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Survival extrapolation in cancer immunotherapy: a validation-based case study 

Bullement A, Latimer NR, Bell Gorrod H. 

Abstract 

243/250 words 

Objectives: Immune-checkpoint inhibitors may provide long-term survival benefits via a 

cured proportion, yet data are usually insufficient to prove this upon submission to health 

technology assessment bodies. We revisit the National Institute for Health and Care 

Excellence assessment of ipilimumab in melanoma (TA319). We use updated data from the 

pivotal trial to assess the accuracy of the extrapolation methods used and compare these to 

previously-unused techniques to establish whether an alternative extrapolation may have 

provided more accurate survival projections.  

Methods: We compare projections from the piecewise survival model used in TA319 and 

those produced by alternative models (fit to trial data with minimum follow-up of 3 years), to 

a longer-term data-cut (5-year follow-up). We also compare projections to external data to 

help assess validity. Alternative approaches considered were parametric, spline-based, 

mixture, and mixture-cure-models.  

Results: Only the survival model used in TA319 and a mixture-cure model provided 5-year 

survival predictions close to those observed in the 5-year follow-up dataset. Standard 

parametric, spline, and non-curative-mixture models substantially under-estimated 5-year 

survival. Survival estimates from the TA319 model and the mixture-cure model diverge 

considerably after 5 years and remain unvalidated.   
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Conclusions: In our case study, only models that incorporated an element of external 

information (through a cure fraction combined with background mortality rates or using 

registry data) provided accurate estimates of 5-year survival. Flexible models that were able 

to capture the complex hazard functions observed during the trial, but which did not 

incorporate external information, extrapolated poorly.  

Highlights 

 Extrapolations of survival for cancer immunotherapies are associated with substantial 

uncertainty, and often emerge as a key concern when cancer immunotherapies are 

appraised by the National Institute for Health and Care Excellence (NICE).  

 No previous study has attempted to validate extrapolations from early data-cuts of 

cancer immunotherapy trials via comparison to later data-cuts.  

 Through comparing projections from an early data-cut to actual survival from a later 

data-cut, we show that in this case study seemingly optimistic extrapolations may in 

fact be credible. Assessing extrapolation fit to new data is useful for providing 

evidence on the performance of extrapolation methods.   

Main body 

3,984/4,000 words 

Introduction 

Immunotherapy is an area of ever-evolving research in the treatment of cancer, most recently 

with the development of immune-checkpoint inhibitors (ICIs) – a type of monoclonal 

antibody which aims to enhance the immune system to destroy cancer cells. (1-3) ICIs may 

result in a proportion of patients achieving long-term survival outcomes, sometimes referred 

to as a “statistically-cured” fraction. (4-11) However, ICI registrations are characterised by 
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clinical trials with limited follow-up, and hence there is a great deal of uncertainty as to 

whether there truly is a “statistically-cured” fraction yet to be observed. Decision-makers are 

consequently placed in a difficult position, given that the estimation of survival (and whether 

or not this includes a “statistically-cured” fraction) plays a huge role in determining an 

intervention’s clinical and cost effectiveness. 

The National Institute for Health and Care Excellence (NICE) published guidance on the first 

licensed ICI ipilimumab for patients with treatment-naïve advanced melanoma in July 2014 

(TA319). (12-14) As part of TA319, the manufacturer submitted a cost-effectiveness analysis 

(CEA) based on data from the pivotal CA184-024 trial with a minimum follow-up period of 

37 months (henceforth referred to as 3 years). (15) The survival extrapolation used in TA319 

combined registry data for patients not treated with ipilimumab with CA184-024 data in a 

piecewise approach. Following publication of TA319, further follow-up data (5-year 

minimum follow up) have been published from CA184-024. (16, 17) 

The NICE Decision Support Unit (DSU) first published guidance regarding survival analysis 

and extrapolation using patient-level data (PLD) in June 2011 in the form of Technical 

Support Document (TSD) 14. (18) TSD-14 focuses mainly on six “standard” parametric 

distributions (exponential, Weibull, Gompertz, log-normal, log-logistic and generalized 

gamma). Other methods are also discussed in TSD-14 (e.g. piecewise and flexible parametric 

models) though only in brief. More recently, mixture- and spline-based models have been 

presented on several occasions in the literature. (19-21) These newer methods were not well 

known in the world of health technology assessment (HTA) around the time of TA319. 

