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Abstract

Pairs of azimuthal intensity decrements at near-symmetric locations have been seen in a number of protoplanetary
disks. They are most commonly interpreted as the two shadows cast by a highly misaligned inner disk. Direct
evidence of such an inner disk, however, remains largely illusive, except in rare cases. In 2012, a pair of such
shadows were discovered in scattered-light observations of the near face-on disk around 2MASS J16042165-
2130284, a transitional object with a cavity ∼60 au in radius. The star itself is a “dipper,” with quasi-periodic
dimming events on its light curve, commonly hypothesized as caused by extinctions by transiting dusty structures
in the inner disk. Here, we report the detection of a gas disk inside the cavity using Atacama Large Millimeter/
submillimeter Array (ALMA) observations with ∼0 2 angular resolution. A twisted butterfly pattern is found in
the moment 1 map of the CO (3–2) emission line toward the center, which is the key signature of a high
misalignment between the inner and outer disks. In addition, the counterparts of the shadows are seen in both dust
continuum emission and gas emission maps, consistent with these regions being cooler than their surroundings.
Our findings strongly support the hypothesized misaligned inner disk origin of the shadows in the J1604-2130
disk. Finally, the inclination of the inner disk would be close to −45° in contrast with 45°; it is possible that its
internal asymmetric structures cause the variations on the light curve of the host star.

Key words: planetary systems – protoplanetary disks – stars: pre-main sequence

1. Introduction

Planets are believed to form in protoplanetary disks. As they
do, they gravitationally perturb their host disk and generate
structures (Kley & Nelson 2012 and reference therein). In
recent years, a variety of features have been discovered in
spatially resolved observations of protoplanetary disks, such as
spiral arms (e.g., Fukagawa et al. 2006; Hashimoto et al. 2011;
Muto et al. 2012; Currie et al. 2015), gaps, or cavities (e.g.,
Hashimoto et al. 2012; Akiyama et al. 2015; ALMA Partner-
ship et al. 2015; Tsukagoshi et al. 2016), and dust traps (e.g.,
Casassus et al. 2013; van der Marel et al. 2013). Such
structures may be produced by massive planetary companions
forming in disks (e.g., Dong et al. 2015a, 2015b). By studying
planet-induced structures and comparing simulations with
observations, it is possible to infer properties of the feature-
producing planets, such as their masses (e.g., Dong & Fung
2017a, 2017b).

One specific disk, which is the focus of this paper, is

shadows. They have been seen in disk images at both near-

infrared (NIR) and millimeter wavelengths, and are generally

thought to be the outcome of starlight being obscured by

structures in the inner disk. A prototype of such features was

discovered in the HD 142527 disk, which shows two narrow

nulls at near-symmetric locations (m∼2) on the disk ring at

∼100 au in scattered light (Fukagawa et al. 2006; Casassus

et al. 2012; Canovas et al. 2013; Avenhaus et al. 2014; Rodigas

et al. 2014). The counterparts of the two nulls in dust

continuum emission were subsequently discovered in Atacama

Large Millimeter/submillimeter Array (ALMA) observations

as two local depressions in millimeter surface brightness

(Casassus et al. 2015b; see also Muto et al. 2015). Marino et al.

(2015) proposed that the two nulls in scattered light were

shadows cast by an inner disk ∼10 au in radius and highly

misaligned from the outer disk (∼70° mutual inclination). Their

model naturally explains the millimeter observations as well—

the regions in the shadows are cooler than their surroundings as
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the stellar heating is blocked, resulting in a reduction in dust
emission (Casassus et al. 2015b). A review about warps in
transition disks can be found in Casassus (2016).

Here, we introduce our target 2MASS J16042165-2130284
(hereafter J1604-2130) in Upper Scorpius. Recently, GAIA
DR2 reported that J1604-2130 is located at a distance of 150
pc. Pecaut et al. (2012) derived stellar age 10Myr, an epoch
that probes the final stages of Jovian planet formation.
Preibisch & Zinnecker (1999) derived spectral type K2, stellar
mass 1Me, Tlog eff[K]=3.658, and = -[ ]L Llog 0.118.
J1604-2130 has a mass accretion rate of no larger than
10−11Me yr−1

(Dahm & Carpenter 2009; Mathews et al.
2012). Mayama et al. (2012) detected two shadows on the disk
in Subaru near-infrared scattered-light imaging observations.
Although they reported the detection of an arc-like structure,
the team later determined it to be an artifact.

