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Abstract

The knowledge of heat transfer behaviour of composite thermal systems requires the

characterization of the heat transfer coefficient at the contact interfaces between the con-

stituent materials. The present work is devoted to investigating an inverse problem with

generalized interface condition containing an unknown space- and time-varying interface

coefficient from non-invasive temperature measurements on an accessible boundary. The

uniqueness of the solution holds, but the problem does not depend continuously on the

input measured temperature data. A new preconditioned conjugate gradient method

(CGM) is utilized to address the ill-posedness of the inverse problem. In comparison

with the standard CGM with no preconditioning, this method has the merit that the

gradient of the objective functional does not vanish at the final time, which restores ac-

curacy and stability when the input data is contaminated with noise and when the initial

guess is not close to the true solution. Several numerical examples corresponding to lin-

ear thermal contact and nonlinear Stefan-Boltzmann radiation condition are tested for

determining thermal contact conductance and Stefan-Boltzmann coefficient, respectively.

The numerical results in both one- and two-dimensions illustrate that the reconstructions

are robust and stable.

Keywords: Thermal contact conductance; Stefan-Boltzmann coefficient; Precondition-

ing; Conjugate gradient method; Nonlinear inverse problem
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1 Introduction

For many multi-layer composite materials and multi-component structures, the thermal

behaviour is difficult to predict, due to the fact that the temperature at the interfaces

is discontinuous. A crucial problem is the accurate predicition of the heat transfer co-

efficients (HTCs) at the solid-solid thermal contacting interfaces where the prescribed

conditions can be linear [16] or nonlinear [41]. In this context, the knowledge of the ther-

mal contact conductance (TCC) for a linear contact and the Stefan-Boltzmann coefficient

(SBC) [6] for a nonlinear contact are essential. TCC is generally used to characterize the

thermal resistance at the contacting region of two materials, owing to the effect of surface

roughness. In addition, for some high-temperature applications [2, 6, 15], if there exists

a tiny air layer between the mated surfaces, the Stefan-Boltzmann radiation condition

should be applied. The parameter characterizing the effect of thermal radiation on the

temperature drop is the SBC. Accurate estimates of TCC and SBC are of crucial im-

portance for quality control and monitoring, and thus find applications in various fields,

e.g., metal casting [16, 36], heat exchangers [17], quenching of steel [5], plasma-facing

components [12], measurement of blood perfusion [22] and defect detection [6].

For the determination of TCC, both analytical and experimental approaches have

been throughly investigated. Some explicit expressions for TCC were proposed through

direct analysis of deformation of asperities [9, 23] and thermo-mechanical simulation [37].

However, the deviations between the analytical predictions and experimental measure-

ments were observed, e.g., in [11] and [40]. Experimentally, the most straightforward way

for the measurement of TCC is to use a series of thermocouples to measure the tem-

perature profile along the center line, and then extrapolate it to the interface to obtain

the temperature drop across the interface [10, 37, 40]. This type of method has some

drawbacks of being sensitive to noise and time-consuming. Accordingly, many works re-

ported are devoted to seek to retrieve a solution to an inverse heat conduction problem

(IHCP) from few temperature measurements based on steady state [7, 13] or transient

heat transfer [3, 8, 11, 16, 21]. In the context of IHCPs, different techniques have been

applied to address the ill-posedness of the inverse problem, e.g., the conjugate gradient

method (CGM) [3, 16, 17, 22], the Gauss-Newton algorithm [21], the function specifi-

cation method [5, 11] and the Tikhonov regularization [13]. More recently, Padilha et

al. [30] developed an analytical method based on the reciprocity function [7, 8] to solve
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the IHCP for the estimation of spatially-varying TCC, but no regularization method was

considered.

When the boundary condition at the interface is nonlinear, the literature on the non-

linear IHCP for the reconstruction of SBC is rather scarce [6, 15, 38]. Hu et al. [15]

reconstructed an inaccessible boundary of a three-layer composite material from Cauchy

data on an accessible boundary and Stefan-Boltzmann radiation conditions at the in-

terfaces. Wei [38] also investigated the boundary identification nonlinear problem with

Stefan-Boltzmann interface condition, and showed rigorously the uniqueness of a mov-

ing boundary for this inverse problem. Murio [25] stuided the numerical identification

of an interface source function in a generalized nonlinear boundary condition by imple-

mentation of a stable space-marching finite difference method (FDM) in conjuction with

mollification. In the aforementioned works, the SBC is a constant, but this assumption is

not always appropriate, as it can vary spatially along the interface and even temporally,

due to damages or thin coatings on the surface [24]. For this reason, Cheng et al. [6]

studied an inverse problem of determining the space-dependent SBC and the defect area

from temperature measurement on an observation surface. The reconstruction method

proposed by them only works when the defect is located within the observation surface.

However, a more general case of determining the SBC varying in both space and time

domains has not been studied yet, as far as we know.

Our work aims to solve the generalized inverse problem of reconstructing the space

and time-dependent interfacial coefficient (TCC or SBC) at the interface of a two-layer

bicomponent composite material, from temperature measurements on an accessible por-

tion of the exterior boundary of the bodies placed in contact. This is mathematically

formulated in section 2, where the uniqueness and the discontinuous dependence on the

data of the solution are also briefly discussed. Compared to the previous one-dimensional

(1D) inverse problems investigated in [16, 17], our setting is formulated in any dimension

hence, enabling practical 2D and 3D problems to be considered. Moreover, our result con-

cerning the uniqueness of solution, that is sketched in subsection 2.1, specifies sufficient

data that can be measured, e.g., in the 1D case a boundary temperature measurement

with one thermocouple at one end of the finite slab is sufficient, whilst Huang et al. [16]

considered an extra intrusive internal thermocouple that is not actually needed for the

uniqueness of solution, although of course adding more non-redundant information im-
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proves stability. Another major novelty of our study is that apart from the reconstruction

of the TCC, we consider the numerical reconstruction of the SBC governing nonlinear

fourth-order radiative contact. Within the numerical innovation, an important contribu-

tion of this paper is the development in section 3 of a preconditioned CGM in a Hilbert

space setting with inner product for the noise removal in the reconstructed solutions and

overcoming the vanishing of the gradient at final time, encountered in the conventional

CGM [4, 16, 17]. Moreover, note that in all the works mentioned above, the coefficient

identification problems concerned homogeneous materials only. Hence, in this paper, we

will consider the thermal properties as space-dependent to meet the potential application

in functionally graded materials [28]. In order to test the performance of the proposed

method, the numerical results of some benchmark examples are presented in section 4 for

both 1D and 2D problems. Finally, conclusions are given in section 5.

2 Mathematical formulation

We consider a two-layer composite heat conductor Ω = Ω1 ∪ Ω2, where Ωi is the ith

subdomain with thermal conductivity ki and heat capacity per unit volume Ci, i = 1, 2.

The thermal properties (ki and Ci) are assumed to be heterogeneous spacewise dependent

known quantities. Let Γ be the interface between these two subdomains, and ∂Ωi the

boundary of the subdomain Ωi. As shown in Figure 1, we have ∂Ω1 = Γ1 ∪ Γ and

∂Ω2 = Γ2 ∪ Γ.

The heat conduction model is given by the heat equations,

Ci(x)
∂ui

∂t
= ∇ · (ki(x)∇ui), (x, t) ∈ Ωi × (0, T ), i = 1, 2 (1)

with the Neumann heat flux boundary conditions,

−ki(x)
∂ui

∂ni

= qi(x, t), (x, t) ∈ Γi × (0, T ), i = 1, 2 (2)

the general interface condition,

−k1(x)
∂u1

∂n1

= k2(x)
∂u2

∂n2

= φ(x, t)[f(u1)− f(u2)], (x, t) ∈ Γ× (0, T ), (3)

and initial conditions,

ui(x, 0) = ai(x), x ∈ Ωi, i = 1, 2, (4)
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where T > 0 is the final time, ui is the temperature field in the domain Ωi, ni is the

outward pointing unit normal vector to the boundary ∂Ωi, qi is the heat flux exerted

on the boundary Γi, ai(x) is the initial temperature field in the domain Ωi, for i = 1, 2,

and, for simplicity, heat sources have been assumed absent. The materials Ω1 and Ω2 can

be anisotropic in which case the scalars k1(x) and k2(x) become symmetric and positive

definite tensors. Also, the Neumann boundary condition (2) can be replaced by more

general Robin boundary conditions allowing for convection through the boundaries Γ1

and Γ2. Equation (3) characterises a general condition at the interface Γ between the two

heat conductors. If f(u) = u, the coefficient φ(x, t) represents the TCC. If f(u) = u4,

then Eq.(3) is referred to as the Stefan-Boltzmann interface condition, and φ(x, t) is the

SBC [6]. Both of these two conditions can cause a temperature discontinuity across the

interface Γ.

