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Abstract Planets and satellites can undergo physical librations, which consist of forced periodic
variations in their rotation rate induced by gravitational interactions with nearby bodies. This mechanical
forcing may drive turbulence in interior fluid layers such as subsurface oceans and metallic liquid cores
through a libration-driven elliptical instability (LDEI) that refers to the resonance of two inertial modes with
the libration-induced base flow. LDEI has been studied in the case of a full ellipsoid. Here we address for
the first time the question of the persistence of LDEI in the more geophysically relevant ellipsoidal shell
geometries. In the experimental setup, an ellipsoidal container with spherical inner cores of different sizes
is filled with water. Direct side view flow visualizations are made in the librating frame using Kalliroscope
particles. A Fourier analysis of the light intensity fluctuations extracted from recorded movies shows that
the presence of an inner core leads to spatial heterogeneities but does not prevent LDEI. Particle image
velocimetry and direct numerical simulations are performed on selected cases to confirm our results.
Additionally, our survey at a fixed forcing frequency and variable rotation period (i.e., variable Ekman
number, E) shows that the libration amplitude at the instability threshold varies as ∼E0.65. This scaling is
explained by a competition between surface and bulk dissipation. When extrapolating to planetary interior
conditions, this leads to the E1∕2 scaling commonly considered. We argue that Enceladus’ subsurface ocean
and the core of the exoplanet 55 CnC e should both be unstable to LDEI.

Plain Language Summary Because of their gravitational interactions with other bodies, planets
and moons are subjected to mechanical forcings that perturb their spin rate. The motivation of this study
is to determine whether one of these forcings, called libration, can drive global-scale flows in interior fluid
layers, like the subsurface ocean of Europa or the liquid inner core of Io. Turbulent flows in these layers
are of interest because they can be linked to the generation of magnetic fields, planetary heat fluxes, and
energy dissipation rates. Furthermore, since it has been proposed that life may be harbored within these
subsurface oceans, their internal structure and dynamics are of broad interest to the planetary science
community and beyond. To model libration experimentally, containers of a given geometry are filled with
water and are made to librate. Previous studies have shown that the flow can become unstable for precise
oscillation frequencies. By combining laboratory experiments, numerical simulations, and a theoretical
analysis, we show for the first time that this instability persists in an ellipsoidal shell geometry, i.e., an
ellipsoid inside of which is suspended a spherical inner core. This result is of primary importance since most
liquid cores and subsurface oceans are expected to have this geometry. Furthermore, our results show that
the generated turbulence can be latitudinally inhomogeneous. By performing a survey, we extrapolate our
results to planetary interior conditions and show that libration is capable of driving turbulence in planetary
cores (e.g., the exoplanet 55 CnC e) and subsurface oceans (e.g., Enceladus).

1. Introduction
1.1. Context

Planets andmoons spin around their rotation axis at a given angular velocity. However, they are subjected to

several types of mechanical forcings that periodically perturb this rotation, such as precession and libration.
This study focuses on longitudinal libration,which physically corresponds to anoscillation of the axial rotation

rate of a body that results from gravitational interactions with an orbital partner.

The effects of these mechanical forcings on the dynamics of internal fluids are of major interest for planetary

bodies that have a liquid metal core (e.g., Mercury, the Moon, Io, and Ganymede) and for bodies that have
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subsurface oceans (e.g., Europa, Callisto, Ganymede, Enceladus, and Titan). In these bodies, internal flows are

linked to the generation ofmagnetic field, planetary heat fluxes, and energy dissipation. A better understand-

ing of these flows is thus important to consider relevant hydrodynamical effects in modelings. Furthermore,

since it has been proposed that life may be harbored within these subsurface oceans, their internal structure

and dynamics are of broad interest to the planetary science community and beyond. The motivation here is

thus to determine whether mechanical forcing can drive strong global-scale flows by injecting energy into

interior fluid layers.

Oneway to perform this exchangeof energy is through a viscous couplingbetween the solid and liquid layers.

That is why the first studies of the fluid dynamical effects of libration focused on spherical geometry (full

sphere and spherical shell). In such geometries, longitudinal libration excites inertial waves, which find their

origin in the restoring effect of the Coriolis force. For a finite fluid volume, inertial waves are reflected by the

solid walls. These waves can then combine through constructive interference to form global inertial modes

[Greenspan, 1968; Aldridge and Toomre, 1969; Rieutord, 1991; Noir et al., 2009]. However, no resonant response

is expected in the limit of small Ekman number and forcing amplitude [Zhang et al., 2013].

Whenanelliptically deformedbodyundergoes longitudinal libration [e.g.,Cébronetal., 2012a;Noir etal., 2012;

Grannan et al., 2014; Favier et al., 2015], a topographic torque is generated between the solid outer boundary

(e.g., themantle) and the interior fluid layer (e.g., the liquid core). Thismechanical forcing canexcite aparamet-

ric fluid instability involving two inertial modes of the rotating flow plus the elliptically deformed basic flow

in response to the harmonic forcing [Le Bars et al., 2015]. This instability is called the libration-driven elliptical

instability (LDEI).

1.2. Motivations

It is currently unclear whether the LDEI investigated in the full ellipsoidal cavity can be extended to the more

geophysically relevant shell geometry. While the solutions for inertial modes have been calculated for a full

cylinder and cylindrical shells [Herreman et al., 2009], as well as in spheroidal [Zhang et al., 2004] and ellip-

soidal [Vantieghem, 2014] cavities, the complete spectrum of eigenfrequencies is unknown for spherical or

ellipsoidal shells. In such a configuration, and for very weak libration forcing, the only known regular inviscid

solutions are purely toroidal modes because of the new constraints imposed by the inner boundary [Rieutord

et al., 2001]. Inertial modes are instead confined along singular paths of characteristics and form the so-called

attractors.When adding viscosity but remaining in a regimewhere theCoriolis force largely dominates the vis-

cous force (typically Ekmannumber∼10−8), the singularities take the formof thin shear layers localizedaround

the inviscid attractors [Rieutord and Valdettaro, 2010]. This suggests that LDEI might be significantly modified

in ellipsoidal shells since inertialmodes are not expected to robustly and globally develop in such geometries.

Previous studies of the elliptical instability in shell geometries have been conducted [Seyed-Mahmoud et al.,

2000, 2004; Lacaze et al., 2005; Cébron et al., 2010b]. These studies focus on the case of a tidal forcing rather

than libration and do not explore the developed turbulent regime following the elliptical instability. The goal

of the present investigation is to experimentally and numerically demonstrate that inertial mode resonances

do indeed develop in librating ellipsoidal shells and thus that LDEI can exist in the subsurface oceans and

liquid metal cores of librating bodies.

2. Theoretical Formalism
2.1. Model and Equations

We consider the flow u of an incompressible (∇ ⋅u = 0) fluid of uniform density and kinematic viscosity �. The

fluid is enclosed between a rigid ellipsoidal outer container, whose surface, in a reference frame fixed to the

surface, is defined in Cartesian coordinates by

x2

a2
+

y2

b2
+

z2

c2
= 1, (1)

where a, b, and c are the long equatorial axis, the short equatorial axis, and the polar axis, respectively. We

define the mean external radius as R =
√
(a2 + b2 + c2)∕3 and the equatorial ellipticity as

� =
a2 − b2

a2 + b2
. (2)

The aspect ratio of the shell is � = ri∕R where ri is the radius of the spherical inner core. The container (outer

ellipsoid and inner core) is subjected to longitudinal libration, i.e., rotates around the vertical axis ẑ with
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a time-dependent spin rate given byΩspin(t) = Ω0 + Δ��lib sin(�libt), where Ω0 is the mean spin rate, Δ� is

the libration amplitude, and �lib is the angular libration frequency.

We work in the body frame attached with the walls of the librating container (librating frame). The inner and

outer boundaries are fixed in that frame. We chooseΩ−1
0 as the time scale and the shell thickness R(1 − �) as

the length scale. The dimensionless spin rate is

Ω(t) = 1 + � sin(ft), (3)

with � = f Δ� the dimensionless libration amplitude and f = �lib∕Ω0 the dimensionless libration frequency.

In the librating frame the momentum and continuity equations for the velocity field u are

�u
�t

+ u ⋅ ∇u + 2� × u = −∇Π + E��
2 u −

d�
dt

× r

⏟⏟⏟
Poincarè

(4)

∇ ⋅ u = 0, (5)

with E� = �∕[Ω0R
2(1−�)2] the Ekman number (dimensionless viscosity),Π the reduced pressure taking into

account the centrifugal acceleration, and r the dimensionless position vector. In equation (4) the last term

on the right-hand side is the Poincaré force generated by the nonuniform rotation of the librating frame.