Finally, J1604-2130 is known to have two different issues of
variability. First, J1604-2130 has been identified as a “dipper”
(Ansdell et al. 2016a, 2016b)—young stellar objects that exhibit
quasi-periodic or aperiodic dimming on their optical and infrared
light curves. Second, while the Spitzer IRAC NIR photometry
(Carpenter et al. 2006) shows a spectral energy distribution well
consistent with the stellar photosphere, the Spitzer IRS mid-
infrared (MIR) spectrum (Dahm & Carpenter 2009) and WISE
photometry, taken at different times, show NIR-to-MIR excess.
The latter data suggest the presence of a sub-astronomical-unit
inner disk (see the discussion in Zhang et al. 2014). These two
issues may be related, but they are not the same issue.

In this paper, we report a new high-resolution ALMA
observation of both dust and gas in the J1604-2130 system. Our
goal is to test the hypothesis that the two shadows seen in
scattered-light imaging are cast by an inner disk highly
misaligned with the outer disk by searching for depressions
in millimeter surface brightness at the location of the shadows
and the twisted butterfly pattern in gas moment 1 maps, both
being key signatures of such a disk structure.

2. Observations and Data Reduction

J1604-2130 was observed in ALMA cycle 3 program
2015.1.00888.S (PI: E. Akiyama) in Band 7. The observations
were conducted with the extended and compact configurations.
The observation with the compact configuration was performed
on 2016 March 10 with 37 operative antennas, and the
observations with the extended configuration were performed
on 2016 August 2 and 15–16 with 40 operative antennas. The
extended configuration array provided maximum and minimum
baseline lengths of 1.1 km and 15.1 m, respectively. The
compact configuration array provided maximum and minimum
baseline lengths of 460.0 m and 15.3 m, respectively. Sky
conditions were relatively stable for 1.3 mm wavelength
observations with the precipitable water vapor between 0.50
and 1.06 mm. During observation, the system temperatures
were between 100 and 300 K. The ALMA correlator was set to
have two continuum windows and two spectral windows. One
spectral window with a bandwidth of 234.375MHz was
centered at 345.8 GHz for the CO (3–2) (channel widths of
244.141 kHz; equivalent to a velocity resolution of ∼211.68 m
s−1

). Another spectral window with a bandwidth of
468.750MHz was centered at 356.7 GHz for the HCO+

(4–3) (channel widths of 488.281 kHz; equivalent to a velocity
resolution of ∼410.37 m s−1

). The other windows with a

bandwidth of 2.00 GHz were configured to obtain the
continuum emission centered at 344.0 GHz and 355.5 GHz
(channel widths of 15.625MHz). Bandpass was calibrated
using J1517-2422. Absolute flux density was scaled using
J1517-2422 or Titan. J1625-2527 or J1553-2422 was observed
for phase calibration. The total integration time on-source for
target J1604-2130 was 62.8 minutes with extended configura-
tion and 31.4 minutes with compact configuration.
The data were calibrated using version 4.7 of the Common

Astronomy Software Applications package (CASA) for extended
configuration data and version 4.5 for compact configuration data.
We followed the pipeline calibration provided by East Asian
ALMA Regional Center and as provided for this data set on the
ALMA archive. Because the line and continuum observations
were simultaneously conducted with adjacent frequencies, and
the atmospheric variation equally affects the phase variation of
line and continuum data, the calibration table obtained from the
continuum data was applied to line emission calibration. As we
concatenate all of the observations together for maximum uv-
coverage and present/analyze the resulting continuum map, we
show only the combined continuum map (low and high resolution)
in further sections. The same applies for HCO+

(4–3) and CO
(3–2). We used the clean algorithm in CASA for imaging. The
self-calibration was performed by applying the obtained continuum
image as a model, and gain calibration was repeated until the rms
converged to a minimum. The gain table obtained after the self-
calibration of the continuum data was applied to both the CO (3–2)
and HCO+

(4–3) line data to generate self-calibrated visibilities.
The Briggs weighting with a robustness of 0.5 was applied in both
continuum and line imaging to obtain the optimal combination of
resolution and image fidelity. The achieved rms in the continuum
image using in all spectral windows excluding the line emission
channels was 39∼μJy beam−1. The achieved rms in the
individual channel maps with approximately native channel width
was 3.813mJy beam−1 for CO (3–2) and 3.385mJy beam−1 for
HCO+

(4–3). The achieved rms of moment 0 map was 6.454mJy
beam−1 km s−1 for CO (3–2), and 6.965mJy beam−1 km s−1 for
HCO+

(4–3). The final achieved synthesized beam is approxi-
mately 0 216×0 187 (PA=76°.7), 0 229×0 194 (PA=
77°.8), and 0 218×0 188 (PA=72°.1) after calibration and
flagging for the continuum, CO (3–2) and HCO+

(4–3),
respectively. As the following section shows, a disk is detected in
HCO+

(4–3), CO (3–2) emission, and continuum. For the stellar
position, we used GAIA DR2.

