tioning, commonly seen in healthy elderly [16, 25, 26],
and the predicted values are entirely consistent with a
meta-analysis of studies from which reference values
were developed [27].

Assessment of left ventricular function and geometry
Table 2 summarises CMR results for both groups. When
compared to controls, HFpEF showed concentric remod-
eling as indicated by increased LV mass to LV end dia-
stolic volume (EDV) ratio but normal LV mass index. As
expected diastolic strain rate in HFpEF was significantly
impaired. Despite normal LVEF, peak systolic circumfer-
ential strain was significantly impaired in HFpEF, indi-
cating additional subtle contractile dysfunction. None of
the HFpEF or controls had a late gadolinium enhance-
ment (LGE) pattern indicating previous myocardial in-
farction. To assess gender difference in LV functional
parameters, analyses were performed comparing LVEDV,

LV end systolic volume (ESV) and LVEF between
women and men separately in both groups. There were
no significant gender differences in LV volumes and
function in both groups (results not shown).

Assessment of cardiac metabolism with 1H- and 31P
cardiovascular magnetic resonance spectroscopy
Table 2 also shows the comparison of 1H and 31P CMRS
results for all study groups. Compared to controls,
HFpEF patients had pronounced steatosis (a 2.3-fold in-
crease) and impaired energetics despite similar age, gen-
der and BMI (Fig. 1).

Myocardial triglyceride, energetics, diastolic strain rate
and VO2 max
Elevated MTG (Fig. 2) and reduced PCr/ATP ratio cor-
related significantly with impaired diastolic strain rate
but no significant correlations with other diastolic indi-
ces such as transmitral E/A or E/e’. There were no sig-
nificant correlations observed between MTG and PCr/
ATP with echo diastolic indices, as the echo variables
were not powered to detect these differences. On step-
wise multivariate regression analysis, MTG but not PCr/
ATP independently correlated with diastolic strain rate
(adjusted R2 = 0.48) (Table 3). Increased MTG, reduced
PCr/ATP, and impaired diastolic strain rate (Fig. 2) cor-
related significantly with reduced VO2 max but on step-
wise multivariate analysis only diastolic strain rate was
an independent correlate of VO2 max (adjusted R2 =
0.30). As expected both MTG (r = 0.35, p = 0.027) and
diastolic strain rate (r = − 0.48, p = 0.001) correlated sig-
nificantly with New York Heart Association (NYHA)
class suggesting there may be a relationship between
cardiac lipid and exercise tolerance.

Table 2 CMR and CMRS results

HFpEF
(n = 27)

Healthy Controls
(n = 14)

P value

PCr/ATP ratio 1.60 ± 0.09 2.00 ± 0.10 0.005

Cardiac lipid/water (%) 1.45 ± 0.25 0.64 ± 0.16 0.009

Diastolic strain rate (%/s) 84.6 ± 5.3 110.4 ± 5.5 0.002

Systolic circumferential strain (%) −19.5 ± 0.4 −21.8 ± 0.5 0.002

LV end-diastolic volume (ml/m2) 62 ± 2 66 ± 4 0.20

LV end-systolic volume (ml/m2) 18 ± 2 20 ± 2 0.40

LV stroke volume (ml) 87 ± 3 92 ± 6 0.38

LV ejection fraction (%) 72 ± 1 70 ± 2 0.48

LV wall thickness (mm) 13 ± 1 9 ± 1 < 0.001

LV mass (g) 101 ± 5 90 ± 6 0.22

LV mass index (g/m2) 54 ± 3 50 ± 3 0.39

LV mass/EDV (g/mL) 0.86 ± 0.05 0.68 ± 0.05 0.03

Values are mean ± SE
EDV End-diastolic volume, LV Left ventricular, PCr Phosphocreatine, ATP Adenosine triphosphate
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By using the cut off values of abnormal lipid/water >
0.64 and abnormal PCr/ATP of < 2.0 from the current
study, of the 27 HFpEF patients, 21/27 (78%) had abnor-
mal lipid/water and 17/20 (85%) had abnormal PCr/
ATP. Of the 14 controls, 3/14 (21%) had abnormal lipid
and 4/10 (40%) had abnormal PCr/ATP and the rates of
these abnormalities between HFpEF and controls were
statistically significant (p < 0.05). Furthermore, the pa-
tients with abnormal lipid/water and PCr/ATP ratio had
significantly lower LV diastolic strain rate and VO2 max
than those with normal lipid/water and PCr/ATP ratio
(results not shown). By using the cut-off values of abnor-
mal lipid/water > 0.77 and abnormal PCr/ATP < 1.6, of
the 27 HFpEF patients, 19/27 (70%) had abnormal lipid/
water and 15/20 (75%) had abnormal PCr/ATP.
In line with our previous work [13], we found that

MTG had a significant correlation with peak systolic cir-
cumferential strain (r = 0.61, p < 0.001). In addition we

found that reduced PCr/ATP correlated with impaired
peak systolic circumferential strain (r = − 0.55, p = 0.002)
but no significant correlations with age, BMI, systolic
blood pressure (SBP) or BNP.