Figure 1: Schematic representation of the space bicomponent domain Ω = Ω1 ∪ Ω2 in

two-dimensions.

The direct problem consists in the determination of the temperature fields u1 and u2

in the domains Ω1 and Ω2, from the knowledge of the geometry, thermal properties,

boundary conditions, initial conditions and the interface coefficient. On the contrary, for

the inverse problem, the space- and time-dependent coefficient φ(x, t) at the interface Γ

and the temperature fields u1(x, t) and u2(x, t) are unknown and desired to be determined.

Thus, we concentrate on determining φ(x, t), u1(x, t) and u2(x, t), given Ωi, ki, Ci, qi, ai,

i = 1, 2, and the boundary temperature measurement on an accessible portion Γ0 ⊂ Γ1,

u1(xi, t) = Y (xi, t), (xi, t) ∈ Γ0 × (0, T ), i = 1, Nm, (5)

where x = xi for i = 1, Nm are the coordinates of Nm measurement points on Γ0. The

boundary Γ0 is assumed to be of positive measure and the temperature (5) on it is
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measured experimentally (e.g., with a thermal camera), and taken as an overspecification

condition to compensate for the missing information φ(x, t).

2.1 Ill-posedness of the inverse problem (1)-(5)

The uniqueness of solution of the inverse problem (1)-(5) holds, as sketched by the fol-

lowing argument. First, the uniqueness of solution of the inverse Cauchy problem for

u1 in Ω1 × (0, T ) given by Eqs.(1), (2) and (4) for i = 1, and Eq.(5) follows from the

Holmgren theorem [15]. In fact, the initial condition (4) with i = 1 is not needed for

this uniqueness analytic continuation argument. As a byproduct of this, it follows that

u1|Γ×(0,T ) and k1
∂u1

∂n1

|Γ×(0,T ) are uniquely determined. Then, the first identity in (3) yields

that k2
∂u2

∂n2

|Γ×(0,T ) is also known and this, together with (2) and (4) for i = 2, form a

direct well-posed Neumann problem for the heat equation for u2 in Ω2× (0, T ). In partic-

ular, it yields that u2|Γ×(0,T ) is uniquely determined and finally, the interface coefficient

is uniquely determined from (3) as

φ =
−k1

∂u1

∂n1

f (u1)− f (u2)
on Γ× (0, T ), (6)

provided that the denominator is non-zero. Even if the uniqueness holds, the inverse

problem (1)-(5) is still ill-posed since the interface coefficient φ does not depend continu-

ously on the input measured data (5). This can easily be seen from the following example

of instability.

We consider a square domain Ω and take Ω1 = (0, xc)× (0, L), Ω2 = (xc, L)× (0, L),

Γ0 = {0}× (0, L), Γ1 = {0}× (0, L)∪ (0, xc)×{0, L}, Γ2 = {L}× (0, L)∪ (xc, L)×{0, L},
Γ = {xc}× (0, L), where L = 1/4 and xc is a fixed value in (0, L). The thermal properties

of the materials are taken constant k1 = k2 = c1 = c2 = 1. We take the function f in (3)

to be f(u) = u4. With the initial temperatures a1(x, y) = p1 cos(αx) cos (πy), a2(x, y) =

p2 cos(α(x − L)) cos (πy), the overspecified data u1(0, y, t) = Y (y, t) = p1 cos (πy) e
−mt,

and the heat fluxes

q1(x, y, t) =







0, on x = 0 or y = 0,

πp1√
2
cos(αx)e−mt, on y = L,

(x, y, t) ∈ Γ1 × (0, T ), (7)

q2(x, y, t) =







0, on x = L or y = 0,

πp2√
2
cos(α(x− L))e−mt, on y = L,

(x, y, t) ∈ Γ2 × (0, T ),

(8)
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where p1 = 1/[α sin(αxc)], p2 = 1/[α sin(α(xc − L))], α =
√
m− π2, m ∈ N, m ≥ 10, the

temperatures u1 and u2 and the coefficient φ satisfying (1)-(5) are uniquely determined

as,



















u1(x, y, t) = p1 cos(αx) cos(πy)e
−mt, (x, y, t) ∈ Ω1 × (0, T ),

u2(x, y, t) = p2 cos(α(x− L)) cos(πy)e−mt, (x, y, t) ∈ Ω2 × (0, T ),

φ(y, t) = e3mt

cos3(πy)
[p41 cos

4(αxc)− p42 cos
4(α(xc − L))]

−1
, (y, t) ∈ [0, L]× (0, T ).

(9)

It can be seen from (9) that, as m → ∞, the temperatures u1 and u2 tend to zero, as

well as the input data Y (y, t), while the interface coefficient φ becomes unbounded.

In order to cope with the ill-posedness of the inverse problem, we follow the framework

of least-squares variational minimization, to reformulate it into a optimization problem,

and then implement a regularization procedure, which is described in section 3, for restor-

ing stability of the solution. The objective functional is defined as the L2-norm of the

residual between the calculated and measured temperature:

J [φ] =
1

2

Nm
∑

i=1

‖u1(xi, t;φ)− Y (xi, t)‖2L2((0,T )) , (10)

where u(xi, t;φ) is the solution of the direct problem with respect to a particular function

φ at xi ∈ Γ0, and Y (xi, t) is the corresponding measured temperature. The nonlinear

least-squares function (10) is minimized by the preconditioned CGM, described in section

3, in which a new gradient defined in a Hilbert space is used to generate the preconditioner.

3 Conjugate gradient method

The inverse problem of finding the triplet functions {u1, u2, φ} satisfying (1)-(5) is non-

linear, and we introduce the conjugate gradient method (CGM) to solve this problem.

The idea of the CGM for the desired interface coefficient φ is to minimize the objective

functional (10) by using the following recurrence relationship:

φn+1(x, t) = φn(x, t)− βndn(x, t), n = 0, 1, . . . , (11)

where the superscript n is the iteration number and φ0 is an initial guess, βn is the search

step size at nth iteration, and dn(x, t) is the direction of descent defined recurrently as,

d0(x, t) = J ′[φ0], dn(x, t) = J ′[φn] + γndn−1(x, t), n = 1, 2, . . . , (12)
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where J ′[φn] stands for the gradient of the functional J with respect to φ, and γn is the

conjugate coefficient. Although there are many choices for γn, here we use the Polak-

Ribiere method, due to its computational performance [27],

γn =
〈J ′[φn], J ′[φn]− J ′[φn−1]〉L2(Γ×(0,T ))

‖J ′[φn−1]‖2L2(Γ×(0,T ))

, n = 1, 2, . . . , (13)

where 〈·, ·〉L2 denotes the L2-inner product.

Further, the search step size βn is chosen as the one that minimizes the objective

functional J at each iteration,

βn = argmin
β

J [φn − βdn]. (14)

By following a similar analysis to that of [29], βn is obtained as,

βn =

∑Nm

i=1〈u1(xi, t;φ
n)− Y (xi, t),∆un

1 (xi, t)〉L2((0,T ))
∑Nm

i=1 ‖∆un
1 (xi, t)‖2L2((0,T ))

, n = 0, 1, . . . , (15)

where ∆un
1 (xi, t) = ∆u1(xi, t; d

n), i = 1, Nm, is the solution to a sensitivity problem

presented in subsection 3.1 with ∆φn = dn. In order to obtain the gradient J ′[φn], the

solution to an adjoint problem is required, which will be introduced in subsection 3.2.