The aim of this study is to assess the survival predictions obtained from the piecewise model 

used in TA319 compared to those from a range of alternative models. Models are fit to the 3-

year data-cut (available at the time of TA319), and predicted survival is compared to 
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observed survival in the 5-year data-cut. This allows an assessment of how well each model 

estimates 5-year survival. Projections are also compared to long-term survival trends in 

melanoma exhibited in registry data to provide information on their credibility beyond 5 

years. 

Methods 

The dataset 

The CA184-024 trial compared ipilimumab + dacarbazine (IPI+DTIC) to placebo + 

dacarbazine (PBO+DTIC) in treatment-naïve advanced melanoma. (15) CA184-024 was a 

multi-centre, randomised, double-blind, Phase III study of 502 adult stage III/IV melanoma 

patients. (15) PLD for overall survival were recreated from published 3-year and 5-year 

Kaplan-Meier (KM) curves using an algorithm by Guyot et al. (22) The recreated PLD were 

required in order to fit and subsequently compare alternative survival extrapolations, as the 

“true” PLD are not publicly available. In the 3-year data-cut 47 patients treated with 

IPI+DTIC and 28 patients treated with PBO+DTIC remained at risk at 3 years. In the 5-year 

data-cut 40 patients treated with IPI+DTIC and 18 patients treated with PBO+DTIC were at 

risk at 5 years.  

Candidate models 

The model used in TA319 incorporated three piecewise components: (1) the KM curve from 

CA184-024 to inform survival until 2 years; (2) a log-normal curve fitted to patients alive in 

CA184-024 beyond 2 years to inform survival from 2 until 5 years; and (3) a Weibull curve 

fitted to long-term registry data from the American Joint Committee on Cancer (AJCC) to 

inform survival beyond 5 years. (12) The same approach was adopted for both treatment 

arms, such that the hazard of death for all patients was equal after 5 years. 
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In addition to the TA319 piecewise model, we considered “standard” parametric survival 

models, Royston and Parmar spline-based models, and mixture models. Standard parametric 

survival and piecewise models are well documented in published literature, and therefore are 

not discussed in detail here. (18, 23-26) However, the other candidate models are less well 

known, and therefore brief overviews of the models are provided: 

Spline-based models consider extensions of the Weibull, log-normal and log-logistic 

distributions where natural cubic splines (piecewise polynomials) are used to smooth between 

piecewise sections of the model. (27) Gibson et al. (20) have previously considered these 

models in the context of ICIs – fitting standard parametric and spline-based models to 

progression-free survival data from the CheckMate-067 trial of nivolumab and ipilimumab in 

advanced melanoma and concluding that the spline-based models were able to characterise a 

flattening of the survival curve (a “plateau”) observed within the data.  

Mixture models have been considered within the literature to reflect the apparent 

heterogeneity evident in populations of patients, whereby separate groups have different 

underlying survival distributions. Chen (28) and Othus et al. (21) present parametric mixture-

cure models (MCMs) as a method to quantify the expectation that a group of ICI patients may 

achieve long-term survival. The parametric MCMs consider two separate survival 

trajectories, estimating a “statistically-cured” proportion of patients (determined via logistic 

regression). That is, a proportion of patients die from their disease, and a proportion of 

patients will follow the survival trajectory that would be expected for the age-adjusted 

general population and do not die of their disease. We considered log-normal and Weibull 

MCM’s, and incorporated background mortality from United Kingdom (UK) age- and sex-

matched life tables from the Office for National Statistics (ONS), assuming baseline mean 

patient characteristics from CA184-024. (29) 
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Another example of a mixture model is the mixture-Weibull model (MWM). Sánchez et al. 

(30) utilised the MWM for the survival of immunotherapy-treated advanced non-small-cell 

lung cancer patients, and Crowther et al., (2016) (31) used the MWM to fit to “complex 

survival data”, with an example in breast cancer. The MWM demonstrates improved visual 

fit versus the standard Weibull model in the latter of these examples. These mixture models 

permit different survival distributions to exist within the data, but do not assume a 

“statistically-cured” fraction. We considered the MWM in this study but no other non-cure-

based mixture models. 