Discussion
The present study has three major findings. First, there
is pronounced myocardial steatosis in patients with mild
HFpEF, with a 2.3-fold increase in MTG compared to
age, gender- and BMI-matched healthy controls. Second,
steatosis (but not energetics) is independently associated
with impaired diastolic strain rate. Third, reduced VO2

max is related to elevated MTG, and this relationship
may be mediated through impaired diastolic strain rate.
While steatosis is known to be associated with dia-

stolic dysfunction in diabetes [28], data on steatosis in
HFpEF and its relationship with cardiac function and ex-
ercise capacity are lacking. There is only one study

Fig. 1 Cine imaging (top panel), 31P-CMRS (middle panel) and 1H-CMRS (bottom panel) showing representative results of LVM/EDV, PCr/ATP and
Lipid/water for heart failure with preserved ejection fraction (HFpEF) (left) and control (right). 1H-CMRS spectra are scaled based on unsuppressed
water (not shown) and noise level. LVM = left ventricular mass; EDV = end-diastolic volume; CMRS = cardiovascular magnetic
resonance spectroscopy
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recently showing steatosis in a small number of young
women (n = 5) with microvascular dysfunction and sub-
clinical HFpEF [15]. Here, we demonstrate for the first
time MTG in a larger number (n = 27) of typically eld-
erly patients with HFpEF, who have limiting exertional
dyspnoea, abnormal diastolic function demonstrated by
Doppler echo and CMR FT, and objective evidence of
exercise-limitation by CPET. We categorized our HFpEF
cohort as mild as although they fulfilled the criteria
based on the guidelines [18, 19] their diastolic abnormal-
ities were mildly impaired which were likely due to the
effect of taking diuretics.
Importantly, we show that elevated MTG independ-

ently correlated with impaired diastolic strain rate. The
mechanisms leading to such pronounced steatosis re-
main to be completely understood, but it is well estab-
lished that cardiac hypertrophy is associated with altered

myocardial substrate metabolism with a shift towards
glucose and away from FA oxidation, leading to in-
creased myocardial lipid accumulation, non-oxidative
metabolism and reduced cardiac function [8, 29, 30].
While our data show that MTG and diastolic strain rate
have significant correlations with exercise capacity, only
diastolic strain rate independently correlated with VO2

max. This is not surprising given the fact the abnormal
resting diastolic function has been shown to be associ-
ated with worsening of exercise capacity [31]. Further-
more the underlying mechanism of MTG directly
affecting VO2 max is unclear and could potentially be
mediated through reduced diastolic strain rate. While
our data do not prove a direct causal link, they may sug-
gest a pathophysiological role of steatosis in the develop-
ment of diastolic dysfunction and reduced functional
capacity in mild HFpEF. It would have been interesting
to demonstrate more profound impairment in diastolic
function along with changes in metabolic substrate me-
tabolism during exercise. In fact, Phan et al has previ-
ously shown more profound diastolic abnormalities
during stress radionuclide ventriculography in HFpEF,
which were not seen at rest [16]. In future, taking blood
samples for plasma substrate and metabolomics during
exercise to assess changes in substrate metabolism
would support the findings in the present study.

Fig. 2 Scatter plot diagrams showing significant correlations
between diastolic strain rate and cardiac lipid/ratio, and with
maximal oxygen consumption (VO2 max)

Table 3 Bivariate correlations and multivariate correlations for
diastolic strain rate and VO2 max

Bivariate Multivariate

R P-Value β P-Value

Diastolic strain rate

Myocardial triglyceride −0.47 0.002 −0.58 0.001

PCr/ATP ratio 0.41 0.026 0.11 0.45

Age −0.18 0.26 – –

LVM/EDV −0.20 0.30 – –

SBP −0.16 0.92 – –

BNP − 0.19 0.29 – –

LA size −0.10 0.59 – –

VO2 max

Myocardial triglyceride −0.34 0.04 −0.35 0.23

Diastolic strain rate 0.41 0.014 0.57 0.007

PCr/ATP ratio 0.49 0.014 0.35 0.13

Age −0.29 0.08 – –

LVM/EDV −0.33 0.11 – –

SBP −0.20 0.28 – –

BNP 0.21 0.25 – –

LA size −0.21 0.28 – –

PCr Phosphocreatine, ATP Adenosine triphosphate, LVM Left ventricular mass,
EDV End-diastolic volume, SBP Systolic blood pressure, BNP Brain natriuretic
peptide, LA Left atrial
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In the present study, our HFpEF patients had in-
creased LV wall thickness and significant concentric re-
modeling, despite normal LV mass. Given our
cross-sectional study design, we cannot determine if car-
diac steatosis causes LV remodeling or vice versa.
However, several studies using animal models of
pathological hypertrophy have demonstrated a causal
link between steatosis and development of cardiac re-
modeling [29, 30]. Cardiac steatosis can lead to pro-
duction of harmful intermediates and apoptosis.
These can stimulate hypertrophic signalling leading to
concentric LV hypertrophy followed by eventually a
dilated phenotype [32, 33]. The question remains,
what is the potential driving factor for metabolic al-
teration and steatosis in HFpEF? Kato et al recently
showed that HFpEF patients have reduced coronary
reserve due to microvascular dysfunction [34], and
this has been proposed as a possible trigger of the
metabolic switch and steatosis prior to the develop-
ment of cardiac hypertrophy [15].
Impaired myocardial energetics has been demon-