3. Results

3.1. HCO+
(4–3) Emission

Figure 1 shows the moment 0 map, integrated intensity, for
HCO+

(4–3) emission around J1604-2130. Figure 3(a) shows
an azimuthally averaged normalized intensity. As is clearly
seen in Figure 3(a), the HCO+

(4–3) emission radial profile has
its first bright peak at r=0″ from the central star, then it
becomes fainter around the cavity zone, then has its second
bright peak at the outer ring zone, and then becomes fainter
again. In other words, emission extends into the cavity with a
dip in the profile between a peak at the center of the cavity and
bright outer ring. The moment 0 map in Figure 1 also shows a
peak at the center of the cavity. This inner component has
12.4σ, and its size is close to the beam size. This reveals that
there are still materials inside this cavity. Another salient
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Figure 1. ALMA images of J1604-2130. An ellipse at the bottom right corner for (a)–(c) and bottom left corner for (d), (e) denotes the ALMA synthesized beam. The
unit of the color bar for (a), (b) and (d)–(f) is [Jy beam−1 km s−1

] and [km s−1
], respectively. (a) HCO+

(4–3) moment 0 map. Contour levels are (5, 10, 15, 20,
25)×rms. (b) CO (3–2) moment 0 map. Contour levels are (5, 10, 20, 30, 40, 50, 60)× rms. (c) Color map of continuum emission overlaid with and contours at
(5,50, 100, 150, 200, 250, 300)×rms. (d) HCO+

(4–3) moment 1 map. (e) CO (3–2) moment 1 map. (f) CO moment 1 map is shown in the color map. Continuum in
black contours at (5, 50, 100, 150, 200, 250, 300)×rms is overlaid. Purple line denotes the position angle 135° of inner disk minor axis. Brown line denotes the
position angle 170° of outer disk minor axis.The black cross gives the stellar position.
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feature detected in the moment 0 map are two local

depressions, or dips, in the emission in the east–northeast and

west–southwest sides of the disk. These dips are also seen in

Figure 3(b), and their origins are discussed in Section 4.1.
Figure 1(d) shows the moment 1 map, which shows mean

velocity for HCO+
(4–3) emission in the J1604-2130 disk. The

central velocity, 4.6 km s−1, for J1604-2130 traces the material

along the minor axis in disks as can be seen in green in

Figure 1(d).
Figure 4 displays the HCO+

(4–3) spectrum obtained by

integrating over a circular area centered at the location of

J1604-2130. The central velocity, 4.6 km s−1, is seen as a peak

in this figure. The HCO+
(4–3) integrated spectra over the

inner component shows a double peak. Based on these figures,

the inner component peak at the center of the cavity is

interpreted as HCO+
(4–3) inner disk.

3.2. CO (3–2) Emission

Figure 1 shows the moment 0 map, integrated intensity, for

CO (3–2) emission of J1604-2130. In this map, the faintest part

of the ring has an offset and is located slightly south of the

central star. The CO (3–2) emission, particularly in the inner

part, shows a different view from that of HCO+
(4–3), probably

due to a difference in their optical depth. There are also two

dips detected in the CO (3–2) moment 0 map. Orientation of

the east dip is slightly different from HCO+
(4–3) or

continuum. These dips are also seen in Figure 3(b) and their
origins are discussed in section Section 4.1.
Figure 1(e) shows the moment 1 map, which is intensity-

weighted velocity, for CO (3–2) emission of the J1604-2130.
The CO (3–2) moment 1 map shows a twisted kinematic
structure in the central area. These twisted first-moment maps
have already been observed in several sources by ALMA (e.g.,
Rosenfeld et al. 2014; Casassus et al. 2015a; van der Plas et al.
2017; Walsh et al. 2017). In the moment 1 map for the CO
(3–2) emission image, two rotational components can be
interpreted as the CO (3–2) inner disk and outer disk inferred
from twisting structures. The CO (3–2) spectrum obtained by
integrating over a circular area centered at the location of
J1604-2130 is displayed in Figure 4.
We used the CO (3–2) intensity-weighted velocity (first-