3.1 The sensitivity problem

To obtain the search step size via Eq.(15), a sensitivity problem is constructed. By

adding a perturbation ε∆φ(x, t) to φ(x, t), the subsequent responses u1(x, t) and u2(x, t)

are perturbed by ε∆u1(x, t) and ε∆u2(x, t), respectively, where ε is a small parameter.

By replacing u1, u2 and φ in the direct problem (1)-(4) by (u1 + ε∆u1), (u2 + ε∆u2) and

(φ+ ε∆φ), respectively, and comparing the resulting formulation with the original direct

problem, one can obtain the following sensitivity problem:


















Ci(x)
∂(∆ui)

∂t
= ∇ · (ki(x)∇(∆ui)), (x, t) ∈ Ωi × (0, T ),

−ki(x)
∂(∆ui)
∂ni

= 0, (x, t) ∈ Γi × (0, T ),

∆ui(x, 0) = 0, x ∈ Ωi, i = 1, 2

(16)

with the interface condition,

−k1(x)
∂(∆u1)

∂n1

= k2(x)
∂(∆u2)

∂n2

= φ(x, t)[f ′(u1)∆u1 − f ′(u2)∆u2]

+ ∆φ(x, t)[f(u1)− f(u2)], (x, t) ∈ Γ× (0, T ), (17)

where we have neglected the second-order terms of order ε2 and made the first-order

approximation f(u+ ε∆u) ≈ f(u) + εf ′(u)∆u.

8



3.2 The adjoint problem

Due to the constraint that the temperature u1(x, t;φ) in the objective functional (10) is

the solution of the direct problem, we introduce two Lagrange multipliers λ1(x, t) and

λ2(x, t) to construct the constrained objective functional,

J [φ] =
1

2

Nm
∑

i=1

∫ T

0

[u1(xi, t;φ)− Y (xi, t)]
2 dt+

∫

Ω1

∫ T

0

λ1

[

C1
∂u1

∂t
−∇ · (k1∇u1)

]

dt dx

+

∫

Ω2

∫ T

0

λ2

[

C2
∂u2

∂t
−∇ · (k2∇u2)

]

dt dx. (18)

The functional J [φ] has a variation ∆J [φ] corresponding to the perturbation of φ. Note

that ∆J [φ] is the directional derivative of J [φ] in the direction of ∆φ, [29], and thus can

be derived from Eq.(18) as follows:

∆J [φ] =
Nm
∑

i=1

∫

Ω1

∫ T

0

∆u1 [u1(x, t;φ)− Y (xi, t)] δ(x− xi) dt dx

+

∫

Ω1

∫ T

0

λ1

[

C1
∂(∆u1)

∂t
−∇ · (k1∇(∆u1))

]

dt dx

+

∫

Ω2

∫ T

0

λ2

[

C2
∂(∆u2)

∂t
−∇ · (k2∇(∆u2))

]

dt dx, (19)

where δ(·) is the Dirac delta function. One can further simplify the second and third

integrals on the right-hand side of Eq.(19), using integration by parts, into the following:

Ii =

∫

Ωi

∫ T

0

λi

[

Ci
∂(∆ui)

∂t
−∇ · (ki∇(∆ui))

]

dt dx

=

∫

Ωi

Ciλi∆ui

∣

∣

∣

∣

T

0

dx−
∫

Ωi

∫ T

0

Ci∆ui
∂λi

∂t
dt dx−

∫

∂Ωi

∫ T

0

kiλi
∂(∆ui)

∂ni

dt ds

+

∫

∂Ωi

∫ T

0

ki∆ui
∂λi

∂ni

dt ds−
∫

Ωi

∫ T

0

∆ui∇ · (ki∇λi) dt dx, i = 1, 2. (20)

Substituting Eqs.(20), and the boundary conditions and initial conditions of the sensitiv-

ity problem (16) into (19), we obtain,

∆J [φ] =
Nm
∑

i=1

∫

Ω1

∫ T

0

∆u1 [u1(x, t;φ)− Y (xi, t)] δ(x− xi) dt dx

+
2

∑

i=1

[
∫

Ωi

Ciλi(x, T )∆ui dx−
∫

Ωi

∫ T

0

∆ui

(

Ci
∂λi

∂t
+∇ · (ki∇λi)

)

dt dx

−
∫

Γ

∫ T

0

kiλi
∂(∆ui)

∂ni

dt ds+

∫

∂Ωi

∫ T

0

ki∆ui
∂λi

∂ni

dt ds

]

. (21)
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Let the terms in Eq.(21) containing ∆u1 and ∆u2 vanish and utilize the interface condition

(17), to obtain the adjoint problems,











































C1(x)
∂λ1

∂t
+∇ · (k1(x)∇λ1)

=
∑Nm

i=1[u1(x, t;φ)− Y (xi, t)]δ(x− xi), (x, t) ∈ Ω1 × (0, T ),

∂λ1

∂n1

= 0, (x, t) ∈ Γ1 × (0, T ),

λ1(x, T ) = 0, x ∈ Ω1,

−k1(x)
∂λ1

∂n1

= φ(x, t)f ′(u1)[λ1(x, t)− λ2(x, t)], (x, t) ∈ Γ× (0, T ),

(22)

and






























C2(x)
∂λ2

∂t
+∇ · (k2(x)∇λ2) = 0, (x, t) ∈ Ω2 × (0, T ),

∂λ2

∂n2

= 0, (x, t) ∈ Γ2 × (0, T ),

λ2(x, T ) = 0, x ∈ Ω2,

k2(x)
∂λ2

∂n2

= φ(x, t)f ′(u2)[λ1(x, t)− λ2(x, t)], (x, t) ∈ Γ× (0, T ).

(23)

Consequently, Eq.(21) is simplified as:

∆J [φ] =

∫

Γ

∫ T

0

∆φ[f(u1(x, t))− f(u2(x, t))][λ1(x, t)− λ2(x, t)] dt ds, (24)

and thus the L2-gradient of the functional J [φ] is,

J ′
L[φ] = [f(u1(x, t))− f(u2(x, t))][λ1(x, t)− λ2(x, t)], (x, t) ∈ Γ× (0, T ). (25)

3.3 Preconditioning

The gradient (25) used in CGM is normally defined in the space L2(Γ× (0, T )). However,

the L2-gradient may be too rough and result in a poor rate of convergence [34]. The

performance of the standard CGM can be improved by using the operator preconditioning

[27]. The concept of preconditioning is widely used in the gradient descent method for

minimizing nonlinear least squares problems, for which different choices of preconditioner

are available [33]. The Sobolev gradient that arises from the Sobolev space setting is

smoother than the L2-gradient and was firstly used to generate preconditioners for the

steepest descent method in [26]. The preconditioned CGM using Sobolev gradient has

been extensively applied to the solution of inverse problems, e.g., in electrical impedance

tomography [20], for the Robin inverse problem [18, 19] and in the parameter identification

for the bio-heat equation [4]. In this paper, a new preconditioner generated from the inner

product is introduced.
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Denote ST := Γ × (0, T ) and let Hk(0, T ) be the Sobolev space of functions whose

generalized derivatives up to order k belong to L2(0, T ). We denote by H0,1(ST ) :=

{φ ∈ L2(ST )|φt ∈ L2(ST )} the Hilbert space of functions from L2(ST ) whose generalized

first-order time derivative is in L2(ST ). This space is endowed with the norm

‖φ‖H0,1(ST ) =

[
∫ T

0

(

‖φ(·, t)‖2L2(Γ) + ‖φt(·, t)‖2L2(Γ)

)

dt

]1/2

. (26)

Let J ′
H [φ] denote the gradient of J [φ] defined in the space H0,1(ST ), and H0,1

κ (ST ) the

corresponding weighted inner product for H0,1(ST ). We define [19],

∆J [φ] := 〈J ′
H [φ],∆φ〉H0,1

κ (ST ) =

∫

Γ

∫ T

0

(

J ′
H [φ]∆φ+ κ

∂J ′
H [φ]