Finally, the velocity field satisfies the no-slip boundary condition u = 0 at both the inner spherical and outer

ellipsoidal surfaces.

2.2. Basic Flow

We consider first the equatorial plane (z = 0) of our system to determine the two-dimensional base flow U

boundedby an external elliptical boundary and an inner circular boundary.Wework in cylindrical coordinates

(s, �, z) in the librating frame. The flow is described by the stream function� such thatU = ∇×
[
−� sin(ft)� ẑ

]
.

In the inviscid limit E� = 0, the flow satisfies the nonpenetration conditions us = 0 at the inner and outer

boundaries. Assuming a small equatorial ellipticity � ≪ 1, we expand the stream function as � = �0 + ��1

where �0 = (s2 − 1)∕2 is the stream function of the solid-body rotation and �1 is the first-order elliptical cor-

rection. With the ansatz �1 = F(s) cos(2�)∕2, the inviscid vorticity equation reduces to the Laplace equation

∇2F = 0, yielding

�1 =

(
A1

s2
+ B1s

2

)
�

2
cos(2�) (6)

where A1 = −�4∕(1 − �4) and B1 = 1∕(1 − �4) are fixed by the boundary conditions. The complete stream

function is thus

� =
s2 − 1
2

+

(
A1

s2
+ B1s

2

)
�

2
cos(2�) (7)

and the cylindrical flow components are reduced to

Us = � sin(ft)

(
A1

s3
+ B1s

)
� sin(2�) , (8)

U� = � sin(ft)

[
s +

(
−
A1

s3
+ B1s

)
� cos(2�)

]
. (9)

In the librating frame, each fluid parcel thus oscillates back and forth along a part of an elliptical streamline

whose flattening depends on the distance from the inner core boundary.

In our experimental setup the basic flow U is a priori three-dimensional because of the viscous corrections.

However, for z ∈ [−�, �], the base flow is enclosed between an ellipsoidal outer boundary and a spherical

inner core. We therefore neglect the vertical component and approximate the base flow U by the horizontal

components (8) and (9). We thus compute the basic flow as a purely two-dimensional flow, defined for each

z position by replacing � with
√
�2 − z2 to calculate A1 and B1. For |z|>� , the base flow is enclosed within

an ellipsoidal boundary without any inner boundary, and the horizontal base flow reduces to (8) and (9) with

A1 = 0 and B1 = 1.
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Figure 1. Kalliroscope visualizations of the shear layers formed by the direct excitation of inertial waves for two different
forcing frequencies (f = 1 and 0.4) and two different core sizes (� = 0.49 and 0.37). Each image is obtained by stacking
instantaneous snapshots extracted at t = nTlib + Tlib∕2, where Tlib is the libration period. From left to right and top to
bottom, the stacking is performed over 50, 50, 45, and 41 libration periods. Two images are given for each parameter
set: a raw image on the right and the same image on the left where we have superimposed dashed white lines
representing the theoretical direction of the shear layers (� = arccos(f∕2)) and dashed red lines pointing toward the
critical latitude (�c = arcsin(f∕2)).

2.3. Inertial Waves

A rotating fluid in an unbounded medium supports oscillatory motions called inertial waves. The latter are

solutions of [Greenspan, 1968]

�u
�t

+ 2ẑ × u = −∇Π , (10)

∇ ⋅ u = 0, (11)

which can be rearranged to give a single equation for the pressure field (the Poincaré equation). Equation (10)

admitsplanewave solutionsu ∝ ei(k⋅r+�t), wherek is thedimensionlesswavevector and� is thedimensionless

frequency. These inertial waves satisfy the dispersion relation

� = ±2 cos �, (12)

where � is the angle between k and the axis of rotation ẑ. The dispersion relation in (12) shows that |�| < 2

and that inertial waves are dispersive and anisotropic. For a finite fluid volume, inertial waves reflect on solid

walls, keeping � constant according to (12) and can generate global inertial modes through constructive

interference.

Experimental [Aldridge andToomre, 1969;Noir et al., 2009] and numerical [Rieutord, 1991; Tilgner, 1999; Calkins

et al., 2010] studies show that longitudinal libration can excite inertial modes, although a direct resonance

mechanism is not predicted by theoretical studies [Zhang et al., 2011, 2013]. In viscous spherical shells,

LEMASQUERIER ET AL. LDEI IN ELLIPSOIDAL SHELLS 1929



Journal of Geophysical Research: Planets 10.1002/2017JE005340

internal shear layers, i.e., superposition of inertial waves [Kerswell, 1995], are spawned from the so-called criti-

cal latitudewhere the energy of incoming inertial waves is reflected along the boundary [Phillips, 1963]. Shear

layers are also associated with the breakdown of the Ekman boundary layer [Greenspan, 1968]. For a given

forcing frequency f , the critical latitude �c is determined by f = 2 sin �c.

Since inertial modes are the starting point for the stability analysis of libration, precession, or tidally driven

flows, their investigation is of interest. In Figure 1 we show direct excitations of inertial waves using

Kalliroscope visualizations for forcing frequencies f ≤ 2. The shear layers are qualitatively observed at crit-

ical colatitudes in good agreement with the theoretical predictions. However, the precise study of direct

resonance of inertial waves in ellipsoidal shells is beyond the scope of this study.

2.4. Elliptical Instability

The libration-driven elliptical instability (LDEI) is a linear instability mechanism that arises from the resonant

interaction of triads of waves, namely, two inertial waves plus the elliptical deformation of the fluid stream-

lines by the oscillating boundaries [Cébron et al., 2012b; Vidal et al., 2017]. Expanding velocity and pressure

perturbations around the basic state as a linear combination of inertial modes, one can show that the LDEI

grows in time if the following resonance conditions are satisfied [Grannan et al., 2014]:

|m1 −m2| = mlib = 2, (13)

|�1 − �2| = f , (14)

wheremi is the azimuthal wave number and�i is the eigenfrequency of the ith inertial mode of the triad. The

azimuthalwavenumbermlib = 2of thebase flowU is a direct consequenceof the fact that theouter surface of

the container is ellipsoidal. Because of the dispersion relation (12), |�i| ≤ 2. In the asymptotic limit of �, � → 0

(i.e., weak ellipticity and weak libration amplitude, relevant for planets and moons), the elliptical instability

exists only if |f |< 4, whereas finite values of � and � allow instabilities when |f |< 4 + �� (see Grannan et al.

[2014] for details).

In this study,we realize a surveywith a fixed frequency f = 4 for several reasons. First, in this frequency regime,

no inertialwaves are directly excitedby the forcing. It allowsus to focus only on the LDEImechanism, i.e., on an

indirect excitation of inertial modes. Second, this case is the one where the determination of the modes and

frequency coupling is the simplest. Inertial modes with eigenfrequencies f1,2 ≃ f∕2 = 2meet the resonance

conditions in (14) and are particularly easy to identify with a side view visualization. Indeed, k is, in this case,

parallel to the rotation axis, implying that the group velocity of the excited waves is horizontal. These were

identified as the Λ8,±1,7 modes in the absence of inner core [Grannan et al., 2014; Favier et al., 2015] using the

description of inertial modes in a rotating spheroid given by Kerswell [1994]. Since the radial component of

this mode is not zero, by definition, it is not a purely toroidal mode. It is thus also a way to verify if modes

having a poloidal component can be excited in an ellipsoidal shell. Additional cases have also been donewith

the forcing frequency f = 2.4 to show that the spin-over mode (solid-body rotation inclinedwith the rotation

axis) is still excited.

2.5. Local Stability Analysis

Cébron et al. [2012b, 2014] performed the local stability analysis of libration-driven basic flows valid in full

ellipsoids. The local stabilitymethodprobes the stability of the pathlines of the basic flow, considering inviscid

plane wave perturbations of small wavelengths [Le Dizès, 2000]. The local inviscid growth rate �inv of LDEI is

at first order in �� [Cébron et al., 2012b]

�inv =
16 + f 2

64
�� . (15)

Using the same approach, the inviscid growth rate of LDEI upon the libration-driven base flow in (8) and (9) is

�′
inv =

(16 + f 2)|3A1 + B1s
4|

64s4
�� . (16)

The growth rate for the full ellipsoid in (15) is recovered from (16) when A1 = 0 and B1 = 1. Note that because

the streamline deformation is changing with s and z, the growth rate (16) is spatially varying. However, for

� ∈ [0, 0.74], the spatial mean (along s) of �′
inv is always smaller than �inv. The highest growth rate, given by

(15), is the one used in this study. This choice is later supported by the fact that the instability is seen to grow

primarily close to the poles where A1 = 0 and B1 = 1.