moment) map to derive position angles for both outer and inner
disks because kinematics provides a finer spatial detail of the
morphology (PA) of the rest velocity emission, which
corresponds to the minor axis. The spatial resolution on the
other hand is not sufficient to measure the inner disk
morphology in detail. As the zero projected velocity line runs
along the semiminor axis of a disk, based on the CO (3–2)
moment 1 map shown in Figure 1(f), we estimated the PA of
the J1604-2130 outer and inner disk to be 80° and 45°,
respectively. This method to use the central velocity
(4.6 km s−1

) for determination of the PA is described by Miley
et al. (2018). The outer disk PA of 80° is consistent with the
ALMA cycle 2 result by Dong et al. (2017).

Figure 2. Plot of overlaid CO channel maps indicating position angle of the inner and outer parts of the disk. Plotted in blue and red contours are the highest velocity
channels containing significant (>5σ) emission, probing inner disk regions. Lower-velocity channels are plotted in cyan and purple, tracing the outer disk. Dashed
lines show the position angle of the inner and outer disks. Selected channels are symmetric around the system velocity within spectral resolution. Contours for each
channel begin at 3σ, increasing in steps of 2σ. Cyan and purple contours are plotted up to 25σ, blue contours peak at 9σ, red peak at 7σ, where σ=3.8 mJy beam−1.
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Figure 2 shows a plot of overlaid CO (3–2) channel maps
indicating the position angle of the inner and outer parts of the
disk. With this figure, we confirmed that the PAs of both inner
and outer disks derived from the CO (3–2) moment 1 map are
perfectly consistent with those derived from this CO (3–2)
channel map.

3.3. Continuum Emission

Figure 1 shows the 0.87 mm continuum image of J1604-
2130 with an rms of 39 μJy beam−1. As seen in this figure, at a
lower level, 5σ contours show that the emission is considerably
more extended from the star; while the ring is located about
0 6 inward, the emission extends down to about 0 2 from the
star, especially on the east side. This means that it is not empty
inside the ring in the continuum, although the stellar position is
free of detectable continuum emission. Overall, the east side of
the ring appears to be broader radially. There is also an
emission signal outside of the ringlike disk. The continuum
disk also shows two dips. Orientations of these two dips, which
are east–northeast and west–southwest, are almost the same as
seen in the HCO+

(4–3) emission.

3.4. Elliptical Fitting

Elliptical fitting was performed to measure outer disk

angular separations of the major and minor axes. The position

angle, derived from CO (3–2) observation, is used as a fixed

parameter. For the angular separations of the major and minor

axes, CO (3–2), HCO+
(4–3), and continuum data are

separately used for fitting. We first measured disk radial

profiles in 10° position angle increments, and then extracted

coordinates of the brightest peak area. Those coordinates were

used to fit an ellipse and used to measure the surface brightness

to plot Figure 3(b). The Trust Region Reflective algorithm was

performed. The derived semimajor and semiminor axes are

called “peak radii” in this Letter and are relatively larger than a

cavity wall radius that is often derived in submillimeter

transition disk modeling studies. Elliptical fitting results are as

follows: for the continuum, peak radii of major and minor axes

are 583±3 and 576±3 [mas], respectively. For HCO+

(4–3), peak radii of major and minor axes are 452±5 and

418±5 [mas], respectively. For CO (3–2), peak radii of major

and minor axes are 385±3 and 375±3[mas], respectively.

Figure 3. (a) Azimuthally averaged normalized intensity of ALMA observations of J1604-2130. Blue, green, and red tracers correspond to 0.87 mm dust continuum,
CO (3–2), and HCO+

(4–3), respectively. Normalized intensity against deprojected radius in arcseconds is plotted, assuming PA=80° and inclination=6° (Dong
et al. 2017). (b) Azimuthal normalized surface brightness profile of 0.87 mm dust continuum, CO (3–2), and HCO+

