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Abstract
China’s rapid industrialisation and urbanisation has led to poor air quality. TheChinese government
have responded by introducing policies to reduce emissions and setting ambitious targets for ambient
PM2.5, SO2,NO2 andO3 concentrations. Previous satellite andmodelling studies indicate that
concentrations of these pollutants have begun to decline within the last decade.However, prior to
2012, air quality data from ground-basedmonitoring stationswere difficult to obtain, limited to a few
locations inmajor cities, and often unreliable. Since then, a comprehensivemonitoring network, with
over 1000 stations across China has been established by theMinistry of Ecology and Environment
(MEE).We use a three-year (2015–2017) dataset consisting of hourly PM2.5, O3,NO2 and SO2

concentrations obtained from theMEE, combinedwith similar data fromTaiwan andHongKong.
Wefind that at 53% and 59%of stations, PM2.5 and SO2 concentrations have decreased significantly,
withmedian rates across all stations of−3.4 and−1.9 μgm−3 year−1 respectively. At 50%of stations,
O3maximumdaily 8 hmean (MDA8) concentrations have increased significantly, withmedian rates
across all stations of 4.6 μgm−3 year−1. It will be important to understand the relative contribution of
changing anthropogenic emissions andmeteorology to the changes in air pollution reported here.

Introduction

Rapid economic growth and large increase in emis-
sions has led to serious air quality issues across China.
Annual PM2.5 (mass of particulate matter with a
diameter less than 2.5 μm) exceeds 100 μg m−3 in
polluted regions of northeast China (Ma et al 2014,
Zhang and Cao 2015). Exposure to ambient (outdoor)
PM2.5 is estimated to cause 0.87–1.36 million deaths
each year across China (Apte et al 2015, Lelieveld
et al 2015, Gu and Yim 2016, Cohen et al 2017). Health
impacts from exposure to ambient PM2.5 cause losses
equal to 1.1%of gross domestic product at the national
level (Xia et al 2016) with losses of 1.3% in the Pearl
River Delta (PRD) and 1.0% in Shanghai (Kan and
Chen 2004,Huang et al 2012).

To address issues of poor air quality, the Chinese
government has introduced policies to reduce
pollutant emissions and has established ambient

concentration targets for provincial and municipal
authorities (Jin et al 2016). Despite having developed a
comprehensive environmental legal framework to
control pollution during the 1980s and 1990s, most
control methods were not widely enforced until the
2000s (Florig et al 2002, Beyer 2006, Feng and
Liao 2016). Desulfurization of coal-fired power plants,
introduction of electrostatic precipitators (Liu
et al 2015), closure of polluting power plants and
increased efficiency (Guan et al 2014), have resulted in
decreases in emissions of sulphur dioxide (SO2) and
PM2.5 (Lu et al 2010, Klimont et al 2013, Van Der A
et al 2017). Shifts towards cleaner fuels and electricity
for cooking and heating in rural areas has contributed
to reduced residential PM2.5 emissions (Tao
et al 2018). Regulation of nitrogen oxides (NOx) has
resulted in installation of NOx filtering systems on
power plants, phasing out heavily polluting factories
and new emission standards for vehicles (Liu
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et al 2017,Wu et al 2017). NOx emissions over 48 Chi-
nese cities increased by 52% from 2005 to 2011 before
decreasing by 21% between 2011–2015 (Liu
et al 2017). In response to the 2012–13 air pollution
‘crisis,’ where very poor air quality triggered a public
outcry, the state council issued the ‘Action Plan on
Prevention and Control of Air Pollution’ that priori-
tised PM2.5 reduction in megacity regions (Sheehan
et al 2014,Wang et al 2018). According to the estimates
made in the Multi-resolution Emission Inventory for
China, emissions of SO2, NOx, PM2.5, PM10 (mass of
particulate matter with a diameter less than 10 μm)
and carbon monoxide (CO) have decreased during
2013–2017 (Zheng et al 2018).

Understanding the impacts of changing emissions
on pollutant concentrations is necessary to assess past
management policies and identify future policy chal-
lenges. Longer term records of surface air pollutants
are available across the PRD, showing that PM2.5 con-
centrations increased between 2000–2005 before
decreasing from 2005–2010 (Wang et al 2016). Else-
where across China a lack of widespread surface mea-
surement data prior to 2012 means most previous
analyses have relied on satellite data, visibility observa-
tions or emission estimates combined with modelling
to establish air quality trends.

