

This is a repository copy of *The impact of raw material properties and process conditions on the color of a powdered formulated detergent product.*

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/141266/

Version: Supplemental Material

Article:

Manga, MS orcid.org/0000-0001-8976-4792, Willis, D, Nurafiqah, MA et al. (1 more author) (2019) The impact of raw material properties and process conditions on the color of a powdered formulated detergent product. Particuology, 45. pp. 35-41. ISSN 1674-2001

https://doi.org/10.1016/j.partic.2019.01.002

© 2019 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. Licensed under the Creative Commons Attribution-Non Commercial No Derivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Supplementary information

The impact of raw material properties and process conditions on the color of a powdered formulated detergent product

Mohamed. S. Manga*, David. Willis, Nurafiqah. M. Ali and David. W. York

School of Chemical and Process Engineering, Faculty of Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, United Kingdom.

Corresponding Author

* Email: M.S.Manga@leeds.ac.uk

S1. Materials and associated properties

Table S1. Liquid and powder components used in this study to produce granular detergent powder.

	Raw materials: Liquid components				
Chemical	Functionality	Appearance	Grade	Size	
Linear		Brown viscous	Commercial,	-	
Alkylbenzene	Synthetic	liquid with shade			
Benzene Sulfonic	anionic	of color	Research,	_	
Acid (HLAS)	surfactant	dependent on purity	(purity >96%)		
Oxyethylated	Non-ionic	Colorless Oily			
isononylphenol (Neonol AF 9-12)	surfactant	liquid	Commercial	-	
		White translucent	Commercial,	-	
Sodium silicate	Builder	viscous liquid (translucency dependent on purity)	Research, (purity >98%)	-	
	Auxiliary				
Sokolan	additive (Non-	Yellowish	Commercial	-	
	ionic copolymer used as	viscous liquid			

agent)

	Raw materials: S	Solid components		
Carboxy methyl cellulose (CMC)	Auxiliary additive (antiredoposition agent)	White granular powder	Commercial	Median particle size = 70 μm
			Commercial,	
Sodium carbonate	Builder	White granular powder	Research, (purity >99%)	Median particle size = 300 μm
Sodium sulfate	Builder	White granular powder	Commercial, Research (purity >99%)	Particle size $250-2000$ $\mu m \ge 85 \%$
Sodium tripolyphosphate (STPP)	Builder	White powder	Commercial	Mean particle size = 5 μm
Tinopal® CBS-X (optical brightener)	Auxiliary additive	Yellow-green powder	Commercial	Median particle size

= 50 - 75

Typical recipe for formulation is;

Ratio of Powder to Liquid	1.94 : 1
Raw Material	Mass of component (g)
Solid Po	ortion
STPP	11.91
СМС	0.97
Tinopal	0.13
Na ₂ CO ₃	27.09
Na ₂ SO ₄	34.98
Liquid P	ortion
HLAS	11.14
Sodium Silicate	21.14
Sokalan	4.95
Neonol AF 9-12	1.40

S2. Breakdown of the samples used for color analysis

Table S2. Break	down of the diffe	rent samples that	at are used for	color analysis

	Ing	gredients	Agglomerator	Drying temperature	Comments
	Dry	Wet			
Sample 1	All Commercial grade	All commercial grade and all	Food processor	Drying at 70°C using	
Sample	and all added	added	Food processor	convection oven	
Sample 2	All Commercial grade	All commercial grade and all	Food processor	Drying at 120°C using	
Sample 2	and all added	added	Food processor	convection oven	
Sample 3	All Commercial grade	All commercial grade and all	Food processor	Drying at 150°C using	
Sample S	and all added	added		convection oven	
Sample 4	All Commercial grade	All commercial grade and all	Food processor	Drying at 170°C using	
Sample 4	and all added	added		convection oven	
Sample 5	All Commercial grade	All commercial grade and all	Food processor	Drying at 60° using	
Sample S	and all added	added		fluidised bed	
Sample 6	All Commercial grade	All commercial grade and all	Food processor	Drying at 70° using	
Sample 0	and all added	added		fluidised bed	
Sample 7	All Commercial grade	All commercial grade and all	Food processor	Drying at 80° using	
Sample 1	and all added	added		fluidised bed	
Sample 8	All Commercial grade	All commercial grade and all	Food processor	Drying at 100° using	
Sample 0	and all added	added		fluidised bed	
Sample 9	All Commercial grade	All commercial grade and all	Food processor	Drying at 120° using	
Cample 9	and all added	added		fluidised bed	
Sample	All Commercial grade	All commercial grade and all	Food processor	Drying at 70°C using	unsieved sample
10	and all added	added		convection oven,	unsieveu sample