Selecting potentially appropriate models 

In order to assess the potential suitability of the models, we assessed the recreated PLD using 

a variety of techniques. First, we evaluated the underlying hazard function in order to 

establish the suitability of models that assume proportional hazards (PH models) or constant 

acceleration factors (accelerated failure time [AFT] models). Second, we used the hazard 

function to assess the applicability of standard parametric forms (such as the exponential, 

which assumes a constant hazard rate). Third, we used the hazard function to identify turning 

points to inform the appropriate number of knots in the spline-based models. Models 

considered potentially suitable were fitted to the 3-year re-created PLD using the statistical 

software packages R and Stata. (32, 33) 

Assessing model predictions 

Following model fitting, an assessment of each model was undertaken. The fit to the 

observed data (via visual inspection and/or residual analysis) was first considered. Next, the 

plausibility and credibility of survival extrapolation was ascertained through comparing 

trajectories to external data and background mortality rates. Finally, the statistical goodness-

of-fit (using Akaike or Bayesian Information Criteria [AIC/BIC]) was used to determine 
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models that incorporate an inefficient use of additional parameters to inform their estimation 

of survival. This process of selecting appropriate survival models is in line with TSD-14 

recommendations. (18) 

In TA319 long-term survival data for advanced melanoma patients treated with non-ICI 

treatment available from the AJCC were used to inform survival projections. (34) These data 

provided estimates of 15-year survival which may be considered useful when ascertaining 

whether or not survival projections demonstrate clinical plausibility. Baseline characteristics 

for patients in CA184-024 are published however the corresponding data for AJCC patients 

are unreported. (15, 34) Therefore, the comparability of the AJCC and CA184-024 data is 

unclear. 

To assess the survival predictions made by the different fitted models we compared these to 

the 5-year CA184-024 data-cut, the AJCC data, and mortality rates for the UK age- and sex-

matched general population. (29) In particular, the AJCC data were used to assess the 

plausibility of survival extrapolations for the control arm; noting the previous reporting 

limitations and acknowledging the ages of the respective studies. 

Results 

Survival observed in CA184-024 

The re-created KM curves are presented in Figure 1 for the 3- and 5-year data-cuts. Median 

survival for patients treated with PBO+DTIC in the 3-year data-cut was approximately 9.1 

versus 11.2 months for IPI+DTIC. (15) 5-year survival in the 5-year data-cut was 18.2% for 

IPI+DTIC patients versus 8.8% for PBO+DTIC patients. (16) 

Estimated smoothed hazard functions for both data-cuts are also presented in Figure 1. 

Hazards originally increased, before decreasing in the longer-term in both treatment arms. 
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There was an apparent increase close to the end of trial-follow-up in the 3-year data-cut for 

patients treated with IPI+DTIC, but this is highly uncertain due to the small number of 

patients at risk at this point (and indeed this increase was not present in the 5-year data-cut).  

In CA184-024, patients were required to have a life expectancy of at least 16 weeks prior to 

treatment initiation, (15) and so a low initial hazard of death may be expected. However, 

given the severity of advanced melanoma, the hazard of death would be expected to increase 

following the start of the study. In the longer term however, patients with a better prognosis 

(i.e. responders) would still be alive, and so the hazard of death for the surviving group of 

patients would fall. Further in the future, the hazard of death may increase again as patients 

age (though this may be difficult to determine due to trial follow-up and patient numbers). 

Based upon the hazard functions estimated in the 3-year data-cut for both treatment arms we 

deemed that only parametric models that can represent increasing and then decreasing (i.e. 

non-monotonic) hazards were appropriate. Models that assume either constant or 

unidirectional (monotonic) hazards would provide a poor representation of the observed data. 

This meant the exponential, Gompertz and Weibull distributions were inappropriate for 

consideration. 

The smoothed hazard function also demonstrates that the treatment effect does not appear to 

be proportional (this was also suggested by log-cumulative hazard and quantile-quantile 

plots, not presented here) and therefore models were fitted to treatment arms independently. 