LEMASQUERIER ET AL. LDEI IN ELLIPSOIDAL SHELLS 1930



Journal of Geophysical Research: Planets 10.1002/2017JE005340

To include dissipative terms due to the no-slip boundary conditions, Cébron et al. [2012b] assumed that dis-

sipation mainly occurs in the Ekman boundary layer of thickness E1∕2� . The viscously damped growth rate of

LDEI is then

� = �inv − �Ψ(�)
√

E� , (17)

where� is a constant of order unity andΨ a function taking into account thedependenceof thedampingwith

the radius ratio of the shell � . Hollerbach and Kerswell [1995] show that the tilt-over mode, corresponding to

the basic flow of a precessing shell, is damped viscously followingΨ = (1−�)(1 + �4)∕(1 − �5). This tilt-over

mode is similar to the so-called spin-over mode of the TDEI (tidally driven elliptical instability). No generic

formula exists to quantifyΨ for other modes of the elliptical instability excited by tides or libration.

3. Methods
3.1. Experimental Setup

3.1.1. Description of the Experiment

The container used is a polished acrylic cavity made from two nonaxisymmetric hemispheres. The fluid cavity

dimensions are a = 12.7 cm and b = c = 8.9 cm, which gives an equatorial ellipticity of � = 0.34. A solid

acrylic inner core is added inside the ellipsoidal cavity using a metallic rod suspended from the top of the

acrylic container. The radius of the inner cores used are ri = [2.51, 3.82, 5.07, 6.12, 7.62] cm corresponding to

� = [0.24, 0.37, 0.49, 0.59, 0.74].

This container is fixed on the same device as the one used previously by Noir et al. [2009, 2010, 2012] and

Grannan et al. [2014]. Two motors are used to replicate a librational forcing. The first one rotates a 1 m diam-

eter turntable at a constant rotation rateΩ0 varying from 1 to 60 rpm (0.017 to 1 Hz). The second one, which

is mounted on this turntable, is directly coupled to the acrylic cavity and superimposes a sinusoidal oscilla-

tionΔ��lib sin(�libt) (see Figure 2). In this study, the container oscillations are characterized by an amplitude

2Δ� ∈ [0∘, 65∘] and a frequency�lib∕2� ∈ [0, 3.84Hz]. Top-facing and side-facing cameras, shown in Figure 2,

are used to perform visualizations described in section 3.2.
3.1.2. Cases Realized

Figure 3 shows the Ekman number as a function of the background rotation rate Ω0, using colored curves

for the six different values of � . The upper x axis shows the dimensional frequency of libration for a fixed

nondimensional frequency f = 4. The horizontal dash-dotted lines show the six Ekman numbers used in the

experiments, and the black dots show the intersection of these fixed Ekman values with the solid curves.

Each experiment is conducted the same way. A constant rotation is applied for several minutes until the fluid

reaches solid-body rotation. The two cameras start recording movies simultaneously, and the oscillation of

the acrylic container is then activated. For each set of parameters (E� , � ) (black dots in Figure 3),Δ� is adjusted

to determine an approximate amplitude threshold for the instability. To determine whether a case is stable

or unstable, we wait for five predicted growth times using (17) with Ψ ≈ (1 − �) and visually check whether

a turbulent flow develops or not. For some unstable cases, we record longer movies (∼10 min) to be able to

perform a signal analysis on both the growing and the fully turbulent phases. Table 1 recapitulates the exper-

imental parameters, definitions, and ranges explored. A complete table of all the cases realized is available in

the supporting information file (Table S1).

3.2. Flow Analysis Methods

3.2.1. Kalliroscope and Particle Image Velocimetry

Direct side view visualizations of the flow are performed by seeding the water with Kalliroscope particles and

illuminating the tank with a meridional laser plane. These particles are thin plates that reflect light preferen-

tially along the direction of their short axis and orient themselves with the shear of the flow. Their collective

reflectance thus gives a visual indication of their orientation and, thereby, of the flow behavior [Hecht et al.,

2010]. The two lasers used to create the light sheet are attached to the librating frame. Two cameras are used

to acquire 1920× 1280 resolutionmovies of the flow at 30 frames per second. A GoPro Hero4 Silver camera is

fixed in the librating frame and acquires movies in the narrow mode to avoid optical distortion. The second

camera is a Canon EOS 7D digital camera fixed in the rotating frame. The GoPro angle of view focuses on one

quadrant of the cavity, whereas the Canon EOS 7D allows to visualize the whole shell.

To evaluate the information obtained from Kalliroscope visualizations, a selected case is chosen and analyzed

using both Kalliroscope particles and particle image velocimetry (PIV) in a vertical plane and in a horizontal

LEMASQUERIER ET AL. LDEI IN ELLIPSOIDAL SHELLS 1931
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Figure 2. (a) Side view image and (b, c) schematic representations of the laboratory experiment used to perform
visualizations on vertical and horizontal planes. The inner core is spherical, even if it appears ellipsoidal in Figure 2a due
to optical distortions.

Figure 3. Evolution of the Ekman number with the rotation rate of the turntable for various shell ratios. The black dots
represent the cases realized for a dimensionless libration frequency f = 4.
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Table 1. Laboratory Experimental Librational Forcing Parameters

Parameter Definition Range of Values

a Long equatorial axis 127 mm

b Short equatorial axis 89 mm

c Rotational axis 89 mm

� Ellipticity a2−b2

a2+b2
0.34

ri Inner core radius [0, 25.1, 38.2, 50.7, 61.2, 76.2] mm

R Mean radius of the ellipsoid
√

a2+b2+c2

3
103.2 mm

� Radius ratio of the shell ri∕R [0, 0.243, 0.370, 0.491, 0.593, 0.738]

Ω0∕2� Mean fluid rotation rate 0.017–1 Hz

�lib∕2� Libration frequency 0.067–4 Hz

Δ� Angular displacement 0.05–1 rad

� Kinematic viscosity 10−6m2∕s

f Dimensionless libration frequency �lib∕Ω0 4, 2.4 and f ≤ 2

E� Shell Ekman number �
Ω0R

2(1−�)2
4 ⋅ 10−5 - 9 ⋅ 10−4

E Ekman number �
Ω0R

2 1.6 ⋅ 10−5 - 9 ⋅ 10−4

plane located at approximately 4.6 cm above the equatorial plane (0.51 c). PIV is performed by seeding the

water with 100 μm diameter OptimageTM particles. Movies are acquired with the GoPro camera attached to

the librating frame in a top viewor side viewposition as shownby Figures 2b and 2c, respectively. Note that as

for Kalliroscope visualizations, theGoPro camera focuses on agivenquadrant of both the vertical andhorizon-

tal planes. Frames are then extracted, converted to black and white images, and their contrast is adjusted for

an optimal treatment. Computation of the instantaneous velocity fields is performed using the open source

software DPIVSoft2010 [Meunier and Leweke, 2003]. The spatial resolution of the obtained velocity fields is

approximately 2.5 mm and 2 mm for the horizontal and vertical planes respectively. A comparison between

the results given by PIV and Kalliroscope visualizations is conducted in section 3.2.3.
3.2.2. Analysis Methods

To verify if the bulk turbulence appearing in our system is generated by the LDEI, we choose to perform a

Fourier analysis on the direct side view visualizations. The movie analysis is performed using GoPro movies

in the librating frame and MATLAB. First, a window of typically 300 × 300 pixels is chosen in the movie. This

wide window is then typically subdivided into 36 subwindows of 50 × 50 pixels for which the mean intensity

is calculated for each frame. This method partially removes the noise that is present when considering the

signal from a single pixel. A fast Fourier transform is then performed on these 36 signals, either over a sliding

average of typically 90 libration periods to see temporal changes or over larger parts of the signal to have

a better frequency resolution and conduct a global analysis. We use a Hanning window to avoid spectral

leakage. Finally, all these 36 spectra are stacked, once again to reduce the noise.

A similar approach is used to analyze and compare PIV with light intensity results. For each box of the PIV

located inside the same window as the one defined for the Kalliroscope movies, a fast Fourier transform is

performedonboth the horizontal and vertical components of the velocity. The spectra corresponding to each

box are then stacked.
3.2.3. Kalliroscope-PIV Comparison

One of the objectives of our study is to develop a method that allows for quick and easy identification of the

presence of the elliptical instability. Thus, the PIV method is used to verify the results of the light intensity

analysis. Figure B1 shows the results of the spectral analysis performed on both PIV and light measurements,

in both vertical and horizontal planes. A direct comparison between the predominant frequency peaks shows

that the analysis of the Kalliroscope visualizations can capture, qualitatively, the spectral content provided by

the PIV results. Therefore, this analysis is sufficient to characterize the frequency signature of the LDEI. In the

subsequent analysis, all temporal spectra are thus obtained using Kalliroscope visualizations.

