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Abstract  
Ceramics-ceramic composites in the series (1-x)Li 2MoO4-xBaFe12O19 (LMO-BF12, 

0.00≤x≤0.15) have been cold sintered at 120oC and their structure and properties 

characterized. X-ray diffraction, scanning electron microscopy (SEM) and transmission 

electron microscopy (TEM) confirmed that compositions were dual phase and had a dense 

microstructure. Composites in the xBF12-(1-x)LMO (0.0≤x≤0.15) series resonated at MW 

frequencies (~6GHz) with 5.6≤r≤5.8 and Qf =16,000-22,000 GHz, despite the black colour 

of compositions with x > 0. The permeability of the composites was measured in the X band 

(~8 GHz) and showed an increase from 0.94 (x=0.05) to 1.02 (x=0.15). Finite element 

modelling revealed that the volume fraction of BF12 dictates the conductivity of the material, 

with a percolation threshold at 10 vol.% BF12 but changes in r as a function of x were 

readily explained using a series mixing model. In summary, these composites are considered 

suitable for the fabrication of dual mode or enhanced bandwidth microstrip patch antennas. 
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1. Introduction 

Microwave (MW) dielectric ceramics have gained considerable attention because of their 

suitability for the fabrication of substrates, resonators and filters in wireless and satellite 

communication technology. Microstrip patch antennas (MPAs) have gained significant usage 

due to their light weight, ease of fabrication and low cost [1]. The main disadvantage of 

MPAs is their narrow bandwidth (BW) [2] since high permittivity (r) substrates are used to 

shrink their dimensions to give ultra-small, high bandwidth antennas, the goal of any MW 

engineer. This classic paradox of increasing r at the expense of BW and quality factor (Qf) 

stimulates designers to derive different methods to enhance bandwidth, such as the use of 

thicker substrates or parasitic patches [2]. However, thick substrates cause problems in 

impedance matching, while parasitic patches linearly increase the size of the antenna and 

complicate its design [2]. The ‘holy grail’ therefore is to design advanced materials [3] [4-6], 

composites or metamaterials [7-9] to act as dielectric substrates for MPAs which intrinsically 

result in larger bandwidths. 

4G systems operate in the frequency range (2-8) GHz, while 5G systems will ultimately 

operate at up to 30 GHz. For low cost antennas that are used in 4G systems, substrates are 

often polymeric but their dielectric losses may prove too high for 5G applications. Thus, new 

low cost, low loss substrates may be required. Al 2O3 has very low dielectric loss/high quality 

factor (Qf > 100,000) and suitable r (10) but it is expensive to produce with a high sintering 

temperature (>1500 oC) and is difficult to directly integrate [10]. Al 2O3 antenna chips are 

fabricated separately and mechanically attached as a standalone component. Ideally, low 

loss/high Qf ceramics are required which can be directly integrated into existing polymeric 

circuit boards, creating bespoke higher r, high Qf patches for MW antennas and filters. This 

would require that a MW ceramic has similar densification temperatures to that of the 

supporting polymer circuit board.  
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Ceramics such as Li2MoO4 (LMO) have recently been shown by Kahari et al. [11] to 

densify at 120-150 oC and thus may prove useful as replacements for polymers where loss is 

critical. LMO has suitable MW properties for MPAs with r of ~ (5), and high Qf (30,000 

GHz) [12]. Guo et al. [13] and Wang et al. [14] have demonstrated that cold sintering not 

only facilitates low temperature densification but also permits the fabrication of composites, 

hitherto impossible by conventional sintering due to the formation of unwanted parasitic 

phases at high temperature deleterious to properties [15-17]. Therefore, potential new 

substrate design space is available through cold sintering by the formation of composites with 

enhanced properties; the most attractive of which from an antenna perspective would be the 

inclusion of a magnetic phase to increase permeabil ity, . 

Ba hexaferrite, BaFe12O19 (BF12) is the most widely used material as a permanent magnet 

in the electroceramic industry, especially in magnetic storage systems, microwave devices 

and electromagnetic shielding due to its high Curie temperature and low cost [18, 19]. As 

with all magnetic materials, the permeability of BF12 is frequency dependent from MHz to 

10GHz [20] but it is known to resonate with r ~ 25 at MW frequencies albeit with a low Qf 

(2000 GHz, as measured in our study) [20-22]. It is therefore, an ideal end member in a 

composite ceramic to enhance the MW response of potential antenna substrates. In this 

contribution therefore, we demonstrate the ability to form dense xBF12-(1-x) LMO 

composites. We address the mechanism of densification via cold sintering and illustrate how 

both r and  are modified as a function of x. The increase in r and conductivity as a function 

of x is further highlighted through application of finite element analysis to the composite 

microstructure. 
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2. Experimental 

2.1 Synthesis 

Different proportions of BF12 (average grain size of ~2 m) and LMO (average grain size 

of ~10 m) were weighed and mixed for 24 hours using a variable speed ball mill. The 

resulting powders were sieved and mixed again using a pestle and mortar with 10-20 wt.% 

water. The wet powder was placed in either a 30×30 mm rectangular or 20 mm diameter 

cylindrical die applying 55-70 MPa pressure at 120 oC for 10–40 mins to achieve 

densification. The pellets were left in a dry furnace at 120 oC for 24 hours. The density of 

synthesised pellets calculated based on the geometry of the pellets and compared to 

theoretical values are listed in Table 1. 