∂t

∂(∆φ)

∂t

)

dt dΓ, (27)

where κ is a positive constant to be prescribed. In particular, in the 1D case, φ only

depends on time, and thus J ′
H is referred to as the Sobolev gradient [26] in the space

H1(0, T ). By integration by parts, Eq.(27) is further transformed into

∆J [φ] = κ∆φ
∂J ′

H

∂t

∣

∣

∣

∣

T

0

+

∫

Γ

∫ T

0

(

J ′
H − κ

∂2J ′
H

∂t2

)

∆φ dt dΓ. (28)

If J ′
H satisfies the conditions,

∂J ′
H

∂t

∣

∣

∣

∣

t=0

=
∂J ′

H

∂t

∣

∣

∣

∣

t=T

= 0, (29)

then, from (24), (25) and (28), we have

J ′
H − κ

∂2J ′
H

∂t2
= J ′

L on ST . (30)

In other words, J ′
H is obtained from J ′

L via an operator M−1 := (I − κ∇2
t )

−1, where I is

an identity operator and ∇2
t =

∂2

∂t2
is a Laplacian in time. The operator M is viewed as a

preconditioner for accelerating the convergence and improving the accuracy of the inverse

solution [19, 27, 33, 35]. Its inverse M−1 is essentially an integral operator and has a

smoothing effect on the gradient of objective functional [39]. In addition, κ is regarded

as an additional regularization parameter [19, 39], whose effect on the stability of the

inverse solution will also be studied in this work.

The preconditioned CGM is implemented by substituting the gradient J ′
H [φ] into (12)

to obtain a different direction of descent from the standard CGM. Besides, the conjugate

coefficient in (13) is replaced by the following [20]:

γn =
〈J ′

L[φ
n], J ′

H [φ
n]− J ′

H [φ
n−1]〉L2(ST )

〈J ′
L[φ

n−1], J ′
H [φ

n−1]〉L2(ST )

, n = 1, 2, . . . . (31)
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Note that the L2-gradient in (25) always vanishes at the final time t = T , according

to the adjoint problems (22) and (23), where we can see that λ1(x, T ) = λ2(x, T ) = 0.

Therefore, if the initial guess does not match the exact value of the unknown function φ

at t = T , a direct application of the L2-gradient J ′
L fails to update the estimation of φ

at t = T , and could only result in a poor recovery near this part. The difficulty at t = T

can be avoided by employing the preconditioned gradient J ′
H , satisfying the imposed

conditions (29). For this reason, the presented preconditioned CGM possesses merits of

improved accuracy for an arbitrary initial guess in comparison with the standard CGM.

3.4 Stopping criterion

As illustrated in section 2, the inverse problem (1)-(5) is ill-posed and small random errors,

inherently present in the practically measured temperature (5), cause large oscillation in

the reconstruction of the interface coefficient. On the other hand, the CGM is proved to

have a characteristic of semi-convergence, namely, convergence at the beginning of the

iteration, but divergence of solution as the iteration proceeds [14]. Thus, the discrepancy

principle is applied to determine an appropriate stopping number of iterations before the

divergence sets in.

The temperature measurements are numerically simulated by adding random noise

ǫi(t) to (5) for the measurements at x = xi, as

Y noise(xi, t) = Y (xi, t) + ǫi(t), (xi, t) ∈ Γ0 × (0, T ), i = 1, Nm, (32)

where ǫi(t) are random variables drawn from a normal distribution with zero mean and

standard deviations σi given by

σi = p%× max
t∈(0,T )

|u(xi, t)|, i = 1, Nm, (33)

where p represents the percentage of noise. Of course, in the FDM numerical discretiza-

tion (described in the Appendix A), Eq.(32) will be discretized as

Y noise(xi, tl) = Y (xi, tl) + ǫi(tl), l = 1, Nt, i = 1, Nm, (34)

where for each i = 1, Nm, ǫi(tl)|l=1,Nt
will represent a vector of Nt random numbers drawn

as described above.
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The discrepancy principle for stopping the iterative procedure of the CGM ceases the

iteration at the first iteration number k = k(ǫ) for which

J [φk] ≤ E , (35)

where

E =
1

2

Nm
∑

i=1

‖ǫi(t)‖2L2(0,T ) . (36)

Note that the discrepancy principle (35) needs the a priori knowledge of the amount

of noise E in (36) or at least, an upper bound of it, in order to guarantee the CGM’s

semi-convergence [14].

3.5 Algorithm

S1. Set n = 0 and choose an arbitrary initial guess φ0(x, t) for φ(x, t).

S2. Solve the direct problem (Eqs.(1)-(4)) to obtain un
1 = u1(x, t;φ

n) and un
2 = u2(x, t;φ

n),

and calculate the objective functional J [φn]. If J [φn] satisfies the stopping criterion

(35), then stop, else go to step 3.

S3. Solve the adjoint problem (Eqs.(22) and (23)) to calculate λ1(x, t;φ
n) and λ2(x, t;φ

n),

and the gradient J ′
L[φ

n] by Eq.(25).

S4. Solve Eq.(30) with conditions (29) to calculate J ′
H [φ

n] from J ′
L[φ

n].

S5. Substitute J ′
H [φ

n] into Eqs.(31) and (12) to obtain the conjugate coefficient γn and

the direction of descent dn, respectively.

S6. Solve the sensitivity problem (Eqs.(16) and (17)) to obtain ∆u1(x, t;φ
n) with the

condition ∆φn = dn, and then calculate the search step size βn using Eq.(15).

S7. Obtain φn+1(x, t) via Eq.(11). If J [φn+1] satisfies the stopping criterion (35), then

stop, else set n = n+ 1 and go to step 2.

4 Numerical results and discussions

In this section, both 1D and 2D examples are presented to illustrate the accuracy and

stability of the numerical solutions. The direct problem (1)-(4), as well as the auxiliary
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problems (sensitivity problem and adjoint problem) are solved using the FDM. The nu-

merical schemes for the direct problems in 1D and 2D cases are presented in sections A.1

and A.2 of the Appendix A, respectively. As for the auxiliary problems, the procedures

are easier than for the direct problems due to their linearity. In the numerical compu-

tation, the integrals involved in the implementation of CGM are approximated by the

trapezium rule, and the Dirac delta function in (22) is approximated by

δ(x− xi) ≈
1

c
√
π
e−‖x−xi‖2/c2 , i = 1, Nm, (37)

where c is a small positive constant, such as 10−3.

Two different types of interface condition will be considered in the following examples;

one is the thermal contact condition with unknown TCC, and the other is the Stefan-

Boltzmann radiation condition with unknown SBC. Both noiseless and noisy temperature

data (32) in (5) will be tested. To illustrate the attainable accuracy and stability of inverse

solutions for TCC and SBC, we define the following normalized objective functional and

accuracy error at the iteration number n:

J̄ [φn] =

∑Nm

i=1 ‖u1(xi, t;φ
n)− Y (xi, t)‖2L2((0,T ))

2
∑Nm

i=1 ‖Y (xi, t)‖2L2((0,T ))

, (38)

Ē[φn] =
‖φn(x, t)− φ⋆(x, t)‖L2(Γ×(0,T ))

‖φ⋆(x, t)‖L2(Γ×(0,T ))

, (39)

where φ⋆(x, t) is the analytical solution of the unknown interface coefficient, if available.

4.1 1D case for finding the time-dependent interface coefficient

First, we consider the 1D problem of determining the time-dependent TCC or SBC

(because of the 1D setting there is no space-dependency). The strategy is to use a

thermocouple to record the temperature history at a single measurement point on an

accessible boundary of a thin plate, which is in contact with the heat conductor of interest.

The measurement data is then input into the inverse model to retrieve the interfacial

coefficient. Note that there is no measurement point inside the domain, therefore, this is

a non-invasive method.
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Example 1. We use the following parameters:































k1 = k2 = 54W/(m ◦C), C1 = C2 = 3.66× 106 J/(m3 ◦C),

T = 100 s, L = 0.05m, xc = 0.005m,

a1 = 30 ◦C, a2 = 900 ◦C,

q1 = 0, q2 = 0,

(40)

where the material properties ki and Ci, i = 1, 2, correspond to the AISI 1050 steel [8].