3.3. Numerical Simulations

To complement experimental measurements, we also perform direct numerical simulations (DNSs) in the

librating frame, where both the spherical inner and ellipsoidal outer boundaries satisfy a no-slip velocity
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condition. We solve the equations of motion in (4) and (5) using the spectral element solver Nek5000 devel-

oped and supported by Paul Fischer and collaborators [Fischer et al., 2007, 2008]. This method has already

been used to study longitudinal libration and tides in ellipsoidal container [Favier et al., 2015; Barker, 2016;

Grannan et al., 2017]. Spectral element methods have excellent convergence properties, required to simulate

turbulent flows, while being able to consider complex geometries. The mesh geometry is an unstructured

array of hexahedral elements, with  the total number of elements. Inside each element, the spectral element

mesh is structured, with the variables expressed as sums of Nth-order Lagrange polynomials on tensor prod-

ucts of Gauss-Lobatto-Legendre quadrature points. In this paper, all the simulations are performed using a

third-order explicit extrapolation scheme for the nonlinear convective terms and the linear inertial forces and

a third-order implicit backward difference scheme for the linear diffusive term. Convergence was checked by

increasing the order of the polynomial decomposition within each element.

We first perform a simulation to qualitatively confirm and compare with the experimental results. The geom-

etry is identical to the experiment with � = 0.34. We focus on a case with � = 0.491, f = 4, and � = 0.35.

For this relatively weak librational forcing, we are able to reach the same Ekman number as in the experi-

ment, E� = 10−4 (or equivalently E = E� (1 − �)2 = 2.6 × 10−5). For this simulation, the mesh is composed of

 = 18432 hexahedral elements with a polynomial decomposition of order N = 10. For the spectral analy-

sis discussed in section 4.2.1, we store the velocity components at 200 random positions within the ellipsoid,

both inside and outside the tangent cylinder. The velocity is interpolated from the grid to the probe position

with spectral accuracy.

Additionally, we run several simulations to study the instability close to threshold. The objective is to con-

firm the experimental results discussed in section 4.3. To do so, we choose the following set of parameters,

� = 0.37 and f = 4, and we vary both the Ekman number and the libration amplitude � in order to determine

empirically the instability threshold. We start the simulations with a low-amplitude random initial condi-

tion, and we wait for the perturbations to vary exponentially with time. For these simulations, the mesh is

composed of  = 3840 elements with a polynomial decomposition of order N = 11.

4. Results
4.1. Basic Flow

The theoretical basic flow (8)–(9) is compared to the experimental basic flow measured using PIV analysis.

Figure 4a compares the amplitude of the theoretical basic flowwith the experimentally measured basic flow,

while the vector plots of the theoretical and experimental base flows are shown in Figure 4b. Note that in the

relative error panel, the large errors located at the right of the core are due to a reflection creating a large

bright patch which prevents the computation of the particle displacements. The general trend of the velocity

amplitude along s, indicatedby theblack arrow in Figure 4b, is found tobe ingoodagreement in Figure 4c.Dis-

crepancies occur at the viscous layers close to the inner and outer rigid boundaries, which are not accounted

for in the theoretical base flow. The experimental velocity amplitude is slightly lower than the theoretically

predicted one because of these viscous corrections, whichmay also drive weak zonal flows in the bulk [Busse,

2010; Calkins et al., 2010; Sauret, 2012; Favier et al., 2015].

4.2. Flow Visualizations and Fourier Analysis

4.2.1. Mode Coupling and Spatial Heterogeneity

For all the unstable cases, the flow visualizations show a strong similarity between the full ellipsoid case and

the shell case, as illustrated by the snapshots and the spectra in Figures 5 and 6. Note that snapshots for other

core sizes are provided in the appendix (Figure A1). Additionally, a video demonstration showing the early

stages of the instability with and without an inner core and the corresponding numerical simulation is given

in Lemasquerier et al. [2016].

We focus on the unstable cases with f = 4 shown in Figure 5. In Figure 5a, the growth of the instability is

shown in three snapshots over approximately 400 librational periods. The red and blue windows on the far

right image in Figure 5a demarcate the areas where the light intensity fluctuations are analyzed outside and

inside the tangent cylinder respectively and shown in Figure 5b. The resulting frequency spectrograms from

outside and inside the tangent cylinder are shown in Figure 5c. Advancing through time from left to right in

Figure 5, after the libration is activated, a tangent cylinder forms around the inner core and the light intensity

signal is dominated by oscillations at the forcing frequency f = 4 corresponding to the base flow. The tangent

cylinder is a particular shear layer corresponding to a frequency f = 0 for which the cone defined by thewave
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Figure 4. Comparison between the theoretical base flow in (8) and (9) and the PIV measurements. (a) Velocity
amplitude. (b) Velocity field. (c) Velocity amplitude as a function of the y position for x=0. The dashed orange line
represents the theoretical velocity amplitude, and the blue circles represent the experimentally measured velocity.

packet takes the form of a cylinder (� = �∕2) reminiscent of a Taylor column [Messio et al., 2008]. Then, we see

the development of the pancake-like shearing structures similar to those observed by Grannan et al. [2014]

and Favier et al. [2015]. Its similarity with the inertial modes found in the full ellipsoid case is confirmed by the

appearance of an � = 2 peak as seen in the frequency spectrograms in Figure 5c between ∼100–150 Tlib.

This frequency meets the first resonance condition |�1 − �2| = 4. Note that on the second spectrum of

Figure 5c, the � = 4 peak seems to appear after the � = 2 peak. This may be due to the lower sensibility

of the Kalliroscope particles to the basic flow, as discussed in Appendix B. Finally, when the instability satu-

rates, a wave-breaking event occurs: the resonant wave grows in amplitude until it can locally overturn or be

destabilized by secondary local shear instabilities. Following this event, three-dimensional motions develop.

After this breaking, the observed state of bulk turbulence is similar to the intermittent turbulence found by

Grannan et al. [2014] and Favier et al. [2015] with columnar structures that are sheared by the � = 2 modes

as seen on the last snapshot of Figure 5a. When the quasi steady state is reached, the � = 2 peak remains,

but additional frequencies ≤ 2 appear as seen in Figure 5c around 200Tlib. These secondary peaks, namely,

the couples [1,1], [0.5,1.5], and [0.25, 1.75] match a resonance condition we can write as |�1 − �2| = 2. They

could thus be the result of a secondary resonance with the primary inertial modes at� ∼ 2. Such a secondary

resonance has already been observed in full ellipsoids [Grannan et al., 2014; Favier et al., 2015].

This general behavior is common to every unstable case considered here. The more supercritical the instabil-

ity is, the less efficient the relaminarization. However, a spatial discrimination seems to appear and becomes

more obvious as the shell gets thinner. We observe that the � = 2 layered structures appear above and

under the inner core and extent horizontally until they reach the outer boundary. For large inner cores, the

wave-breaking event always occurs primarily at the poles inside the tangent cylinder resulting in strong tur-

bulence,whereas it doesnot occur as strongly in the equatorial regions outside the tangent cylinder. However,

the instability still seems to grow everywhere in the bulk as seen in the second panel of Figure 5a.

To confirm these flow differences, we performed a Fourier analysis on two different windows in the shell as

represented on the last snapshot of Figure 5a. Performing a spectral analysis during the turbulent phase at

these two different locations directly shows differences in terms of frequency content, as seen experimentally

andnumerically in Figure 6 for a shell of radius ratio� = 0.49. Themajor difference, visible in bothKalliroscope

or PIV results (Figures 6 and B1), relates to the frequencies previously identified as secondary inertial modes.

Spectra computed outside of the tangent cylinder show the two couples |�1,2| ≈ [0.25, 1.75] and [0.5, 1.5],

the first one being predominant. On the contrary, inside of the tangent cylinder, the couple ∼ [0.25, 1.75]

seems, if not absent, far dominatedby the couple [0.5, 1.5]. This difference is observed in all our unstable cases,

except for the smallest inner core (� = 0.24).

Let usmentionhere that despite the peaks thatwe attribute to LDEI, the spectra showsother important peaks.

Namely, the presence of a peak at � = 0.25 is almost systematically associated with peaks at � = 2 ± 0.25
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Figure 5. Light intensity analysis results for the case � = 0.37, E� = 6 × 10−5 , Δ� = 5∘, and f = 4 (� = 0.35). (a) Snapshots extracted at different times from the
movie recorded by the Canon camera. (b) Light intensity signal extracted from one of the submatrices of the wide windows drawn on the last snapshot.
(c) Successive power spectra performed over a sliding window of 90 Tlib to illustrate the temporal variations of the frequency content of the signal.

and 4 ± 0.25, and the same coupling is observed for the peak at � = 0.5. This may be due to nonlin-

ear interactions (nonresonant) between the secondary inertial modes and the base flow or the primary

inertial mode.