Table 1. Density (g/cm3) of the cold sintered xBF12-(1-x)LMO samples. 
x Experimental (EX) Theoretical (TH) EX/TH (%) 

0.05 2.91 ± 0.02 3.08 94 ± 2 
0.10 3.08 ± 0.02 3.13 97 ± 2 
0.15 3.02 ± 0.02 3.19 95 ± 2 

 

 

2.2 Structural and Microstructural Characterisation

Crushed pellets of xBF12-(1-x)-LMO composites were analysed using a Bruker D2 Phaser 

X-ray diffractometer in the range, 10-80° 2 at a scanning interval of 0.02o.  Scanning 

electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) was carried out 

using a Japan Electron Optics Ltd (JEOL) Inspect F operating at 15kV equipped with an 

energy dispersive X-ray detector. Conventional transmission electron microscopy (TEM) was 

performed on an EM420 operating at 120 kV while high resolution transmission electron 

microscopy (HRTEM) was performed on JEOLR005 operating at 300 kV. TEM specimens 
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were pre-thinned to a thickness of 20 - 50 m by mechanical grinding in acetone and then ion 

milled to electron transparency using a GATAN precision ion polishing system (PIPS II).  

 

2.3 Electrical Characterisation

Microwave dielectric properties of xBF12-(1-x)LMO sintered pellets were measured using 

a vector network analyser in a 20 mm diameter cavity with a current spacer of 4.87 mm. İr 

was calculated based on the dimensions and resonant frequency (fo) and the quality factor 

(Qf) was determined from the width of resonant peak 3dB below its maximum height. 

xBF12-(1-x) LMO samples were also polished to match dimensions of a waveguide 

(22.86mm × 10.16mm with a thickness <2mm) and measured in the X band. Permeability ( 

was extracted using the Nicolson-Ross-Weir technique. Impedance spectroscopy (IS) was 

carried out on silver coated samples in a furnace connected to E4980A Precision LCR Meter, 

(20 Hz to 2 MHz) at 0.1V and from room temperature to 400°C. 

 

3. Results 

3.1 Structure and Microstructure 

Figure 1 shows exemplar optical images of cold sintered xBF12-(1-x)LMO composites in 

which the black colour arises due to the presence of the ferrimagnetic BF12 phase. XRD 

traces of cold sintered xBF12-(1-x)LMO are shown in Figure 2. Each trace depicts two 

structures, BF12 and LMO, with no evidence of parasitic phases arising from interfacial 

reactions. The relative intensities of the BF12 peaks increase with x. SEM images of xBF12-

(1-x)LMO composites as a function of x are shown in Figure 3. The microstructure exhibits a 

two phase mix (as confirmed by EDX spectra, Figure 4) with smaller BF12 surrounding 

larger LMO grains and little porosity. Consistent with the XRD results, no secondary phases 

were observed in the SEM images. 
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Fig. 1. Exemplar optical images of cold sintered xBF12-(1-x)LMO samples. 

 

 

 

Fig. 2. XRD of cold sintered xBF12-(1-x)LMO samples. 
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Fig. 3. SEM images obtained from cold sintered (a) 0.05BF12-0.95LMO, (b) 0.1BF12-

0.9LMO and (c) 0.15BF12-0.85LMO samples.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. (a) SEM image of obtained from the adjacent two phases in cold sintered 0.05BF12-

0.95LMO sample (scale bar is 5 ȝm). (b) and (c) show representative energy dispersive X-ray 

spectra acquired from the large grains (area marked by “A” in (a)) and the small grains (area 

marked by “B” in (a)), respectively.  

Figures 5 (a) and (b) are TEM images of grains of LMO and BF12 in cold sintered 

0.15BF12-0.85LMO, respectively. Inset in Figures 5 (a) and (b) are [010] and [100] zone axis 

diffraction patterns from LMO and BF12, respectively which conclusivley identify each 

phase. The TEM images confirm the two phase mix identified by XRD and SEM. In addition, 

HRTEM images from the surface of BF12 particles (e.g. Figures 5(c-e)) reveal that LMO 

surrounds each grain of BF12. The mechanism of densification therefore, relies on the 

ϱ ŵ 
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dissolution of  LMO grains into the added water which under a combination of pressure and 

capillary action surrounds BF12 grains. The BF12 grains themselves do not undergo 

significant dissolution. Simultaneously, particle rearrangement and enhanced packing occur 

under pressure in the die. As water evaporates, Li+ and (MoO4)– ions crystallise on the 

surface of the LMO and BF12 grains, thus densifying not only clusters of LMO particles but 

also regions of BF12. The net result is a dense composite with limited interaction between the 

end member phases. A schematic of this mechanism is shown in Figure 6. 