Here, we envisage a practical situation in which a homogeneous steel conductor of length

L is cut into a thin piece Ω1 = (0, xc) of length xc and a longer one Ω2 = (xc, L) of length

(L−xc). Each of the materials Ω1 and Ω2 have a different initial temperature and the heat

diffusion is observed for the butted material Ω1∪Ω2. Although the two materials have the

same thermal properties, due to the destructive cutting, at the interface Γ = {xc}, the
contact will not be perfect but characterised by the unknown interface coefficient φ, as

given in (3). We further assume that we have a Stefan-Boltzmann radiative heat transfer

at the interface x = xc characterised by the nonlinear fourth-order power law f(u) = u4

in (3).

The exact solution φ⋆(t) of the interface coefficient is assumed as follows:

φ⋆(t) =



















A
(

1
5
+ 4

5
sin

(

πt
60

))

, t ∈ [0, 30) s,

A
(

3
2
− t

60

)

, t ∈ [30, 60) s,

1
2
A, t ∈ [60, 100] s,

(41)

where A is a scaling constant chosen as A = 1× 10−7 W/(m2 ◦C4), which, in practice, is

the order of magnitude of SBC. Also, the non-smooth function (41) represents a severe

example on which the CGM’s performance is tested. The noiseless measurement data

u1(0, t) = Y (0, t) taken at x = 0 is numerically simulated by solving the direct problem

(1)-(4) with the interface coefficient (41).

In the FDM, we take Nx = 102, Nt = 101 and Nc = 11. We first take the initial

guess φ0(t) = 0.5A, which coincides with the exact solution φ⋆ at the final time. The

preconditioned CGM with κ = 1 is used to retrieve the SBC (41). The function (38),

representing the normalization of the objective functional (10) that is minimized, and

the normalized accuracy error (39) are shown in Figures 2(a) and 2(b), respectively, as

functions of the number of iterations n. A monotonic decreasing convergence of J̄ [φn]

is observed with increasing n, for various amounts of noise p ∈ {0, 1, 3}. When the
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Figure 2: (a) The normalized objective functionalal J̄ [φn], (b) the normalized accuracy

error Ē[φn], and (c) numerical solutions of φ(t) with initial guess φ0(t) = 0.5A and κ = 1,

for noise p ∈ {0, 1, 3}, for example 1.

input data (5) is contaminated with p ∈ {1, 3} noise, the iteration is stopped according

to the discrepancy principle (35). The horizontal lines in Figure 2(a), which stand for

the threshold tolerances (36) determined by the noise, intersect the curves of J̄ [φn], at

ns ∈ {4, 4} iterations for p ∈ {1, 3} noise, respectively, where ns is called the stopping

iteration number, and plays the role of regularization in the CGM [1, 14]. As shown in

Figure 2(b), the normalized accuracy errors first reach a minimum and then increase, as

the iteration number increases, which reveals that instabilities are setting in. Thus, the

CGM is unstable without an appropriate stopping rule. The optimal iteration numbers

that minimize Ē are inferred from Figure 2(b) as nopt ∈ {5, 4} for p ∈ {1, 3}, respectively.
As the stopping iteration numbers ns ∈ {4, 4} are close to the optimal ones, the estimation

is well-regularized, when the calculation is stopped after ns iterations, by the discrepancy

principle (35). The retrieved SBCs for both noiseless (p = 0) and noisy data (p ∈ {1, 3})
are presented in Figure 2(c). In the case of no noise, the solution is obtained after 30
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Figure 3: Numerical solutions of φ(t) for various values of the smoothing parameter

κ ∈ {0, 10, 102}, with initial guess φ0(t) = 0.8A, for (a) p = 0, (b) p = 1 and (c) p = 3

noise, for example 1.

(arbitrary sufficiently large number) iterations and agrees very well with the exact solution

(41). In the case of noisy data, the numerical solutions are obtained after ns iterations,

and it can be seen that they are reasonably stable and become more accurate as the noise

level p decreases. Although not illustrated, we mention that the accuracy errors after ns

iterations for κ = 0, obtained as Ē ∈ {0.053, 0.083}, are just slightly higher than those

for κ = 1, which are Ē ∈ {0.052, 0.073} for p ∈ {1, 3} noise, respectively. Thus, the

preconditioner with κ = 1 makes little contribution to the increase of accuracy for the

initial guess φ0(t) = 0.5A, which, in particular, satisfies that φ0(T ) = φ⋆(T ). In order

to remove this apparent restriction and illustrate the robustness of the preconditioned

CGM, with respect to the independence on the initial guess, we change the initial guess

to be φ0 = 0.8A, and the preconditioned CGM with various values of κ is applied. To

investigate the effect of κ on the stability and accuracy of the reconstruction, we plot

the retrieved SBC for κ ∈ {0, 10, 102}, as shown in Figure 3. The presented numerical

solutions of φ(t) for p = 1 noise have been obtained after ns ∈ {8, 9, 11} iterations, and
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those for p = 3 noise after ns ∈ {5, 6, 8} iterations, for κ ∈ {0, 10, 102}, respectively.
When κ = 0, because the gradient J ′

L = 0 at t = T = 100 s, the standard CGM cannot

move the final value of the retrieved solution from the initial guess, leading to a large

deviation from the exact one near t = 100 s. Moreover, the deviation is deteriorated with

increasing the noise level p. However, as κ, i.e. the smoothing, increases, the stability

and accuracy of the numerical solutions are both significantly improving. This is due

to the regularization imposed by the preconditioner M = (I − κ∇2
t ), which makes the

gradient J ′
H smoother than J ′

L and implicitly filters-out the high frequency oscillations in

the data. Also, the gradient restriction at the final time is removed by using the Sobolev

gradient J ′
H , and the inaccuracy near the final time reduces as κ increases.

Example 2. We take the following input data:











































k1 = 54W/(m ◦C), k2(x) = 50e100(x−0.005) W/(m ◦C)

C1 = 3.66× 106 J/(m3 ◦C), C2(x) = 5× 106 × e−50(x−0.005) J/(m3 ◦C)

T = 80 s, L = 0.02m, xc = 0.005m,

a1 = 30 ◦C, a2 = 300 ◦C,

q1 = 0, q2 = −2× 105 W/m2.

(42)

Here, the bi-material Ω = Ω1 ∪Ω2 has a homogeneous component Ω1 (as in Example 1),

but the second component Ω2 is an inhomogeneous material with spacewise dependent

thermal properties k2(x) and C2(x). The inhomogeneous component Ω2 is heated by

a non-zero heat flux q2. The heat diffusion from Ω2 to Ω1 is blocked by the thermal

resistance at the imperfect interface x = xc, which is characterised by a TCC. In this

example, the boundary temperature at x = 0 measured over time is used as input data

to recover the temporal history of the unknown TCC. As accurate reconstruction of non-

smooth and discontinuous functions is numerically challenging, we take the exact solution

for φ(t) as

φ⋆(t) =







0.2A, t ∈ [0, 40) s,

A, t ∈ [40, 80] s,
(43)

where the scaling constant A = 5× 102 W/(m2 ◦C). Note that the jump of φ⋆ at t = 40 s

in (43) can be physically induced by a sudden change of an external load [3].