The same analysis is conducted in the appendix for f = 2.4 (spin-over mode; see Appendix C). It shows the

persistence of the LDEI at this particular forcing frequency.

We confirm these results with a DNS for the particular case � = 0.49, � = 0.35, and E� = 10−4. First, Figure 7

shows a qualitative comparison of the onset of LDEI visualized experimentally and numerically in ameridional

plane. Then, the results on inertialmodes couplings are confirmedby an analysis on the numerical simulation.

Velocity signals are extracted at 100 random locations during the saturated phase, both inside and outside

the tangent cylinder. Figure 6b shows the corresponding power spectra, averaged over all three velocity com-

ponents and over all probes, where the forcing frequency at � = 4 and primary resonating inertial modes
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Figure 6. Analysis of the case with E� = 10−4 , � = 0.49, Δ� = 5∘, and f = 4 (� = 0.35). (a) Laboratory: power spectra of the light intensity extracted from t = 200
to 1400 Tlib on a vertical plane, both inside and outside the tangent cylinder (TC). (b) Numerics: power spectra from numerical velocity signals both inside and
outside the tangent cylinder. The vertical dotted lines correspond to the frequencies of the main peaks. (c) Vertical component of the velocity during the
saturated phase shown on three slices across the ellipsoidal shell (see also Figure 7 for the early stages of the instability and a comparison with the experiment).
The vertical dashed lines correspond to the intersection between the tangent cylinder and the meridional plane.

at � = 2 are the dominant contributions in both regions. Outside the tangent cylinder, the two dominant

frequency couples are |�1,2| ≈[0.25,1.75] and |�1,2| ≈[0.5,1.5], as observed in the experimental Kalliroscope

data. Inside the tangent cylinder, however, the only resonant frequencies are |�1,2| ≈[0.5,1.5]. Note that the
kinetic energy is typically larger inside the tangent cylinder than outside, which is confirmed by the visualiza-

tion of the vertical velocity shown in Figure 6c. Intense overturning structures are observed above and below

the inner core, whereas a relatively smooth wavefield is observed outside the tangent cylinder. To conclude,

our results show that the presence of the inner core leads to significant spatial heterogeneities, in terms of

both resonant frequencies and fluid motion amplitudes.

4.2.2. Influence of the Radius Ratio of the Shell (� ) and of the Ekman Number (E
�
)

Figure 8 represents spectra realized over the turbulent phase of laboratory cases involving different inner core

radii. When there is no core inside the ellipsoidal cavity, the temporal spectra are less rich and only the forcing

Figure 7. Comparison of the onset of LDEI for laboratory experimental and numerical simulations through meridional side view visualizations at E� = 10−4 ,
f = 4, � = 0.35, and � = 0.49. (a) Experiments: Kalliroscope visualizations made in the rotating frame. (b) Numerical simulations: the vertical velocity is shown
through snapshots made in the librating frame.
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Figure 8. Power spectra of light intensity signals from outside the tangent cylinder. They are performed over the
turbulent phase of cases with different inner core radius: [� = 0, E� = 4 × 10−5 , � = 0.28], [� = 0.24, E� = 1 × 10−4 ,
� = 0.35], [� = 0.37, E� = 4 × 10−5 , � = 0.28], [� = 0.49, E� = 1 × 10−4 , � = 0.35], [� = 0.59, E� = 4 × 10−5 , � = 0.28],
and [� = 0.74, E� = 6 × 10−4 , � = 0.70]. The power spectra are arbitrarily shifted vertically for clarity.

frequency f = 4 and the primary inertial modes |�1,2| = 2 are clearly present. The spectra are richer when

a core is added, with typical frequencies around � ∼ 0.25, 0.5, 1.5, and 1.75 as previously discussed. More

interestingly, these� < 2peaksdonot correspond to theexact same frequencieswhen comparingdifferent�

values. For instance, the� ∼ 0.25 peak is broad, spanning from�1 = 0.16 to 0.3, together with its companion

of frequency �2 = 2 − �1. This is reminiscent of the behavior of forced inertial modes in the spherical shell

observed by Ogilvie [2009], where the dissipation at a given frequency strongly depends on the shell aspect

ratio. The question remains openwhether this change is due to variation in the inviscid eigenfrequency of the

resonant mode or due to changes in its viscous damping.

Figure 9 compares the frequency content of two cases for which the Ekman number is significantly different.

Visually, the two cases become turbulent, beginning at the poles. The |�| = 2 inertial modes always remain

even during the turbulent phase. The low-Ekman case, which is less viscously dominated, shows additional

peaks compared to the high-Ekman case. This observation is compatible with the results of Le Reun et al.

[2017], showing that an inertial wave turbulence regime—i.e., a turbulence made of the superimposition of

many low-amplitude inertial waves excited by successive triadic resonances—is expected in the limit of small

Ekman number.

4.3. Instability Threshold

Results of the libration amplitude threshold for each case are plotted in Figure 10a. Neglecting bulk dissipa-

tion, the threshold of instability is defined as the condition for which �inv > K
√
E� . Since f and � are constant,

formula (17) shows that in our case, the libration amplitude at the threshold Δ�thres is a function of E1∕2� only

(for a given � ). Figure 10a shows that for all our cores, and even in the case of a full ellipsoid (� = 0), this

scaling is not verified. The critical libration amplitude instead varies as ∼ [E0.63� − E0.72� ], with slight variations

depending on the core considered. The numerical results represented on the same figure confirm this for

the particular case � = 0.37. Note that the numerical simulations predict a slightly lower critical libration

amplitude compared to the experimental observations. This might be due to the presence of the shaft hold-

ing the inner sphere and interfering with large-scale inertial modes while also adding extra dissipation into

the system.

Assuming a mean scaling of E0.65� , we deduce the corresponding dissipating factor from formula (17)

�Ψ(�) =
16 + f 2

64
�thres�E

−0.65
� . (18)

The result is represented as a function of � in Figure 10b. The dependence with the radius ratio of the shell

seems to follow the slope �(1 − �) with �∼25. Nevertheless, we do not claim here that this new estimate
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Figure 9. Successive power spectra performed over a sliding window of 90 Tlib, both inside and outside the tangent cylinder (TC). The two cases correspond to
the same shell and forcing parameters but at two different Ekman numbers: (right column) Ω0 = 37.6 rpm and (left column) 7.5 rpm.

Figure 10. (a) Libration amplitudes at the threshold determined experimentally (full lines) and numerically (dashed
green line). (b) Dissipation factors K determined using the Δ�thres values from Figures 10a and 18. The black line shows
the main dependence with the radius ratio.
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for the threshold is universally valid: we rather think that it is valid only for the range of Ekman number

explored in this study, corresponding to a transition between the regime at large Ekman number dominated

by bulk dissipation (threshold scaling as E−1� ) and the regime at low Ekman number dominated by boundary

dissipation (threshold scaling as E−1∕2� ). This will be further discussed below in section 5.2.

5. Discussion and Perspectives

In this study, we first qualitatively show that longitudinal libration can directly excite inertial waves in an ellip-

soidally deformed shell. Then, we used direct Kalliroscope visualizations of the flow as well as PIV to confirm

the existence of the libration-driven elliptical instability (LDEI) and the related turbulent regime in a deformed

shell geometrywhen the libration frequency is 4 and 2.4 times the rotation rate. The presence of an inner core

does not strongly modify the structure of the unstable mode compared to the full ellipsoid case, at least for

those two forcing frequencies.We recover the participation of inertialmodes at frequencies±f∕2, and Fourier

analysis suggests that we might also be able to see secondary inertial modes excited by the primary inertial

modes, whose frequencies only slightly depend on the radius ratio of the shell.

However, in all our cases, the turbulence that develops in the bulk is never homogeneously distributed. Out-

side the tangent cylinder, a quick relaminarization occurs after the growth of the instability, but no LDEI cycle

is clearly visible. Instead, the flow is dominated by geostrophic shear layers on which the inertial modes are

superimposed. Besides, we notice that the growth of the instability always occurs first at the poles. These spa-

tial heterogeneitiesmay be due to the fact that the geometry is locally very variable in our setup. For instance,

at the poles, the inner and outer boundaries are the closest, a configurationwhichmay influence the develop-

ment and resonance of inertial modes. Another interpretation is related to the heterogeneity in the effective

ellipticity of the streamlines. Above and below the inner core (i.e., for |z|>� ), the base flow is only weakly

affected by the presence of the inner core so that the ellipticity is approximately uniform and equal to � . When

|z| ≤ � , however, the ellipticity of the streamlines is decreasing as they get closer to the inner core (see the

base flow properties in section 2.2), leading to smaller growth rates (see (16) and presumably less intense

flows at saturation.