Based on CA184-024 data, and the assessment of the corresponding smoothed hazard plot, 

the following candidate models were considered potentially appropriate and were fitted: (1) 

Log-normal, log-logistic, generalised gamma and generalised-F parametric survival models; 

(2) Spline-based models; (3) MCMs; and (4) MWM.  
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The number of turning points in the smoothed hazard plot was used to determine the number 

of knots for the spline-based models. Models with one or two knots were considered as a 

maximum of two turning points were evident in the hazard plot. 3-knot models were 

considered, though provided substantially poorer statistical goodness-of-fit scores and are 

therefore not presented. The best fitting one- and two-knot spline-based models (in terms of 

AIC and BIC) were the odds- and hazard-based splines, respectively; and so were considered 

henceforth. The knot locations were determined according to percentiles of the uncensored 

survival times, in line with recommendations. (27)  

The statistical goodness-of-fit for each survival model is presented in Table 1. All models 

were also considered in terms of their visual fit to the observed data, shown in Figure 2. Each 

of the models exhibited a reasonable fit to the observed data, though by year 5 there is a clear 

spread of projected survival estimates ranging from 10%-18%. 

Survival beyond the observed period of CA184-024  

Predicted survival proportions at 3, 5, 10, 15 years, and mean survival estimates associated 

with each model/ data source are presented in Table 2. The corresponding survival curves are 

presented in Figure 2, alongside KM curves from the 5-year data-cut of CA184-024 and 

AJCC data. 

The TA319 piecewise model yielded a mean survival estimate of 3.59 life-years for 

IPI+DTIC patients and 2.50 life-years for PBO+DTIC patients – greater than all the other 

models except for the two MCMs. 

Only the TA319 piecewise model and the MCM’s provide 5-year survival probabilities close 

to those observed for  IPI+DTIC in the 5-year data-cut (17.5%, 17.4% and 14.4% for the 

TA319 model, Weibull MCM and log-normal MCM respectively, compared to 18.1% 
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observed in the 5-year data-cut). The parametric models, MWM and spline-based models 

under-predict 5-year survival for IPI+DTIC (ranging from 10.1% to 13.2%). Beyond 5 years 

the survival predicted for IPI+DTIC by the TA319 model and the MCMs diverge 

considerably. The flattened shape of the survival curves predicted by the MCMs appears to 

be more in line with survival at 6 years observed in the 5-year data-cut from CA184-24, but 

beyond this point the IPI+DTIC curves remain unvalidated. 

In contrast, the TA319 model and the MCMs appear to over-estimate 5-year survival for the 

PBO+DTIC group (11.0%, 11.1% and 9.1% for the TA319 model, Weibull MCM and log-

normal MCM respectively, compared to 8.1% observed in the 5-year data-cut). The 

parametric and spline-based models provide under-estimates of 5-year survival for 

PBO+DTIC, whereas the MWM provides an accurate estimate. However, the AJCC data 

suggests that the survival curve may be expected to flatten somewhat even for the 

PBO+DTIC group – the MWM does not follow this trend. The log-normal MCM and the 

TA319 model are the only models that appear to project survival in a way that is consistent 

with the AJCC data.   

Figure 3 (see Supplementary Material) presents the estimated hazard of death for both groups 

of patients projected by each model, as well as those estimated based on the observed data 

from CA184-024 (5-year data-cut) and ONS background mortality rates. All models except 

the MWM, the MCMs and the TA319 piecewise model demonstrate decreasing hazards 

beyond 5 years. The MWM and the TA319 models both include a Weibull component which 

exhibits monotonically increasing hazards. For the MCMs the hazard increases in the longer-

term because increasing age-related hazards are accounted for. Only the MCMs result in 

extrapolations in which mortality beyond approximately 5-10 years is represented by 
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background mortality rates – all other approaches exhibit hazards that are substantially higher 

than background mortality.  

Discussion 

The MCMs and the piecewise approach used in TA319 were the only models that provided 

extrapolations for IPI+DTIC that were aligned with the 5-year data-cut from CA184-024. 

These also predicted the highest mean survival for IPI+DTIC. Flexible models, such as the 

spline-based models and the MWM, were able to represent non-monotonic hazards but 

appeared to over-estimate longer-term hazards. 

The AJCC data suggest 15-year survival for patients not treated with IPI+DTIC is 

approximately 4.2%. (34) This is of limited use for assessing survival predictions for patients 

treated with IPI+DTIC, but may be considered to represent a lower bound for potentially 

credible extrapolations. Only the two MCMs and the TA319 piecewise model predicted 15-

year survival of at least 4.2% for both treatment arms.  