We take the arbitrary initial guess φ0(t) = 0.6A. In the FDM scheme, we take

Nx = 102, Nt = 101 and Nc = 26. Figure 4 illustrates the evolutions of the normalized
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Figure 4: The normalized objective functionalal J̄ [φn] for (a) κ = 0 and (b) κ = 103, and

the normalized accuracy error Ē[φn] for (c) κ = 0 and (d) κ = 103, for p ∈ {0, 3, 5} noise,

for example 2.

objective functional J̄ [φn] and the accuracy error Ē[φn], as functions of the number

of iterations n. As shown in Figure 4(a), when κ = 0, the stopping criterion defined

by the discrepancy principle (35) is reached at ns ∈ {6, 6} iterations for p ∈ {3, 5}
noise, respectively. Besides, when κ = 103, the corresponding stopping iteration numbers

ns ∈ {23, 21} are obtained in Figure 4(b). The first remark is that it takes more iterations

to satisfy the stopping criterion for κ = 103 than for κ = 0. Although not illustrated, we

report that on testing with other values of κ such as 1, 10 and 102, the same conclusion

that the number of stopping iterations ns increases monotonically with increasing κ has

been confirmed. On the other hand, as shown in Figures 4(c) and 4(d), the increase in

the noise level p leads to a dramatical increase of the accuracy error Ē[φn] for κ = 0,

while this does not make any difference to the evolution of Ē[φn] for κ = 103. Thus,

at the cost of slightly decreasing computational efficiency, the robustness of the iterative

CGM with respect to the measurement noise is remarkably improved by smoothing the
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gradient J ′
L with a positive smoothing parameter κ.

Figure 5: Variation of the normalized accuracy error Ē[φn], at the stopping iteration

number ns, with respect to κ, for p ∈ {0, 3, 5} noise, for example 2.

The effect of κ on the accuracy of the estimation of φ(t) is further studied. The

variation of the normalized accuracy error Ē[φn], at the stopping iteration numbers ns ∈
{30, 23, 21} for p ∈ {0, 3, 5} noise, respectively, as a function of κ, is plotted in Figure 5.

Note that the preconditioner M is close to the identity I for small values of κ. Hence, the

preconditioner will play a critical role only if κ is not small. Figure 5 shows that Ē[φn]

keeps almost constant when log(κ) < 1. For log(κ) > 1, Ē[φn] decreases as κ increases

for p ∈ {3, 5}, whilst an opposite trend is observed for p = 0. It makes sense to compare

the numerical solutions obtained using various values of κ. First, from Figures 6(b) and

6(c), for p = 3 and p = 5, respectively, it can be seen that the deviation in the numerical

solution from its exact value near t = T = 80 s is avoided by increasing κ. This is the

reason for the decrease of Ē[φn] when p ∈ {3, 5}. By contrast, Figure 6(a) reveals that

the reconstruction of solution at the discontinuity point at t = 40 s becomes worse for

larger κ because of the over-smoothness effect of the preconditioner. Thus, for exact data

p = 0, as we do not employ any regularization but stop the iterations at an arbitrary

number, say after 30 iterations, Ē[φn] is expected to increase with increasing κ for the

discontinuous solution (43).
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Figure 6: Retrieved solutions using various values of κ for (a) p = 0, (b) p = 3 and (c)

p = 5 noise, for example 2.

4.2 2D case for finding the space- and time-dependent interface

coefficient

In this section, the numerical feasibility of the methodology for 2D inverse problems will

be demonstrated to reconstruct the space and time variation of the interface coefficient.

No a priori information is given on the distribution of the unknown function. The direct

problem, sensitivity problem and adjoint problem are solved by the alternating-direction

implicit (ADI) method [32] (see section A.2 of Appendix A).

Example 3. We take the following input data:











































k1 = 54W/(m ◦C), k2 = 213W/(m ◦C)

C1 = 3.66× 106 J/(m3 ◦C), C2 = 3.27× 106 J/(m3 ◦C)

T = 20 s, Lx = Ly = 0.1m, xc = 0.01m,

a1 = 30 ◦C, a2 = 900 ◦C,

q1 = q2 = 0,

(44)
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where k1 and C1 correspond to the thermal properties of AISI 1050 steel [8], whilst k2

and C2 correspond to the material considered in [16] for determining the unknown TCC

during metal casting. Both of the two space domains Ω1 and Ω2 are rectangular, with

Ω1 = (0, xc) × (0, Ly) and Ω2 = (xc, Lx) × (0, Ly), where Lx and Ly are the lengths of

the rectangular domain in x and y-directions, respectively, corresponding to the physical

situation where the bi-material is segmented at the vertical interface x = xc along the

y-axis with y ∈ (0, Ly). The two components are both homogeneous and possess different

thermal properties. The boundaries ∂Ω1\Γ and ∂Ω2\Γ are kept insulated. At the interface

Γ = {xc} × (0, Ly), for the linear law f(u) = u, the unknown interface coefficient φ(y, t)

represents a TCC, which is time-dependent and varies along the y-direction.

The exact solution φ⋆ of the TCC is taken as

φ⋆(y, t) = 0.5A
y

Ly

+ 0.5A
t

T
+ 0.1A, (y, t) ∈ [0, Ly]× [0, T ], (45)

with the scaling constant A = 1 × 103 W/(m2 ◦C), which corresponds to a physical

linear variation in space y and time t variables. We assume that the input temperature

measurements (5) are extracted from Nm points of the thermal images of the boundary

Γ0 = {0} × [0, Ly], uniformly distributed with a step size Dm = Ly/(Nm − 1), Nm ≥ 2.

Figure 7: (a) The normalized objective functionalal J̄ [φn] and (b) the normalized accuracy

error Ē[φn] for κ = 1, for p ∈ {0, 3, 5} noise, for example 3.

We take the initial guess as φ0(y, t) = 0.4A, the numbers of ADI nodes as Nx =

102, Ny = 41 and Nt = 101, and the number of measurement points as Nm = 10.

Firstly, the preconditioned CGM with κ = 1 is used to validate the algorithm for the 2D

problem. Similar to the 1D case, a monotonic decreasing convergence of the normalized

objective functional (38) is achieved. As shown in Figure 7(a), converged solutions are
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Figure 8: The variation of the normalized accuracy error Ē[φn] with the smoothing

parameter κ, for p ∈ {0, 3, 5} noise, for example 3.

reached within 40 iterations for various noise levels p ∈ {0, 3, 5}, and the limit of J̄ [φn]

increases with increasing p. When the input data contains p ∈ {3, 5} noise, the iterations

are stopped, according to the discrepancy principle (35) at ns ∈ {11, 10}, respectively.
Figure 7(b) shows the corresponding normalized accuracy error Ē[φn], from which the

optimal iteration numbers are determined as nopt = 18 for both noise levels p ∈ {3, 5}.
Although there is a difference between the numbers ns and nopt, the value of Ē[φn] at ns

is very close to that at nopt. Moreover, the divergence of Ē[φn] illustrated in Figure 7(b),

is much less pronounced than that shown in Figures 2(b) and 4(c) for Examples 1 and 2,

respectively.

We also analyse in Figure 8, the variation of the normalized accuracy error Ē[φn], as a

function of the smoothing parameter κ, for various noise levels. The numerical solutions

are obtained after 40 iterations for noiseless data, and ns iterations for noisy data, where

ns is determined from discrepancy principle (35). It can been remarked from Figure 8

that Ē[φn] decreases, as κ increases, for all noise levels p ∈ {0, 3, 5}. However, we have

found that for too large κ, such as log(κ) > 2, the discrepancy principle oversmoothes

the numerical solution by enforcing it to be too stable but inaccurate. In view of the

satisfactory accuracy, the preconditioned CGM with κ = 102 will be used below to

compare the results with the standard CGM.

Figure 9 shows the comparisons between the exact solution (45) of φ(y, t) and the

recovered solutions obtained with κ = 0 and κ = 102, when noiseless data (p = 0) is

inverted. The inaccuracies near t = 20 s in Figure 9(b) are caused by the vanishing of
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L2-gradient J ′
L at the final time, which fails to move the boundary values from the initial

guess. Fortunately, these inaccuracies can be overcome by employing the preconditioned

CGM with κ = 102, as shown in Figure 9(c).

For noisy input data (p ∈ {3, 5}), the retrieved solutions for κ = 0 and κ = 102 are

illustrated in Figure 10. Besides the improvement of accuracy near the final time, the

oscillations in the numerical solutions (Figures 10(a) and 10(c)) are smoothed consid-

erably (Figures 10(b) and 10(d)) by using the preconditioned CGM with κ = 102, in

comparison with the solutions obtained by standard CGM with κ = 0. This is the reason

for the decrease of Ē[φn] shown in Figure 8. Hence, for an arbitrary initial guess, the

preconditioned CGM is able to retrieve the coefficient φ(y, t) accurately and stably.