The fact that the spectral content is different from the rest of the bulk suggests that the resonating inertial

modes do not extend uniformly in the whole shell andmay be locally stronger in the polar regions. The ellip-

tical instability may thus induce significant spatial differences of the flow in the bulk interior, especially for a

large inner core (see Figure A1).

5.1. Inertial Modes of a Shell

The theoretical results concerning inertial modes in a spherical shell derived by Rieutord et al. [2001] and

Rieutord and Valdettaro [2010] are obtained under the assumption of a very weak forcing (� ≪ 1), whereas it

is not the case in our experiments (� ∈ [0.1, 2]). While we do observe localized shear layers generated at the

inner boundary (see Figure 1), the instability discussed in this paper shares many similarities with the case of

a full ellispoidal container, where resonances between regular global inertial modes are responsible for the

instability [Favier et al., 2015]. In addition, the experiments and numerical simulations are currently limited to

much higher values of the Ekman number than those used in theoretical studies. Thus, the relative impor-

tance between localized shear layers and global inertial modes remains to be clarified, especially when both

the forcing and the Ekman number are decreased. The fact that only localized polar areas seem to resonate

(see the heterogeneous nature of the resulting turbulent flow in Figure 6c, for example) may suggest that

regular inertial modes can exist locally and that the elliptical instability can locally develop independently of

the global geometry. This is reminiscent of high frequencies equatorially trapped inertial waves [Zhang, 1993]

which are not affected by the presence of an inner core, although the possible link between these two prob-

lems remains to be explored. Further studies are therefore needed to assess the relevance of extending the

present results to planetary conditions where the Ekman number is vanishing and the forcing is very small.

5.2. Apparent Discrepancy Between Observed Viscous Damping and Theory

In our experimental and numerical results shown in Figure 10a we do not recover the expected scaling law in

E1∕2 for the Ekman numbers we consider in this study (E� = 10−5 − 10−3). Instead, we predict for a libration

frequency f = 4 that the linear viscous growth rate is

� ≈
16 + f 2

64
�� − �(1 − �)E0.65� , (19)
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with� ∼ 25. Theoriginof this scaling in E0.65 needs tobeaddressed. Since it is alsoobserved in the full ellipsoid

(� = 0), the underlyingmechanism is not specific to the shell geometry. Thus, it cannot bedueprimarily to the

shear layers located at the tangent cylinder, the so-called Stewartson layers [e.g., Proudman, 1956; Stewartson,

1957, 1966;HideandTitman, 1967; Kunnen et al., 2013]. Moreover, it is in apparent disagreementwith previous

studies of the viscous damping of the spin-overmode in full ellipsoids [Lacaze et al., 2004; Cébronet al., 2010a].

Focusing on the full ellipsoid case below (where the inertial modes problem is well posed), we provide a

theoretical argument that the scaling in E0.65 is possible but only for large Ekman numbers.

Since the inertialmodes forma complete basis in full ellipsoids [BackusandRieutord, 2016], we can expand the

velocity perturbation u(r, t) solution of the momentum equation (4) onto inertial modes. Using the bound-

ary layer theory, we can determine the leading order viscous effect on each inertial mode from the inviscid

solutions. Following Greenspan [1968], we expand the perturbation solution of the initial value problem as

u(r, t) =
∑

i

�i(t)Qi(r) exp([i�i + �i]t), (20)

where (Qi(r), �i) are eigenvector-eigenfrequency solutions of the inertial mode problem (10)–(11), �i(t) the

modal coefficients, and �i the viscous corrections of the inviscid eigenfrequencies�i. Greenspan [1968] intro-

duces the theory up to order E1∕2, considering only dissipation in the Ekman boundary layer and neglecting

bulk dissipation which appears at the next order E. One can support this truncation with the fact that inviscid

inertial modes satisfy the intriguing property [Zhang et al., 2004; Vantieghem, 2014]

E ∫
Q∗

i
⋅ ∇2Qi d = 0, (21)

with ∗ indicating the complex conjugate. This volume integral is often associated with the viscous dissipation

of inertial modes. However, as explained by Liao and Zhang [2008], property (21) is not physically realistic

and is due to the unrealistic inviscid boundary conditions. Thus, we take into account viscous dissipation up

to order E to be accurate in the asymptotic expansion, extending the theory of Liao and Zhang [2008] from

spheres to triaxial ellipsoids. We expand the viscous correction �i as

�i = E1∕2si + E�i, (22)

where si is the viscous correction due to the surface Ekman layer, introducedby equation (2.9.12) ofGreenspan

[1968], and �i < 0 is the leading order volume viscous damping. The former is a complex number whose real

part ℜe(si) < 0 is the viscous decay rate of the mode and the imaginary part ℑm(si) is the viscous shift in

frequencyof themode. Finally, thevolumedamping�i < 0 is proportional to thevorticity of the inviscidmode.

We have computed the first 1480 inviscid inertial modes of our ellipsoidal configuration as described by Vidal

et al. [2016, 2017]. Then, in Figure 11, we show the absolute value of the viscous damping as a function of the

Ekman number. Only the spin-over mode (dashed back line) and modes of absolutes frequencies |�i|> 1.8

(blue shading) are represented, the latter being themost excitedmodes for the libration frequency f = 4. For

all themodes, two limiting cases are observed: a viscous damping scaling as E for large Ekman number and as

E1∕2 for low Ekmannumbers. Between these two limits there is a transition zonewhere surface dissipation and

bulk dissipation areof the sameorder ofmagnitude. For agiven inertialmode, the Ekmannumber of transition

depends on the spatial complexity of the flow. Results for the spin-overmode shows that the damping in E1∕2

overcomes the damping in E when E ≤ 3.10−2 (vertical dashed line). It is in agreement with previous studies

[Lacaze et al., 2004; Cébron et al., 2010a], which considered the spin-over mode at Ekman numbers E ≤ 10−3.

However, the scaling observed in the present study (E0.65, red solid line) lies in the transition zone where the

two dampings play a role (depending on the excitedmode). The E0.65 scaling is due to a competition between

surface dissipation and bulk dissipation. Finally, we observe in practice that the lowest Ekman number of

transition depends on the number of considered modes. However, from Figure 11 we expect that the E1∕2

scaling may be observable for Ekman numbers E ≪ 10−7.

5.3. Extrapolation to Planetary Interiors Conditions

5.3.1. Libration of Planetary Bodies

When thinking of planetary applications, the first question to arise is the validity of our experimental setup

to model the libration forcing of different bodies. Namely, the shape and the movement of the inner core

have to be discussed. For a given body, if both the outer and the inner boundaries are ellipsoidal (e.g., the

mantle and the solid inner core of Mercury), they should both undergo the same libration forcing. Apart from

LEMASQUERIER ET AL. LDEI IN ELLIPSOIDAL SHELLS 1941



Journal of Geophysical Research: Planets 10.1002/2017JE005340

Figure 11. Viscous damping of inertial modes as a function of the Ekman number E for the first 1480 inertial modes of
our full ellipsoid. The viscous damping is a combination of the surface Ekman layer damping ℜe(s)E

1∕2 and the bulk
viscous damping �E. We only show the spin-over mode (dashed back thick line) and the first 140 modes of frequencies
|�i|> 1.8 (blue shading), which are the most excited modes for f = 4. The vertical dashed line shows the Ekman number
for which volume and surface dampings of the spin-over mode are equal. Slopes of asymptotic behaviors associated
with surface and volume dampings are also shown. The surface damping only dominates when E ≪ 10−7 .

the forcing, the movement of these two boundaries is also constrained by their coupling, which might be of

a viscous, electromagnetic, or gravitational nature [e.g., Yseboodt et al., 2013]. However, both the amplitude

of the inner boundary deformation and the amplitude of a supposed coupling are unknown. Due to these

uncertainties, we chose the simplest possible experimental setup: a spherical inner core that librates with the

same amplitude and frequency as the outer boundary. Technically, fixing the rod that suspends the core to

the librating container is indeed easier. Besides, in our setup, the core is spherical; thus, the coupling between

the inner core and the fluid is purely viscous. The difference between a librating and a static spherical inner

core or a spherical inner core librating at a different rate should thus be negligible in the limit of low planetary

Ekman numbers (see, e.g., Calkins et al. [2010] for a study with spherical boundaries). Choosing an ellipsoidal

inner core may modify the inhomogeneities described in section 4.2.1 and may also drive supplementary

instabilities. Thus, the system could have even richer dynamics. In that sense, our choice of a spherical inner

core suggests that our present study provides a simplified lower bound for elliptical instabilities that can arise

in a librating planetary fluid shell.