Sample 11	All Commercial grade and all added	All commercial grade and all added	Food processor	Drying at 70°C using convection oven,	sieved with 841µm sieve for analysis of overs
Sample 12	All Commercial grade and all added	All commercial grade and all added	Food processor	Drying at 70°C using convection oven,	sieved with a 841 and a 500µm sieve
Sample 13	All Commercial grade and all added	All commercial grade and all added	Food processor	Drying at 70°C using convection oven,	sieved with a 500 and a 250 μm sieve
Sample 14	All Commercial grade and all added	All commercial grade and all added	Food processor	Drying at 70°C using convection oven,	sieved with a 250µm sieve for analysis of fines
Sample 15	All Commercial grade and all added	All commercial grade and all added	Food processor	Drying at 70°C using convection oven,	This sample had less amount of tinopal added (0.09g) which results in a decrease in the L observed compared to above samples
Sample 16	All Commercial grade and all added	All commercial grade and all added	Blender	Drying at 70°C using convection oven,	Recipe kept as the same as sample 15
Sample 17	All Commercial grade and all added	All commercial grade and all added	Coffee grinder	Drying at 70°C using convection oven,	Recipe kept as the same as sample 15
Sample 18	All Commercial grade and all added	All commercial grade and all added	Food processor	Drying at 70°C using convection oven,	Tinopal was added as a powder. Also quantity of HLAS added was lower (8g).
Sample 19	All Commercial grade and all added with exception of Tinopal	All commercial grade; All added with Tinopal added in water	Food processor	Drying at 70°C using convection oven,	Tinopal was dispersed in water recipe same as sample 18
Sample 20	All Commercial grade and all added with exception of Tinopal	All commercial grade; All added with Tinopal added in Neonol	Food processor	Drying at 70°C using convection oven,	Tinopal in neonol (same as sample 18)

Sample 21	All Commercial grade and all added with exception of Tinopal	All commercial grade; All added with Tinopal added in Sokolan	Food processor	Drying at 70°C using convection oven,	Tinopal in Sokolan polymer (same as sample 18)
Sample 22	All Commercial grade and all added with exception of Tinopal	All commercial grade and all added	Food processor	Drying at 70°C using convection oven,	No Tinopal added (same as sample 18)
Sample 23	All Commercial grade and all added with exception of Tinopal	All commercial grade; All added with Tinopal added in Neonol	Food processor	Drying at 70°C using convection oven,	Same as sample 20
Sample 24	All Commercial grade and all added with exception of Tinopal	All commercial grade; All added with Tinopal added in Neonol	Food processor	Drying at 70°C using convection oven,	Same as sample 23 but sprayed on rather than poured in
Sample 25	All Commercial grade and all added with exception of Tinopal	All commercial grade; All added with Tinopal added in Neonol	Food processor	Drying at 70°C using convection oven,	Same as sample 24 but addinal spray on of Tinopal in Neonol
Sample 26	All Commercial grade and all added with exception of Tinopal	All commercial grade; All added with Tinopal added in Neonol	Food processor	Drying at 70°C using convection oven,	Same as sample 25 but addinal spray on of Tinopal in Neonol
Sample 27	All commercial grade and all added	HLAS research grade rest is commercial grade and all added	Food processor	Drying at 70°C using convection oven,	HLAS research grade

Sample 28	Sodium carbonate research grade rest are all commercial grade and all added	All commercial grade and all added	Food processor	Drying at 70°C using convection oven,	Sodium carbonate research grade
Sample 29	Sodium sulphate research grade rest are all commercial grade and all added	All commercial grade; All added with Tinopal added in Neonol	Food processor	Drying at 70°C using convection oven,	Sodium sulphate research grade
Sample 30	All Commercial grade and all added	Sodium silicate research grade rest is commercial grade and all added	Food processor	Drying at 70°C using convection oven,	Sodium silicate research grade
Sample 31	Sodium carbonate and sodium sulphate research grade rest are all commercial grade and all added	HLAS and Sodium silicate research grade, rest is commercial grade and all added	Food processor	Drying at 70°C using convection oven,	Sodium carbonate, sodium sulphate, HLAS and Sodium silicate of research grade

S3. Dispersion of Tinopal study

Preliminary experiment was conducted to determine which of the liquids would produce a stable dispersion of Tinopal optical brightener. The stability of the dispersions were compared at before and after heating the liquids to 50°C. Based on this, it was found that water (dissolution), Neonol and Sokolan (uniform dispersions) could be used as a delivery vehicle to incorporate Tinopal within the powdered detergent formulation. Although sodium silicate and HLAS could be used to disperse the Tinopal, the dispersion was not uniform throughout the liquid and it was perceived that this could exaggerate any powder discoloration during the manufacturing process.

Before Heating						
Tinopal in water	Tinopal in sodium silicate	Tinopal in HLAS				
Tinopal in Neonol	Tinopal in Sokalan CP5	Tinopal in Sokalan HP 22				
	After Heating					
Tinopal in water	Tinopal in sodium silicate	Tinopal in HLAS				
Tinopal in Neonol	Tinopal in Sokalan CP5	Tinopal in Sokalan HP 22				

Figure S3. Assessing the ability of Tinopal to disperse in a range of liquid materials at low and elevated temperatures [Publish in color]

S4. Impact of Tinopal dispersed in water on powder color

Tinopal is soluble in water and this yellow-green color is imparted on the resulting powder.

Figure S4. Digital photographs of powder samples when Tinopal is a) not dispersed in water (sample 18) and, b) dispersed in water (sample 19). [Publish in color]