(4–3) with position angle measured from north to
east. Each curve shows the measured flux of pixels. PAs of the local minimum fitted by Gaussian and PAs of the inner disk are annotated. ((c)–(e)) Simulated
azimuthal normalized surface brightness profiles by using toy models of a ring disk. Shape of dips including their depth and azimuth width is varied in (c)–(e). 70.0%,
80.0%, and 80.0% labeled on the top of the panels denote the dip depth in (c)–(e), respectively. 10°, 10°, and 20° labeled on the top of the panels denote the dip
azimuth width in (c)–(e), respectively. The black line denotes the shape of the dips. The red line denotes the profile with dips after convolution with an elongated
beam, same as our ALMA observation. The blue line denotes profile without dips after convolution with an elongated beam, same as our ALMA observation.
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4. Discussion

Flux is measured above 3σ from the continuum image giving
an integrated emission of 0.276 Jy. Assuming optically thin
dust emission and using an opacity for millimeter-sized
particles, observed at a wavelength of 0.87 mm=3 cm2 g−1

(Draine 2006), we assume a minimum disk temperature
of 20 K, resulting in a derived dust mass lower limit
of Mdust=0.21MJup. Mathews et al. (2012) derived that
J1604-2130 has a dust mass of 0.1MJup by their Submillimeter
Array (SMA) observation.

4.1. Inner Disk Geometry and Origins of Dips

Figure 3(b) denotes an azimuthal normalized surface
brightness profile of 0.87 mm dust continuum, CO (3–2), and
HCO+

(4–3) with PA measured from north to east. By fitting
the Gaussian profile to the azimuthal profile, the best-fit
parameter is found for the location of the local minimum to
identify dip PA. The dip on the east side (east dip) has a PA of
62°.0±0°.2, 96°.1±0°.5, and 60°.3±0°.6, and the dip on the
west side (west dip) has a PA of 255°.5±0°.8, 257°.0±0°.9,
and 251°.5±0°.2, for dust continuum, CO (3–2), and HCO+

(4–3), respectively. These two dips are the first and second
faintest dips for all three tracers. For dust continuum and
HCO+

(4–3), there is around 190° difference between the east
dip and west dip. For CO (3–2), there is a difference of around
160° between them. Therefore, these two dips can be called
symmetrical dips.

Very gradual variations of the brightness azimuthally affect
the location of the decrements, which are shifted azimuthally
because of the finite beam. In order to estimate the impact of
this shift and depth of local decrements, we simulate
observations using a toy model of a ring disk (=0 58 in
radius). A 0 1 ring radial width is adopted as a fixed value.
Two dips are created at PAs of 45° and 225°, which are
theoretically predicted by the inner disk PA (Facchini
et al. 2018). As a result, simulated azimuthal normalized

surface brightness profiles with a PA measured from north to

east are displayed in Figures 3(c)–(e).
Regarding a depth of local decrements, this simulation

demonstrates the following three points. First, beam elongation

at the time of our observation (0 216×0 187; PA=76°.7)
can produce ∼10% of local decrements in surface brightness

even without any dips on a disk. Second, the depth of these

local decrements becomes deeper by creating dips in a toy

model, as seen in the Figures 3(c)–(e) by comparing the red and

blue lines. Third, we tested that the depth of these local

decrements also varies depending on radial width of a ring disk.
Regarding an azimuth shift, this model demonstrates the

following three tendencies. First, locations of observed local

decrements can be shifted a maximum ∼30° in the counter-

clockwise direction from the location predicted by the inner

disk PA. Second, the deeper the dips become, the closer the

location of a decrement shifts toward a dip after convolution.

Third, the wider the dips becomes azimuthally, the closer the

location of a decrement shifts toward a dip after convolution.
In our observation, both the first and second faintest

continuum decrements have 17° and 30°.5 differences from

the location predicted by the inner disk PA. These two have

different values from each other, and both are almost within a

30° maximum shift in the same counterclockwise direction

derived from this toy model. Therefore, as in our interpretations

of this toy model, an original existence of continuum dips is

required to reproduce these radio decrements, and beam

elongation can partly contribute both to shift and to enhance

dips, which are then consequently seen as observed positions.

However, it is not possible to distinguish this interpretation

from a case where there is in fact a real deep dip at the observed

location.
In NIR, similar dips are detected around PAs 85° and 255° at

the H band (Mayama et al. 2012). Locations of NIR dips are

closer to CO (3–2) dips rather than dust continuum and HCO+

(4–3). This consistency might be due to NIR and CO (3–2)

both being tracing surface layers of the disk.