For PBO+DTIC patients, several methods predicted 5-year survival in line with the 5-year 

data-cut. However, predictions of survival differed substantially in the longer-term, with 15-

year survival estimates ranging from 0.5% (MWM) to 9.8% (Weibull MCM). Several models 

exhibited a distinct lack of face validity, predicting 10-year survival of less than 3% and all 

models except the MCMs and the TA319 piecewise model predicted lower long-term 

survival than that observed in the AJCC data.  

While CA184-024 data show survival for PBO+DTIC to be lower than the AJCC survival 

curve in the short-term, the gap appeared to narrow according to the 5-year data-cut. It 

appears that the Weibull MCM may over-estimate longer-term survival for PBO+DTIC  

patients, whereas the TA319 piecewise approach and the log-normal MCM appear to provide 
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more credible estimates. However, the aforementioned limitations of the AJCC data remain. 

As such, the estimate of 15-year survival for PBO+DTIC patients of 10% provided by the 

Weibull MCM may not be completely unrealistic. 

In this study we identified that the underlying hazard functions estimated for the 3-year data-

cut were complex, and that only models that could account for turning points in the hazard 

function would yield appropriate extrapolations. Accordingly, we fit a range of potentially 

appropriate models, but found that several of these did not provide accurate estimates of 5-

year survival based upon a subsequent data-cut. Only models that incorporated external 

information (MCMs through background mortality data, and the TA319 piecewise model 

through the use of mortality rates from the AJCC registry) were able to accurately predict 5-

year survival whilst also providing a survival curve with the shape expected based upon long-

term registry data. This strengthens previous suggestions around the use of external 

information in survival extrapolation. (35, 36) 

Our analysis also provides further evidence illustrating the substantial impact that the 

extrapolation method can have on mean survival estimates, which in turn are likely to have an 

important effect on CEA results. Within the context of a treatment with potential long-term 

survival benefits, the importance of selecting an appropriate survival extrapolation method is 

heightened.  

Our case study appears to offer support for the use of MCM’s, which show one of the best 

fits to the 5-year data-cut, and exhibit estimates of longer-term hazards in line with registry 

data. However, these models also provided the largest estimates of survival and at the time 

HTA decisions are made there may be an understandable reluctance to believe such 

optimistic estimates. In addition, we have demonstrated that the parameterisation of an MCM 

has an important impact on survival projections – the Weibull and log normal MCMs 



13 

produced substantially different extrapolations – illustrating how sensitive extrapolations are 

to the “statistically-cured” fraction estimated, which may also vary by parameterisation. 

Given the small patient numbers that usually remain at the end of follow-up in clinical trials – 

which is key for estimating the “statistically-cured” fraction – caution is certainly required 

when using MCMs in a clinical trial context.    

In TA319 a piecewise modelling approach was taken which appears to have produced 

accurate estimates of 5-year survival, and results in longer estimates of mean survival than 

most other models. However, our analyses suggest that even these estimates may have been 

pessimistic for IPI+DTIC, and optimistic for PBO+DTIC patients. The specification of a 

piecewise model requires the analyst to specify relevant cut-points at which to fit different 

models (in this case study, the model was cut at 2 and 5 years). Davies et al. (26) 

demonstrated how the choice of these cut-points can have a profound effect on the overall 

extrapolation produced, and the choice of cut-points for piecewise models is frequently 

criticised within NICE technology appraisals (including TA319). (12, 37, 38) The same 

criticism may be raised for spline-based models (in relation to knot locations) – whilst this 

may not be critical for model fit, (27) it may have an important effect on extrapolations. 

Despite their limitations, we have shown that the piecewise approach and MCMs appear to 

have performed relatively well in our case study. We contend that it is not a coincidence that 

these were the only two methods that incorporated external information in some form. Other 

approaches may have provided similarly plausible longer-term survival estimates if they were 

adapted to include similar external information. For instance, spline-based models can be 

fitted in a relative survival framework, whereby “disease-specific mortality” and “other-cause 

mortality” are modelled separately, with information on background mortality incorporated 

for the latter component. (39, 40) Where “disease-specific mortality” rates fall to zero a 
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statistical cure is essentially modelled, potentially resulting in the kind of survival curve 

plateau observed in the 5-year data-cut and in the AJCC registry data. A limitation of our 

work is that we did not attempt to fit such models – but further use of these in an HTA and 

extrapolation context should be explored.  