 

 

Fig.5  TEM image from cold sintered 0.15BF12-0.85LMO showing (a) a LMO grain;  inset is 

the 010 zone axis diffraction pattern of the LMO grain. (b) a BF12 grain; inset is the 100 

zone axis diffraction pattern of the BF12 grain. (c) An HRTEM image obtained from the 

interface of a BF12 and LMO grains. (d) and (e) show HRTEM images at a higher 

magnification from the LMO and BF12 sides of the interface shown in (c), respectively. Note 

that LMO surrounds the BF12 grains. 
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Fig. 6. Schematic representation of the densification of LMO-BF12 composites at 120 oC. 

 

3.2 Electrical Properties 

Figure 7(a)  shows r (black line) and Qfo (blue line) as a function of x. rincreased with 

inceasing BF12 concentration but Qfo decreased from around 24,000 GHz to 17,000 GHz. 

These results are consistent with BF12 having a higher r (25) and lower Qf (<2000GHz) than 

LMO. However, the values of Qf are remarkably high for a composite material and show 

great promise for MW applications, provided there is also an enhancement in  from the 

addition of the BF12 end member. 
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Fig. 7 (a) (Qfo) and (b)  at X band frequencies xBF12-(1-x)LMO composites 

 

Figure 7(b) shows  measured in the X-band (~8 GHz) for xBF12-(1-x)LMO composites. 

increases with the volume fraction of BF12 from ~0.93 at x = 0.05 to 1.02 at x = 0.15, 

consistent with the measured values in the previous research works; e.g. Bahadoor et al. [20] 

showed  = 1 for BF12 at frequencies from 8-26.5 GHz. Although these are comparatively 

low values, increases as frequency decreases in BF12, doped BF12 and their composites 

[23-27]. The increment in  would therefore be substantial when frequency decreases to 0.5-3 

GHz [23-27] and would contribute significantly to the EM response. Nonetheless, the values 

of  attained in the X band suggest a systematic increase as a function of x coupled with a 

high Qf. 

Figure 8 shows Arrhenius plots of bulk conductivity data obtained from spectroscopic 

plots of the imaginary components of the electric modulus (ܯᇱᇱ) which compare cold sintered 

0.1BF12-0.9LMO composites with, conventionally sintered BF12 and conventionally 

sintered LMO. As expected, the BF12 ceramic has much higher bulk conductivity compared 

to LMO. The conductivity of the composite ceramics is intermediate in magnitude compared 

to the end members. The values of activation energy associated with the bulk response 

extracted from the data reveal that cold sintered 0.1BF12-0.9LMO has an activation energy 
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of 0.25 eV which is comparable to 0.29 eV of the more conductive end member (BF12) and 

is much lower than 1.28 eV associated with conventionally sintered LMO. These data suggest 

that a percolation pathway exists in the composite with the current choosing the path of least 

resistance via the higher conducting BF12 phase. 



Fig. 8. Arrhenius plot of bulk conductivity of  conventionally sintered ceramics of the end 

members with a cold sintered 0.1BF12-0.9LMO. NB: details for the fabrication of 

conevntionally sintered BF12 and LMO can be found in [28, 29], respectively. 

 

3.3. Finite Element Modelling of the composite microstructure 

Finite element modelling was used to study the xBF12-(1-x)LMO composite properties for 

various volume fractions. One challenge in replicating the composite is the simulation of a 

microstructure that consists of two distinct grain sizes. Adopting a Voronoi tessellation [30] 

is insufficient to replicate this microstructure, as the algorithm divides up the space between 

the initial seed points. The small grains thus grow as they near the larger grains, generating a 

normal distribution. Here, we use a feature in Voro++ [31] known as radical Voronoi 
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tessellation. Each discretized seed point is weighted with lower and higher values to give 

smaller and larger BF12 and LMO grains, respectively. A binomial grain size of polydisperse 

particles is generated which is matched to the experimental distribution. Each of the two 

materials is assigned experimental values from which we extract the room temperature  

(Figure 8) and r. The values extracted for LMO gave  = 2.26×10-15 Scm-1 and r = 5.33, 

compared to  = 4.07x10-8 Scm-1 and r = 25 for BF12. Various volume fractions of LMO 

were then simulated, generating approximately 2000 small grains for a pure BF12 model, and 

over 500 large grains for LMO (Figure 9a). The structures were then meshed with between 1-

2M tetrahedral elements and run using the in-house finite element package ElCer [30] to 

simulate the effective r and  [30, 32]. 