5.3.2. Stability Analysis

Apart from the question of the existence and the form of inertial modes in a given geometry, local stability

analysis can be used to evaluate the presence of the elliptical instability in terrestrial bodies. In terms of sta-

bility analysis, in the regimes experimentally and numerically explored in this study the usual scaling
√
E is

not verified because of bulk dissipation. However, it holds when extrapolating to planetary conditions. Thus,

for f = 4, and in the range of parameters of this study, the growth rate � is

� ≈
16 + f 2

64
�� − �(1 − �)E0.65� (23)

with � ∼ 25, whereas for E ≪ 10−7,

� ≈
16 + f 2

64
�� − �

√
E. (24)

Extrapolating from the experimentally determined E0.65 slope, we choose � ∼ 3 for planetary applications,

i.e., for E ≪ 10−7 (see Figure 12). The criterion of instability � > 0 is plotted as a function of E in Figure 12.

Knowing the parameters involved in these equations for a given interior layer of a body thus allows the

estimation of whether it is theoretically unstable or not (criterion � > 0). We apply this criterion to the four

Galilean moons (Io, Europa, Ganymede, and Callisto), two moons of Saturn (Titan and Enceladus), and three

Super-Earths expected to be telluric (55 CnC e, CoRoT-7b, and GJ 1214b). All the bodies considered here
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Figure 12. LDEI stability diagram. For each body, the vertical line represents the range from a libration amplitude equals
to the physical libration up to the optimal libration amplitude 2e. The bodies for which LDEI is likely absent are plotted
in light gray. The oblique lines represent the criterion � > 0, using equation (23) for E ≫ 10−7 and equation (24) for
E ≪ 10−7 . The E0.5 scaling is justified by the hypothesis that the dissipation occurs mainly in the Ekman boundary layer.
In our experimental survey (upright corner), the E0.65 scaling is due to a transition toward a regime for which bulk
dissipation becomes more important. Note that for the regimes explored experimentally, the value of �� at the
threshold depends on � (see equation (23). That is why it is only represented for � = 0.37. The dashed lines represent
two extreme values for �� at the threshold, using � = [1, 10]. The gray space is the unstable region.

are in synchronous rotation, their mean rotation period being equal to their orbital period (librations of

dimensionless frequency f = 1).

The maximum amplitude of libration is theoretically equal to the amplitude of the variations of the orbital

velocity, i.e., 2e, where e is the orbital eccentricity. However, this is an optimal case which implies that the spin

rate of the body is so slow or the body is so elastic that it has the time to completely adapt to the gravitational

constraints. This maximal libration is called the optical libration. However, because of the rigidity of the outer

boundary of the shell and of the spin rate, the amplitude of the differential rotation � between the fluid and

the librating static bulge is smaller than 2e.

Finally, because the equatorial ellipticity � of the considered fluid layer is generally unknown, Cébron et al.

[2012b] estimate it by assuming a hydrostatic equilibrium shape, which gives

� =
3
2

(
1 + k2

) M
m

R3

D3
(25)

where m and R are respectively the mass and the mean radius of the considered body with a potential

Love number k2 and D the distance between the body and its attractor of mass M. This method is used for

every planetary body considered in this study, except Enceladus. Table D1 gives the values used to calculate

�� for each body. Figure 12 represents the position of these bodies compared to the theoretical threshold

extrapolated from our results when assuming an E0.5 scaling for E ≪ 10−7.

This scaling shows that Enceladus’ ocean is expected to be unstable with a good level of confidence, even

when considering the uncertainty about its equatorial ellipticity (see Table D1). Besides, since � = 0.84

(calculated from Beuthe et al. [2016]), we expect strong spatial heterogeneities for the LDEI between the

poles and the equator, as seen when varying the size of the inner cores used in our experiments. Such lat-

itudinal variations in turbulent mixing may prove to be relevant to transport phenomena on such bodies.

For Enceladus’ ocean, the ocean dynamicsmay influence the ice-ocean interface dynamics, namely, by gener-

ating nonhomogeneous heat fluxes in the fluid layer [see, e.g., Aurnou et al., 2008]. This might help to explain
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the variations of Enceladus’ ice shell thickness, which is modeled by Beuthe et al. [2016] to be 23 ± 4 km thick

in average, but reduced at the poles (up to 7±4 km at the South Pole). However, further quantification of spa-

tial heterogeneity of librationally driven turbulence in relatively thin ellipsoidal shells is still needed in order

to make detailed planetary predictions.

Then, an elliptical instability is possible but uncertain for other fluid layers like Io’s core and Europa’s ocean

since they are near the threshold when considering their physical libration amplitude. However, the libra-

tion amplitude of the icy shell of Europa is taken from Van Hoolst et al. [2008] but has not been measured yet

with accuracy. That is why for Europa’s ocean, the whole range of values has to be considered, and it has a

nonnegligible chance to be unstable. It is improbable that the core of Ganymede and the subsurface oceans

of Callisto and Ganymede are unstable, considering their proximity with the threshold. The same uncer-

tainty is observed for the subsurface ocean of Titan, which is nevertheless more likely unstable. Finally, the

(supposed) liquid cores of the three exoplanets considered are likely unstable because of their close orbit

around their stars. The physical libration amplitude is here arbitrary taken as 3 orders ofmagnitude lower than

the optical libration.

5.4. Perspectives and Open Questions

Our study focuses on the particular case for which the librating forcing (f = 4) indirectly excites inertial waves

propagating quasi-horizontally. However, a look at 12 different forcing frequencies shows that this also excites

f ≤ 2 inertial waves, observed via the formation of oblique shear layers in the flow (Figure 1). Besides, we

observe that an instability develops at the poles where the characteristics converge and that differential rota-

tions are generated in the bulk (geostrophic shear layers). It may thus be of interest to conduct quantitative

studies in this regime to estimate, for instance, dissipation rate, to verify the width of the shear layers and its

scaling with Ekman, tomeasure the amplitude of the flow and to qualify the associated nonlinearities such as

the generation of zonal flows [Favier et al., 2014].

It is now of primary importance to determine whether the elliptical instability persists for other forcing fre-

quencies. Theoretically, all forcing frequencies between 0 and 4 should give rise to LDEI, in the limit of small

Ekman. For now, we have simply verified that it was the case for f = 4 and f = 2.4 (Figures 5 and C1), and our

analysis suggests the same conclusion for f = 1.6 for which we identify at least a coupling between inertial

modes of frequencies �1,2 = [0.35, 1.25] (not shown). Quantitative studies are also needed for a fine charac-

terization of the nonlinear turbulence following the growth of the instability and to verify and interpret the

flow spatial differences observed in the bulk [e.g., Le Reun et al., 2017].

Finally, we show that the elliptical instability occurs in ellipsoidal shells. The associated instability criterion

has been described in this study in the case of longitudinal libration. Further studies are needed to define the

instability criteria of latitudinal libration (e.g., Vantieghem et al. [2015] in the case of a full ellipsoid) and tidally

driven elliptical instability in ellipsoidal shells [Lacaze et al., 2005; Grannan et al., 2017], which may be less

restrictive. Moreover, it has been recently observed that the orbital eccentricity favors elliptical instabilities

[Vidal et al., 2017].

More generally, if they exist, the importance of these mechanically driven turbulent motions needs to be

addressed. They may be of geophysical relevance for the following:

1. Energy dissipation: The dissipation induced by direct and indirect tidal or librational resonances of fluid

layers may play a role in the rotational or orbital dynamics of the considered planetary system [Le Bars

et al., 2015]. The relative importance of direct forcing compared to the elliptical instability also needs to be

investigated.

2. Ocean stratification: Turbulent mixing may indeed lead us to question the stratification of subsurface

oceans and the possibility for hosting life there.

3. Core stratification: It has been proposed that the supposed stratified layer at the top of Earth’s core is the

result of the Moon-forming impact [Landeau et al., 2016]. However, after impacts, the strong perturbations

of rotation may be able to mechanically mix out chemical stratifications. The relative importance of such a

mechanicalmixing compared to apossible convectivemixing [see, e.g., LevyandFernando, 2002] also needs

to be determined.