Figure 9: (a) The exact φ(y, t) given by (45) and the numerical solutions obtained with

(b) κ = 0 and (c) κ = 102 after 40 iterations, for exact data (p = 0), for example 3.

Ē = 0.238, ns = 8 Ē = 0.093, ns = 18

Ē = 0.258, ns = 8 Ē = 0.104, ns = 15

Figure 10: The numerical solutions of φ(y, t) for p = 3 noise: (a) κ = 0, (b) κ = 102, and

for p = 5 noise: (c) κ = 0, (d) κ = 102, for example 3.
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Figure 11: The variation of the normalized accuracy error Ē[φn], at the corresponding

stopping iteration numbers, with the number of measurement points Nm, for κ ∈ {0, 102}
and p = 5 noise, for example 3.

In practice, the number Nm of measurement points on Γ0 = {0}× [0, Ly] is important

for experiment design, due to its effect on the accuracy of the recovery of unknown

interfacial coefficient φ(y, t). Figure 11 shows the normalized accuracy error Ē[φn], at the

corresponding stopping iteration numbers, as a function of the number of measurement

points Nm for κ ∈ {0, 102} and p = 5 noise. From this figure, it can be seen that

the errors for κ = 102 are smaller than those for κ = 0, for all values of Nm, which is

in accordance with the results presented in Figure 8. The error Ē[φn] is first decreasing

rapidly, followed by a slight variation around a certain value as Nm increases. An optimal

number Nmc is obtained, in this example we have Nmc = 6, which is the minimum number

of boundary temperature measurements at x = 0 for obtaining an inverse solution with

attainable accuracy for noisy data. Also, from the numerical point of view, for Nm ≥ Nmc,

increasing Nm will have little effect on the accuracy.

Example 4. We take the same input data (44) as in example 3, but the heat transfer

at the interface Γ = {xc}× (0, Ly) is governed by a Stefan-Boltzmann radiation condition

with unknown SBC, φ(y, t). Thus we have f(u) = u4 and the exact solution of φ(y, t) is

given by

φ⋆(y, t) = 0.5A · sin
(

2πy

Ly

)

+ A, (y, t) ∈ [0, Ly]× [0, T ], (46)

where the scaling constant A = 1 × 10−7 W/(m2 ◦C4), which corresponds to a physical

harmonic oscillatory variation in the space variable y.
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The initial guess is taken as φ0(y, t) = 0.4A, which is far from the analytical solution

at the final time t = T = 20 s, to see further the merits of the preconditioned CGM over

its standard version. We take the numbers of nodes Nx = 102, Ny = 41 and Nt = 101,

and the number of measurement points Nm = 10. To determine the appropriate value of

the smoothing parameter κ, the evolution of Ē[φn], as a function of κ, is plotted in Figure

12, where Ē[φn] is obtained after 30 iterations for p = 0 and ns iterations for p ∈ {3, 5}
noise. The figure reveals that an improvement in accuracy is achieved by increasing

κ. We also find that the discrepancy principle fails to stop the iteration properly when

log(κ) > 3 in this example. For this reason, the preconditioned CGM with κ = 103 will

be used below for the retrieval of φ(y, t).

Figure 12: The variation of the normalized accuracy error Ē[φn] with the smoothing

parameter κ, for p ∈ {0, 3, 5} noise, for example 4.

For noiseless data, the retrieved solutions of φ(y, t) obtained by the standard and the

preconditioned CGM with κ = 103 are shown in Figure 13(b) and 13(c), respectively.

By comparing with the analytical solution (46) in Figure 13(a), it can be seen that the

solution given by the preconditioned CGM is in good agreement with the analytical one,

while the solution given by the standard CGM does not move from the initial guess at

t = 20 s. Thus the retrieval of φ(y, t) by preconditioned CGM possesses a higher accuracy

than that by standard CGM also for nonlinear problem.

For noisy data (p ∈ {3, 5}), Figure 14 shows the retrieved solutions of φ(y, t) obtained

after ns iterations, determined by the discrepancy principle (35). Figure 15 further shows

the corresponding solutions in y-direction at t = 0.5T = 10 s. From Figures 14 and 15,

one can notice that the oscillations induced by the noise in the input temperature data are

removed substantially by using the preconditioned CGM with κ = 103. The inaccuracies
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Figure 13: (a) The exact φ(y, t) given by (46) and the numerical solutions obtained with

(b) κ = 0 and (c) κ = 103 after 30 iterations, for exact data (p = 0), for example 4.

Ē = 0.226, ns = 7 Ē = 0.037, ns = 7

Ē = 0.239, ns = 5 Ē = 0.038, ns = 4

Figure 14: The numerical solutions of φ(y, t) for p = 3 noise: (a) κ = 0, (b) κ = 103, and

for p = 5 noise: (c) κ = 0, (d) κ = 103, after ns iterations, for example 4.

occurring near the final time are corrected and the deviations from the exact solution

along the space boundary are also reduced. In addition, the error Ē[φn] are almost the

same for κ = 103 regardless of the noise level, as shown in Figures 12 and 14, and this

adds further robustness to the preconditioned CGM that was successfully developed and

employed in this paper.

5 Conclusions

A stable and robust preconditioned CGM with adjoint problem has been implemented

for the reconstruction of space and time varying interface heat transfer coefficient φ (both

linear TCC and nonlinear SBC) from temperature measurements on an accessible portion
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Figure 15: The exact and numerical solutions of φ(y, 10) for (a) κ = 0 and (b) κ = 103

after ns iterations, for p ∈ {3, 5} noise, for example 4.

of the boundary. The numerical procedure is applied to both 1D and 2D problems with

various evolutions of φ(t) and φ(y, t), respectively. The numerical results have revealed

that both the discrepancy principle and the preconditioner M = (I − κ∇2
t ) have regu-

larizing effects on the retrieved solution of the unknown interface coefficient φ. It was

demonstrated that, in comparison with the standard CGM, the preconditioned CGM de-

veloped in this article achieves better accuracy and stability even for relatively high noise

levels in the measurement data and arbitrary initial guesses of the iterative procedure.

For noisy data, the accuracy improves as the smoothing parameter κ in the precondition-

er M increases. In the 1D case, due to the over-smoothness of the preconditioner M , the

reconstruction of discontinuities in the evolution of φ is less accurate than that on the

continuous portions, but is still reasonably stable. Besides, in the 2D case, there exists

an optimal number Nmc of measurement points, beyond which increasing it will make

little contribution to the improvement of accuracy. The rigorous choice of the smoothing

parameter κ in (30) is still open to further investigations and, at this stage, represents a

limitation of the presented method.

Extensions to multilayer materials and three-dimensional computations are straight-

forward. Also, in the future, for validation purpose, the accuracy, stability and robustness

of the proposed preconditioned CGM, that have been verified in this study, should be

tested on inverting real raw data in order to completely validate the inverse model for

reconstructing the interfacial heat transfer coefficient in composite materials.
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Appendix A Numerical schemes of direct problem

A.1 1D transient heat conduction

A uniform mesh is constructed for numerical discretization, with the nodes and mesh

sizes as follows:


















xi = (i− 1)δx, for i = 1, Nc, and

xi = (i− 2)δx, for i = Nc + 1, Nx, δx = L/(Nx − 2),

tm = (m− 1)δt, δt = T/(Nt − 1), m = 1, Nt,

(A1)

where xi and tm are the nodes in space and time domain, respectively, and δx and δt are

the corresponding mesh sizes. The location of the interface is at xc = xNc
= xNc+1 =

(Nc − 1)δx.