 

 

Fig. 9. (a) an example of the full 3D finite element microstructure containing between 500 - 

1500 individual grains of an a LMO microstructure. (b) and (d) show the microstructure, by 

displaying the smaller more conducting BF12 grains in black. (c) and (e) are slice plots of the 

models where for simplicity, the black regions are designated as collections of small BF12 

grains. For a volume fraction with 20%BF12 (b and c), a continuous network of BF12 grains 

describes a conductive path from the top to the bottom but which is absent for 5 vol% BF12 

(d and e). 
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In generating these microstructures, the volume fraction of the smaller BF12 is crucial since 

they surround the larger LMO grains and relatively few are needed to create a conductive 

network. The BF12 grains effectively by-pass the resistive LMO grains, as shown in Figures 

9(b) and 8(c) for 20 vol.% BF12. At lower values of x, these paths become discontinuous with 

gaps forming, Figures 9(d) and 8(e) for 5 vol.%. This percolation threshold is observed 

directly in the measured . Figure 10 highlights the extracted and r arising from the FEM 

simulations. For 5 vol.% BF12,  rises but at 10 vol.% there is a discontinuous change, 

attributed to the formation and conducting pathways. For > 10 vol.% BF12, there is gradual 

convergence towards  of the BF12 end member. However, for r no percolation effect is 

observed and the value tends towards LMO, consistent with a parallel summation, predicted 

by series mixing rules: 

ଵఌ ൌ ௏ಳಷఌಳಷ ൅ ௏ಽಾೀఌಽಾೀ       (1) 

where VBF, VLMO, BFLMO are the volume fractions and r of the BF and LMO phases, 

respectively.  

 

Fig. 10. The extracted conductivity () and permittivity (r) from the finite element 

simulations highlighting a percolation threshold for conductivity below for x < 0.1 volume 

fraction. 
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4. Discussion 

Cold sintered composites of xBF12-(1-x)LMO offer several advantages over there 

conventionally sintered counterparts. Cold sintering is a more efficient processing route for the 

fabrication of composites, reducing the energy consumed by approximately 50% with a 

commensurate reduction in CO2 emissions. In addition, densification is achieved 

comparatively easily which is not the case for conventionally sintered composites. Most 

crucially, the negligible interaction between the end members results in only a limited 

decrease in Qf despite the addition of 15 wt% BF12, unlike during conventional sintering 

where interaction causes a catastrophic deterioration in properties [33, 34]. Guo et al. [13] 

compared cold with conventionally sintered LMO. They reported that cold sintered LMO 

showed superior r (5.6 against 5.5) but lower Qf (30,500 against 45,000GHz) than 

conventionally sintered ceramics [13]. One further advantage often overlooked, is that the 

lateral dimensions in cold sintering are precisely confined to the width of the die, i.e there is 

zero lateral shrinkage. This reduces the need for extensive post-sinter machining of parts to 

tune their dielectric properties. This latter advantage is important for the fabrication of low 

cost RF substrates and devices and could, coupled with the low densification temperature, 

revolutionize the manufacturing of ceramics in RF devices. 

As discussed by Randall and co-workers [13], cold sintered (120 oC) ceramics may be 

integrated with polymers and offer the potential through screen printing of the fabrication of 

layers of ceramic directly onto circuit boards, thereby enhancing r,  and Qf of the MW 

substrate. Recently, Wang et al. [14] reported temperature stable cold sintered composite with 

Qf ~ 7000 and r 17׽. The direct integration of xBF12-(1-x)LMO and related cold sintered 

materials onto PCBs may offer technological solutions in devices where the dielectric loss of 

the substrate is paramount or potentially when a dual mode RF response is required based on  

and r.  
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Mechanical property measurements were not performed on these ceramics but they could 

be handled readily to perform all measurements. Moreover, the intended application would be 

as substrates integrated into PCBs in which the mechanical properties of the ceramic are less 

relevant than that of the module as a whole. 

 

5. Conclusions 

xBF12-(1-x)LMO composites were cold sintered at 120 oC and their microwave properties 

measured. All ceramics showed a good densification with low porosity and high quality 

factor. TEM showed no evidence of interaction of BF12 with LMO. r increased to 5.8 for 

compositions with x = 0.15 with Qf = 17,000GHz while  showed a systematic increase as a 

function of x. The impedance analysis accompanied by FEM suggest that for > 10 vol.% 

BF12 a percolation pathway exists in the composite with the current choosing the path of 

least resistance via the higher conducting BF12 phase. The combination of novel properties 

and easy integration into PCBs make cold sintered composites of this type attractive for 

future RF applications. 
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