Figure 4. (left) HCO+
(4–3) and (right) CO (3–2) integrated spectra over the entire disk and inner disk (dashed line) of J1604-2130. Central velocity 4.6 km s−1 is

annotated with a red line.
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Facchini et al. (2018) suggest that these dips can be
interpreted as two shadows cast by the inner disk onto the
outer regions. This is a direct effect of the dust temperature
being lower in the shadowed regions (the column density is
close to being azimuthally symmetric in the outer disk). The
stages of the 3D SPH simulations shown in Facchini et al.
(2018) shared common dip numbers and azimuthal directions
with the observed images in the continuum, CO (3–2), and
near-infrared. These agreements between observations and
simulation suggest that two dips are seen by shadowing effects.
Moreover, Facchini et al. (2018) suggest that the twisted
structure in the first-moment map is a peculiar indicator of
broken (inner and outer separated) disks rather than the warp
disk addressed in Juhász & Facchini (2017).

Min et al. (2017) probed inner disk geometries from
locations of shadows seen in scattered-light images by
connecting them. Their results as well as results from
Casassus et al. (2018) showed that the position angle of the
line connecting the shadows can be related to the position
angle of the inner disk. If we adopt their method, we can
address the different position angle between the inner disk and
the line connecting the shadows. Furthermore, the inclination
of the inner disk can also be constrained to close to the −45°
case in contrast with the 45° case. This is because the line
connecting the two dips (85° and 225°) seen in the NIR
scattered-light image lies on the the south side of the stellar
position. This picture is close to the case (θ1=−45°,
θ2=0°) shown in the second left panel on the bottom row
of Figure2 in Min et al. (2017) in contrast with the case
(θ1=45°, θ2=0°) shown in the second right panel on the
bottom row of the same figure. This constrained inclination
requires that the northern portion of the inner disk be on the
far side, while the southern portion is on the near side. In this
case, the inner disk rotation is counterclockwise combined
with the Figures 1(e) and (f).

4.2. Comparisons with Previous Observations

The highlights of cycle 3 are the detection of the inner disk
and twisted butterfly kinematic pattern. The most fundamental
difference between cycle 2 and cycle 3 is that the cycle 3 data
set has a much longer integration time (1.5 hr versus 5 minutes
in the cycle 2 data set), thus reaching a much higher sensitivity
level. The cycle 2 data set did not detect the above-mentioned
new structures due to a low signal-to-noise ratio.

Among disks with symmetric pairs of azimuthal shadows
(e.g., HD 100543, DoAr 44, and HD 142527; Benisty
et al. 2017; Casassus et al. 2018), only HD 142527 and
J1604-2130 have been confirmed to have a highly misaligned
inner disks via the detection of the twisted butterfly pattern in
their gas moment 1 maps. It is interesting to note the difference
between the two systems.

In the gas moment 1 map, both J1604-2130 and HD 142527
show a twisted kinematic pattern that in fact not only a
misaligned inner disk but also infall can also produce.
Although both mechanisms actually work to produce the twist
of HD 142527 (Casassus et al. 2015a), Rosenfeld et al. (2014)
noted a degeneracy between warps and infall for HD 142527.
In the case of J1604-2130, a misaligned disk is confirmed to at
least partly contribute to producing the twist for the following
two reasons. First, there are two symmetrical shadows. Second,
J1604-2130, as a dipper source, which has the face-on outer
disk, requires a misaligned inner disk. When discussing the

possibility of infall, our new ALMA data detected no
significant evidence of inflow penetrating the cavity. Never-
theless, Pinilla et al. (2015) and Ansdell et al. (2016a) reported
the complex, aperiodic variability of its optical light curve with
dimming by as much as 40% of the stellar flux in a span of a
few days. To explain this deep variability, infall might
contribute to produce both twist and variability to some degree.
But our recent ALMA observations still do not offer too many
new insights into why it is variable. This is because our new
observation is at one epoch and did not have a good enough
resolution to resolve any obscuring structures on the inner disk
that has a size probably smaller than 1 au.
Another point to note is that HD 142527 has a companion

(HD 142527 B) at a projected distance of ∼0.1 arcsec (Biller
et al. 2012; Close et al. 2014; Lacour et al. 2016), and Price
et al. (2018) proposed that the companion may be responsible
for torquing the circumstellar disk and introducing a mutual
inclination between that and the circumbinary disk. So far,
direct imaging observations have yet to find a companion
inside J1604-2130ʼs cavity (Canovas et al. 2017). We leave the
question of the origin of the misaligned inner disk in J1604-
2130 to future investigations.
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