strated in asymptomatic diastolic dysfunction due to
obesity [35] and also in HFpEF [16]. Here we extend the
findings by showing significant correlations between en-
ergetics, diastolic strain rate and exercise capacity in
mild HFpEF. Metabolic alterations in hypertrophied
hearts have been shown to include impaired myocardial
energetics [30], and detrimental effects of ceramides on
mitochondria can lead to reduced intracellular ATP pro-
duction, apoptosis and reduced cardiac function [36].
This may be a mechanism behind the observed relation-
ship between myocardial energetics and function in the
current study. Although both myocardial energetics sta-
tus and triglyceride content correlated with diastolic
strain rate, only steatosis independently correlated with
diastolic strain rate. These are in keeping with a previous
study in patients with type 2 diabetes mellitus and pre-
served LVEF, showing an independent association of
steatosis with diastolic dysfunction [28]. This is an im-
portant finding and suggests that the pathophysiological
cascade leading to diastolic dysfunction in HFpEF may
involve steatosis at an earlier stage than energetic de-
rangement – an observation with potential conse-
quences in our search for therapeutic targets in HFpEF.
The current study provides novel insight into the

pathophysiological role of steatosis in mild HFpEF.
While inhibition of FA oxidation and stimulation of glu-
cose oxidation may be beneficial in HF due to ischaemic
insults [37, 38], cardiac lipid modulation by augmenting
FA oxidation might be an alternative therapeutic strategy
in non-ischaemic HF [8, 30]. Since myocardial steatosis
is modifiable, novel metabolic therapies aimed at im-
proving/preserving cardiac function and exercise cap-
acity, thus delaying the progression to the more severe

form of HFpEF by reducing MTG should be tested. Po-
tential therapeutic agents are glucagon-like peptide-1 re-
ceptor (GLP-1) agonists, mineralocorticoid receptor
blockers such as eplerenone, and fenofibrate, which have
been shown to reduce myocardial steatosis in Type 2
Diabetes [33, 39, 40].

Study limitations
As this study is limited by a small sample size, further cor-
roboration of these findings in larger-scale multi-centre
studies is required. Although the current study is powered
to detect a difference, it may be underpowered to confirm
the null hypothesis. Therefore, the non-statistical age dif-
ference between control and HFpEF cohorts would imply
that age could still be a confounding variable for the dif-
ference in MTG observed. However, it would not be
physiologically possible for a small age difference to result
in > two-fold increase in MTG. In the present study, we
excluded patients with a history of coronary artery disease
and there was no evidence of myocardial infarction on
CMR LGE imaging. Myocardial stress perfusion to assess
microvascular dysfunction was not performed, as we did
not want to burden these frail patients with a longer scan
protocol. Thus, reduced coronary microvascular reserve
during stress cannot be excluded as a potential mechan-
ism contributing to the metabolic alteration in HFpEF.
Due to the relatively long scan protocol, it was not feasible
to perform reproducibility tests in the current study, thus
reproducibility of lipid/water and PCr/ATP techniques in
HFpEF is unknown. However, the reproducibility of these
techniques have been shown to be excellent in healthy
subjects [11, 20]. The current study is not representative
of the HFpEF population as patients with diabetes and un-
controlled hypertension were excluded. In the future, the
analysis should be repeated in a larger sample size includ-
ing patients with these comorbidities. As there is lack of
accepted standard MTG normal threshold, the interpret-
ation of the results may be limited as the findings are
based on the normal MTG value at our institution. The
relatively low MTG (0.64) in controls could reflect the
healthiness of the cohort control that is not representative
of normal aging. Future studies will be needed to investi-
gate the true MTG in old sedentary individuals. Similarly,
the participation of very healthy subjects cannot be ex-
cluded as a potential factor contributing to the supra nor-
mal PCr/ATP. Although results vary slightly between
centres, the mean PCr/ATP value for healthy controls in
the current study is consistent with the values reported
previously in this age group [16, 41]. Finally, the observa-
tional nature of our study precludes inferences of attribu-
tion. Further interventional research is needed to examine
the change in MTG or PCr/ATP to confirm causal rela-
tionship between diastolic dysfunction/VO2 max and
metabolic abnormalities.
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Conclusions
Mild HFpEF is characterized by pronounced myocardial
steatosis, impaired myocardial energetics, impaired diastolic
strain rate and reduced VO2 max. Reduced VO2 max may
be attributable to elevated MTG via reducing diastolic func-
tion. MTG is a promising therapeutic target in HFpEF,
thereby potentially improving exercise capacity, and, ultim-
ately, outcomes in this difficult-to-treat patient population.
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