For convenience, the temperatures u1 and u2 in Eqs.(1)-(4) are denoted by a single

variable w next. By employing an implicit FDM scheme, the discretized form of Eq.(1)

is

Cl,i
wm+1

i − wm
i

δt
=

kl,i+1/2

(δx)2
wm+1

i+1 − kl,i+1/2 + kl,i−1/2

(δx)2
wm+1

i +
kl,i−1/2

(δx)2
wm+1

i−1 , (A2)

where l = 1, 2, m = 1, Nt − 1, i = 1, Nc for l = 1, i = Nc + 1, Nx for l = 2, kl,i and

Cl,i are thermal conductivity and heat capacity per unit volume of Ωl at xi, respectively,

kl,i±1/2 = (kl,i + kl,i±1)/2, and wm
i denotes the nodal temperature at position xi and time

tm. When i = 1 or i = Nx in (A2), wm+1
0 and wm+1

Nx+1 are nodal temperatures at fictitious

points i = 0 and Nx+1 on the left-hand side and right-hand side of the boundaries x = 0

and x = L, respectively.
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In order to approximate the interface condition (3), the nonlinear function f is lin-

earized by a first-order Taylor series expansion,

f(wm+1
i ) = f(wm

i ) + f ′(wm
i )(w

m+1
i − wm

i ). (A3)

By using Eq.(A3), one can discretize the interface condition (3) into the following two

recurrence relationships:

− 2r1w
m+1
Nc−1 +

[

1 + 2r1 +
2r1δxφ

m+1

k1,Nc

f ′(wm
Nc
)

]

wm+1
Nc

− 2r1δxφ
m+1

k1,Nc

f ′(wm
Nc+1)w

m+1
Nc+1 = wm

Nc
− 2r1δxF

m

k1,Nc

, m = 1, Nt − 1, (A4)

− 2r2w
m+1
Nc+2 +

[

1 + 2r2 +
2r2δxφ

m+1

k2,Nc+1

f ′(wm
Nc+1)

]

wm+1
Nc+1

− 2r2δxφ
m+1

k2,Nc+1

f ′(wm
Nc
)wm+1

Nc
= wm

Nc+1 +
2r2δxF

m

k2,Nc+1

, m = 1, Nt − 1, (A5)

corresponding to the domain Ω1 and Ω2, respectively, where,

r1 =
k1,Nc−1/2

C1,Nc

· δt

(δx)2
, r2 =

k2,Nc+3/2

C2,Nc+1

· δt

(δx)2
, (A6)

and

Fm = φm+1[f(wm
Nc
)− f(wm

Nc+1)] + φm+1[f ′(wm
Nc+1)w

m
Nc+1 − f ′(wm

Nc
)wm

Nc
]. (A7)

Here, the approximations, k1,Nc+1/2 = k1,Nc−1/2 and k2,Nc+1/2 = k2,Nc+3/2, are made in

Eqs.(A4) and (A5). The Neumann boundary condition (2) is discretized as follows:

k1,1
wm+1

0 − wm+1
2

2δx
= qm+1

1 , k2,Nx

wm+1
Nx−1 − wm+1

Nx+1

2δx
= qm+1

2 , m = 1, Nt − 1, (A8)

By substituting Eq.(A8) into Eq.(A2), the fictitious nodal temperatures can be elimi-

nated. Thus, the direct problem (1)-(4) is transformed into a series of systems of linear

algebraic equations, which are solved using the Tridiagonal-Matrix algorithm (TDMA)

[31].

A.2 2D transient heat conduction

The domain Ω× (0, T ) is discretized into a uniform mesh of nodes and sizes as follows:






























xi = (i− 1)δx, for i = 1, Nc, and

xi = (i− 2)δx, for i = Nc + 1, Nx, δx = Lx/(Nx − 2),

yj = (j − 1)δy, δy = Ly/(Ny − 1), j = 1, Ny,

tm = (m− 1)δt, δt = T/(Nt − 1), m = 1, Nt,

(A9)
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The alternating-direction implicit (ADI) method is used for the discretization of the heat

equation (1) with constant thermal properties ki and Ci (i = 1, 2), as follows:

Cl

w2m+1
i,j − w2m

i,j

δt
=

kl
(δx)2

(

w2m+1
i−1,j − 2w2m+1

i,j + w2m+1
i+1,j

)

+
kl

(δy)2
(

w2m
i,j−1 − 2w2m

i,j + w2m
i,j+1

)

, l = 1, 2, (A10)

Cl

w2m+2
i,j − w2m+1

i,j

δt
=

kl
(δx)2

(

w2m+1
i−1,j − 2w2m+1

i,j + w2m+1
i+1,j

)

+
kl

(δy)2
(

w2m+2
i,j−1 − 2w2m+2

i,j + w2m+2
i,j+1

)

, l = 1, 2, (A11)

where i = 1, Nc for l = 1 and i = Nc + 1, Nx for l = 2, j = 1, Ny, m = 1
2
, Nt

2
− 1, and wm

i,j

denotes the nodal temperature at position (xi, yj) and time tm. Eqs.(A10) and (A11) can

be further written into the following form suitable for calculation:

(1 + 2rlx)w
2m+1
i,j − rlxw

2m+1
i−1,j − rlxw

2m+1
i+1,j = (1− 2rly)w

2m
i,j + rlyw

2m
i,j−1 + rlyw

2m
i,j+1, (A12)

(1 + 2rly)w
2m+2
i,j − rlyw

2m+2
i,j−1 − rlyw

2m+2
i,j+1 = (1− 2rlx)w

2m+1
i,j + rlxw

2m+1
i−1,j + rlxw

2m+1
i+1,j ,

(A13)

where rlx = Clδt/ (kl(δx)
2) and rly = Clδt/ (kl(δy)

2), l = 1, 2. For each specific m in the

recurrences, Eq.(A12) is firstly solved to obtain the nodal temperatures at time t2m+1,

which are then substituted into Eq.(A13) to calculate the nodal temperatures at time

t2m+2.

When i = Nc and Nc + 1, the interface condition (3) must be considered to obtain

the following recurrences involving the interfacial nodal temperatures by using Eq.(A3):

M1w
2m+1
Nc−1,j +M2w

2m+1
Nc,j

+M3w
2m+1
Nc+1,j

= (1− 2r1y)w
2m
Nc,j + r1yw

2m
Nc,j−1 + r1yw

2m
Nc,j+1 −

2δt

δxC1

P, (A14)

N3w
2m+1
Nc,j

+N2w
2m+1
Nc+1,j +N1w

2m+1
Nc+2,j

= (1− 2r2y)w
2m
Nc+1,j + r2yw

2m
Nc+1,j−1 + r2yw

2m
Nc+1,j+1 +

2δt

δxC2

P, (A15)

(1 + 2r1y)w
2m+2
Nc,j

− r1yw
2m+2
Nc,j−1 − r1yw

2m+2
Nc,j+1

= (1− 2r1x)w
2m+1
Nc,j

+ 2r1xw
2m+1
Nc−1,j −

2δt

δxC1

Q, (A16)

(1 + 2r2y)w
2m+2
Nc+1,j − r2yw

2m+2
Nc+1,j−1 − r2yw

2m+2
Nc+1,j+1

= (1− 2r2x)w
2m+1
Nc+1,j + 2r2xw

2m+1
Nc+2,j +

2δt

δxC2

Q, (A17)
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where


















M1 = −2r1x, N1 = −2r2x

M2 = 1 + 2r1x +
2δt
δxC1

φ2m+1
j f ′(w2m

Nc,j
), N2 = 1 + 2r2x +

2δt
δxC2

φ2m+1
j f ′(w2m

Nc+1,j)

M3 = − 2δt
δxC1

φ2m+1
j f ′(w2m

Nc+1,j), N3 = − 2δt
δxC2

φ2m+1
j f ′(w2m

Nc,j
)

(A18)

and

P = φ2m+1
j [f(w2m

Nc,j)− f(w2m
Nc+1,j) + f ′(w2m

Nc+1,j)w
2m
Nc+1,j − f ′(w2m

Nc,j)w
2m
Nc,j],

Q = φ2m+1
j (f(w2m+1

Nc,j
)− f(w2m+1

Nc+1,j)). (A19)

The boundary conditions are introduced in a similar manner as in the 1D case, and the

resulting systems of algebraic equations are solved using the TDMA.
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