Recreated PLD were used to fit survival models in this study, and so extrapolation methods 

that require “true” PLD were not considered (for example, response-based models discussed 

by Huang et al.) (19) Access to “true” PLD would allow for improved accuracy of model 

fitting, adjustment for covariates and the ability to consider more complex models. However, 

the use of recreated PLD does not impede the fitting of survival models in general, and 

consequently provides a sufficient basis to compare survival projections. 

Our study demonstrates that it is useful to collect longer-term information from clinical trials 

in order that the accuracy of previous extrapolations can be assessed – such updates should be 

encouraged whenever long-term survival is expected but not proven. (6) Further data 

collection from the same trial may be requested by NICE relating to a conditional approval 

via the Cancer Drugs Fund, or a periodic review of guidance (for TA319, this was scheduled 

2 years following publication of the Final Appraisal Determination). (12) 

However, whilst continued publication of updated survival information is highly 

commendable, the 5-year data-cut from CA184-024 unavoidably remains limited to a 

relatively short time period, compared to the potential survival times of “statistically-cured” 

survivors. It is striking that even models that produce similar estimates of survival at 5 years 

go on to project considerably different mean survival, for both treatment arms. In particular, 

even in the 5-year data-cut the existence of a “statistically-cured” fraction is still unclear, 

though published literature suggest that conditional survival appears to improve over time in 

melanoma – Xing et al. (41) reported that conditional 5-year survival for stage IV melanoma 
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patients increased from 19% upon diagnosis to 84% if patients survive until 5 years, based on 

data from the Surveillance, Epidemiology, and End Results (SEER) Program (though these 

patients did not receive ICI treatment).  

It should be further acknowledged that this study reports the findings of one case study in 

advanced melanoma. We have shown that cure-based models may represent a useful tool for 

projecting survival when long-term survival is expected in a proportion of patients. However, 

the presence of a “cure fraction” is not evidence of a “true” cure. Publication of updated data-

cuts from clinical trials in which long-term survival is expected would allow further 

investigation of whether or not a true cure is evident, which in turn may provide additional 

justification for undertaking survival modelling using cure-based models. Subsequently, 

decision-makers may have more confidence in basing decisions on analyses that assume that 

a proportion of patients are truly cured.  

TSD-14 was last updated in 2013. (18) Since then, a number of ICIs have been assessed by 

NICE which have adopted increasingly complex extrapolation methods – recently NICE 

TA590 of nivolumab for unresectable/ metastatic urothelial cancer included the use of a 

response-based model (combined with a landmark analysis to overcome immortal time bias) 

as standard models would “fail to capture the changes in hazard over time”. (42) Our case 

study provides an overview of different extrapolation methods (some of which are not 

discussed within TSD-14), which may aid the future update of guidance. However, it was not 

possible to consider all methods and only data from CA184-024 were considered, hence 

further research is required to provide comprehensive guidance for the fitting of complex 

survival models.  
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Conclusions 

Our study demonstrates how updated clinical trial data-cuts can be used to assess the 

accuracy of extrapolations made by fitting survival models to earlier data-cuts. This provides 

useful information on which models appear to extrapolate well, and which appear to 

extrapolate inaccurately. We only consider one case study, but the findings are useful more 

broadly, and are of particular relevance in diseases where long-term survival is expected.  

Flexible models that are able to accurately represent complex hazard functions are likely to 

provide a good fit to observed data but may not extrapolate accurately – in our study these 

methods under-estimated 5-year survival for IPI+DTIC. Models that incorporated external 

information – either by assuming a “statistically-cured” fraction and incorporating 

background mortality rates, or by extrapolating in line with longer-term registry data – 

provided more accurate estimates of 5-year survival, demonstrating the importance of 

including relevant external information when available. However, even these models 

projected beyond 5 years very differently, demonstrating the need to continue to collect 

survival data in order to further aid understanding of long-term survival.   
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Table 1 – Statistical goodness of fit for survival models 
Parameterisation AIC BIC 