4. Dynamo action: This type of instability may provide an important piece that explains how dynamos are

sustained when the thermosolutal convection models are insufficient. See, for instance, Wu and Roberts

[2013] for dynamo driven by longitudinal libration, Le Bars et al. [2011] and Dwyer et al. [2011] for the past

dynamo of the Moon, and Arkani-Hamed et al. [2008] for Mars.
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Figure A1. Typical flows observed in unstable cases. For each � , the three snapshots are in the chronological order.
The first snapshot shows the development of the f1,2 = 2 inertial modes. The second snapshot shows moments
where strong turbulence is observed. This state can be very short since the relaminarization occurs quickly, that is why
the turbulence is shown at moments when it is not yet uniform in the whole shell. The last snapshot illustrates the
saturation state, with dominant columnar sheared flow outside the tangent cylinder and turbulence inside. These
frames are extracted from the Canon EOS 7D movies. (a) E� = 6 × 10−5,Δ� = 10∘ ; (b) E� = 6 × 10−5,Δ� = 5∘;
(c) E� = 6 × 10−5,Δ� = 5∘ ; (d) E� = 1 × 10−4,Δ� = 7.5∘ ; (e) E� = 3 × 10−4,Δ� = 12.5∘ ; and (f ) E� = 9 × 10−4,Δ� = 10∘ .
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Appendix A: Additional Side View Visualizations for f = 4

In FigureA1, snapshots for six different experimental cases are provided. Each line corresponds to a casewith a

different inner core size, beginningwithno inner core. This figure illustrates visually the spatial heterogeneities

of the flow generated by the presence of an inner core and its reinforcement as the inner core gets larger.

A video demonstration showing the early stages of the instability with and without an inner core is given in

Lemasquerier et al. [2016].

Appendix B: Validation of Kalliroscope Results by PIV Analysis

PIVmethod is used here to verify the information content of light intensity analysis. Figure B1 shows the result

of the spectral analysis performed on PIV and light measurements, both in vertical and horizontal planes. The

fast Fourier transformwas applied on the signal from themomentwhen the flowbecomes turbulent until the

end of the acquisition. The interpretation of the observed peaks is conducted in section 4.2.1.

The main difference concerns the relative peak sizes, the PIV data being far dominated by the base flow,

whereas it is not the case for the light intensity signal. This is not surprising since the base flow is a coher-

ent flow which does not generate any strong velocity gradient nor shearing zone. Thus, it does not create

important light contrast in a flow seeded by Kalliroscope particles. Also, the base flow is at rather high fre-

quency and is intrinsically less obvious from Kalliroscope particles that need time to align with a given shear.

The only source of this signal is thus due to the periodic reorientation of the Kalliroscope particles which gen-

erates slight light intensity variations. On the contrary, in terms of velocity amplitude, the base flow is very

strong and predominates the velocity signal, particularly on a horizontal plane. We conclude from this that

one has to be very careful on the relative peak intensity seen in spectra extracted from a light intensity anal-

ysis because it depends on the geometry of the flow considered. The Kalliroscope data also show a strong

component at zero frequency, due to the ambient light intensity even in the absence of motion (see, e.g.,

Figure 5). That being said, Figure B1 shows that the relative amplitudes of the peaks are qualitatively similar for

both methods.

The lastmain difference is that light intensity signals show an artifactual� = 1 frequency (and its harmonic at

� = 3), which corresponds to the rotation rateΩ0. This is probably the consequence of light variations due to

Figure B1. Power spectra of the light intensity and velocity signals from t = 200 to 1400 Tlib , both inside and outside the tangent cylinder (TC). The case
parameters are E� = 1 × 10−4 , � = 0.49, Δ� = 5∘ , and f = 4 (� = 0.35). (top row) Light intensity results and (bottom row) PIV results.
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the nonuniformity of the environment surrounding the experimental setup or to an external source of light

in the experimental room.

Appendix C: Excitation of the Spin-Over Mode (f = 2.4)

No survey has been realized for a libration forcing f = 2.4. However, we show here the persistence of the LDEI

at this forcing frequency. Figure C1 shows the light intensity analysis results for a typical unstable case. When

the periodic forcing is activated, the tangent cylinder appears as well as inertial shear layer, as can be seen

on the first snapshot of Figure C1a. Figure C1c shows that in terms of frequency, inertial modes of frequency

�∕2 = ±1.2 are indirectly excited. Such a frequency would give shear layers emitted from a critical latitude

�c ≈ 37∘ with an angle �H ≈ 53∘ from the horizontal, which is in good agreement with the geometry of the

observed shear layers.

Visually, the first instability develops at the two poles. This instability spreads slowly, and the sides also

becomes unstable (second snapshot of Figure C1a) before the classical “S” shape of the spin-over mode

Figure C1. Light intensity analysis results for the cases � = 0.37, E� = 1 × 10−4 , Δ� = 15∘ , and f = 2.4 (� = 0.63). (a) Snapshots extracted at different times from
the movie recorded by the Canon camera. (b) Light intensity signal extracted from one of the submatrices. (c) Successive power spectra performed over a sliding
window of 90 Tlib to illustrate the temporal variations of the frequency content of the signal.
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Table D1. Physical Characteristics Used for the Stability Analysisa

Iob Europab Ganymedeb Callistob Titanb Enceladus CoRoT-7bb GJ b 55 CnC eb

Torb (d) 1.77 3.55 7.16 16.69 15.95 1.37c 0.854 1.58 0.7365

2e (103) 8.2 18.8 2.6 14.8 57.6 9.4d 2 2 114

� (104) 1.3b 2b 0.056 0.042 1.3 21d 0.02 0.02 1.14

R (km) 1,822 1,561 2,631 2,410 2,576 252.1d 10,703 17,062 10,385

core core (possible) core (possible) core (possible) core

Rout∕R 0.52 0.27 1/3 1/3 1/3

� (104) 60 3.7 70 60 50

� 0 0 0 0 0

E (1014) 2.7 20 0.094 0.068 0.086

ocean ocean ocean ocean ocean

Rout∕R 0.99 0.96 0.94 0.97 0.91e

� (104) 9.7 3.7 0.72 1.2 50f

� 0.94 0.94 0.93 0.92 0.84d,e

E (1014) 2 1.5 4.5 3.5 36d,e,g

aExcept for Enceladus, all these values are taken from Cébron et al. [2012b, and references therein]. The physical libration amplitude of the Super-Earths is
assumed to be 10−3 times the optical libration amplitude 2e.

bCébron et al. [2012b, and references therein].
cMcKinnon [2015].
dThomas et al. [2016].
eCalculated from Beuthe et al. [2016].
fProvidedbyM. Beuthe, A. Rivoldini, andA. Trinh (personal communication, 2017). The valueprovidedwasobtainedby aBayesian inversionof Enceladus’ gravity

and shape data as detailed in Beuthe et al. [2016]. Note that contrary to the other bodies of this table, this method accounts for the nonhydrostatic deformation
of the ice-ocean interface. The results of the inversion show that |�| can span from 0 to 300 × 10−4 , with a maximum of the distribution curve at 50 × 10−4 . For
80% of the models, |�|> 32 × 10−4 (M. Beuthe, A. Rivoldini, and A. Trinh, personal communication, 2017), and Enceladus’ ocean is above the instability threshold
determined experimentally (see Figure 12).

gKinematic viscosity � taken as ∼10−6 m2/s.

becomes clearly recognizable (third snapshot) and the whole fluid becomes unstable. As observed in the

full ellipsoid case by Grannan et al. [2014], the triadic resonance at f = 2.4 involves a coupling of spin-over

modes, which are characterized by a solid-body rotation around an axis perpendicular to the rotation axis

[Lacaze et al., 2005]. The frequency content is surprisingly clear in this case, and we identify with good confi-

dence the excitation of (probable) modes of frequencies � = f∕2 = 1.2, followed by the secondary couples

of peaks |�|=[0.3, 0.9], |�|= [0.33, 0.87], and |�|= [0.58, 0.62]. Figure C1c shows that the spatial difference

is nowmore subtle. The same peaks are present in both spectra, but on the side of the core, the two couples

|�| = [0.33, 0.87] and |�| = [0.58, 0.62] are attenuated in comparison to the others.

Another case at f = 2.4 has been realized, with a larger core (� = 0.49) and farther from the threshold of the

instability. The same succession of phases is observed, but the flowbecomesmore turbulent compared to the

previous case. The associated spectra are then less clean, still dominated by the � = 1.2 frequency, but with

less evident secondary resonances, the only one identified with certainty being the couple � = [0.42, 0.78],

which was not present in the first case described. This result supports the previously mentioned idea that the

excited modes change according to the radius ratio of the shell.

Appendix D: Physical Characteristics Used for the Stability Analysis

Table D1 gives physical parameters of different fluid layers present in some planetary bodies. These param-

eters are used to calculate all relevant dimensionless numbers for each fluid layer, which are then used

in Figure 12 for a comparison with the instability threshold determined experimentally.
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