(1) Parametric survival models 

Generalised-F 3,105.29 3,133.50 

Generalised Gamma 3,108.95 3,130.10 

Log-logistic 3,108.99 3,126.62 

Log-normal 3,107.53 3,121.63 

(2) Spline-based models 

Odds – 1-knot 3,100.05 3,116.93 

Normal – 1-knot 3,106.56 3,123.43 

Hazard – 1-knot  3,101.06 3,117.94 

Odds – 2-knots 3,100.45 3,121.54 

Normal – 2-knots 3,099.97 3,121.06 

Hazard – 2-knots  3,098.99 3,120.09 

(3) Mixture-cure models 

Weibull 3,053.43 3,063.36 

Log-normal 3,024.60 3,034.70 

(4) Mixture-Weibull model 

Mixture-Weibull model 3,110.93 3,113.03 

 

Table 2 – Mean survival estimates for each data source and survival extrapolation 

Data source 

Survival (%) 
RMST 

(years) 

Maximum 

time 

(years) 
3 years 5 years 10 years 15 years 

CA184-024 

(Original) 

IPI + DTIC 

PBO + DTIC 

21.2 

12.9 
- - - 

1.4747 

1.2106 
4 

CA184-024 

(Updated) 

IPI + DTIC 

PBO + DTIC 

22.1 

12.0 

18.1 

8.1 
- - 

1.7957 

1.3591 
6 

AJCC registry 16.1 10.6 7.0 4.2 1.9838 15 

Extrapolation 
Survival (%) Mean survival (years)  

3 years 5 years 10 years 15 years Total Δ 

TA319 PM 
IPI + DTIC 

PBO + DTIC 

22.2 

14.9 

17.5 

11.0 

11.1 

6.9 

7.0 

4.4 

3.5597 

2.4995 
1.0602 

Weibull MCM 
IPI + DTIC 

PBO + DTIC 

20.4 

12.3 

17.4 

11.1 

16.4 

10.5 

15.1 

9.8 

5.4738 

3.7267 
1.7471 

Log-normal MCM 
IPI + DTIC 

PBO + DTIC 

20.8 

13.5 

14.4 

9.1 

10.5 

6.8 

9.2 

6.1 

4.0389 

2.8750 
1.1639 

Generalised 

gamma 

IPI + DTIC 

PBO + DTIC 

20.8 

12.5 

12.3 

5.8 

5.4 

1.6 

3.1 

0.6 

2.6843 

1.5717 
1.1127 

Spline - 2 knot - 

Hazard 

IPI + DTIC 

PBO + DTIC 

21.0 

13.7 

13.2 

7.9 

5.6 

2.9 

2.9 

1.4 

2.5970 

1.7844 
0.8126 

Log-logistic 
IPI + DTIC 

PBO + DTIC 

18.5 

11.3 

10.1 

5.5 

4.1 

2.0 

2.4 

1.1 

2.4079 

1.6369 
0.7709 

Generalised-F 
IPI + DTIC 

PBO + DTIC 

20.8 

13.1 

12.5 

7.7 

5.8 

3.8 

3.6 

2.5 

2.8168 

2.0924 
0.7245 

Log-normal 
IPI + DTIC 

PBO + DTIC 

19.5 

12.3 

10.2 

5.5 

3.3 

1.4 

1.5 

0.5 

2.2095 

1.5385 
0.6709 

Spline - 1 knot - 

Odds 

IPI + DTIC 

PBO + DTIC 

21.0 

12.8 

12.5 

7.0 

4.6 

2.9 

2.1 

1.7 

2.4003 

1.8644 
0.5359 

MWM 
IPI + DTIC 

PBO + DTIC 

21.2 

13.4 

11.3 

8.1 

1.5 

2.1 

0.1 

0.5 

1.9706 

1.6170 
0.3536 
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Figure 1: Reconstructed Kaplan-Meier plots of overall survival in CA184-024 and smoothed 

hazard plot for patients in CA184-024 (both data-cuts)  

Key: DTIC, dacarbazine; IPI, ipilimumab; PBO, placebo. 
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Figure 2: Overview of fitted models within observed period and extrapolation of survival. 

Description: A: Short-term fit to observed data for ipilimumab + dacarbazine; B: Long-term 

extrapolation of survival for ipilimumab + dacarbazine; C: Short-term fit to observed data for 

placebo + dacarbazine; D: Long-term extrapolation of survival for placebo + dacarbazine.  

Key: AJCC, American Joint Committee on Cancer; KM, Kaplan-Meier; MCM, mixture-cure 

model; MWM, mixture-Weibull model; ONS, Office for National Statistics; TA, Technology 

Appraisal.  

 

 

 

 