A number of studies have used satellite retrievals of
aerosol optical depth to estimate trends in PM2.5 con-
centrations. Peng et al (2016) reported increased PM2.5

concentrations across China between 1999–2011. Ma
et al (2016a) reported a positive trend in PM2.5 across
China between 2004 –2007, followed by a negative
trend between 2007–2013. Lin et al (2018) found
Chinese PM2.5 concentrations increased between
2001–2005, before decreasing from 2006–2015. Fu
et al (2014) used visibility data across the North
China Plain (NCP) to show a positive trend in low visi-
bility days between 1980–1995, little trend between
1995–2003 followed by a reduction in low visibility
days between 2003–2010, particularly in winter. Visi-
bility data has also been used to estimate that annual
mean PM2.5 in Beijing increased between 1973–2013
by an average of 0.6 μg m−3 year−1 (Han et al 2016). A
modelling study suggests that population-weighted
PM2.5 concentrations across China increased by 53%
between 1960–2010 and by 10%–35% between
1990–2010 (Butt et al 2017). Li et al (2017a) use satel-
lite and in situ observations to downscale a global
model and estimate that in East Asia, annual popula-
tion-weighted mean PM2.5 increased significantly by
0.86 μg m−3 year−1 during 1998–2013, with an insig-
nificantly decreasing trend during 2006–2013.

Satellite observations show that SO2 concentra-
tions over the NCP region peaked in 2007, decreasing
by 50% between 2005–2015 (Krotkov et al 2016).
Declines in SO2 across China are also more wide-
spread, with a 50% decline in SO2 concentrations
reported across the most polluted provinces in China
between 2005–2015 (Ling et al 2017, Van Der A

et al 2017). Li et al (2017b) estimate that SO2 loading
over China decreased by a factor of five between
2007–2016, by which time 350 million fewer people
were exposed to dangerous concentrations.

Satellite observations have shown that similarly to
SO2 and PM2.5, nitrogen dioxide (NO2) has begun to
decrease across China (Zhang et al 2012, 2018, Irie
et al 2016, Krotkov et al 2016). Across the NCP, NO2

concentrations increased by 50% between 2005–2011,
before returning to 2005 levels by 2015 (Krotkov
et al 2016). The same trend with a maximum in 2011
was observed when averaging across the whole of
China (Irie et al 2016). Gu et al (2013) found that while
the trend in NOx emissions was positive across the
whole of China during 2005–2010, the more econom-
ically developed regions such as the PRD and munici-
palities of Beijing and Shanghai had comparatively
lower concentrations or negative trends.

Satellite observations suggest ozone (O3) con-
centrations have been steadily increasing across China
at a rate of 7% per year between 2005–2010 (Verstrae-
ten et al 2015). Although there are no long term
records of surface O3 measurements in urban areas of
China, there is evidence of positive trends at back-
ground sites. During 2003–2015, maximum daily
average 8 h mean (MDA8) O3 concentrations
increased at a rate of 1.13 ppb year−1 at a monitoring
station 100 km northeast of Beijing (Ma et al 2016b).
An increase of 0.25 ppb year−1 was recorded at a
remote background site in western China between
1994–2013 (Xu et al 2016), and in southernChina, and
at a background site in Hong Kong an increase of 0.58
ppb year−1 between 1994–2007 was recorded (Wang
et al 2009).

Most of our understanding of recent trends in air
pollution across China comes from satellite studies or
from relatively few in situ observations. There have
been very few attempts to use data from surface mon-
itoring stations to assess recent trends. Here we use
data from >1600 surface monitoring stations across
China and Taiwan for the period 2015–2017 to
explore recent trends in the concentrations of air
pollutants.

Methods

Three year time series (January 2015–December 2017)
of hourly concentrations of PM2.5, PM10, CO, O3, SO2

and NO2 were downloaded for stations operated by the
environmental protection departments for Mainland
China (MC), Hong Kong (HK) and Taiwan (TW). Data
for MC was downloaded from http://beijingair.
sinaapp.com/ which had obtained the data from
http://pm25.in, a mirror of data from the official
Ministry of Ecology and Environment download plat-
form (http://106.37.208.233:20035/). Similar data has
beenused inother studies (e.g. (RohdeandMuller 2015,
Liang et al 2016, Leung et al 2018)). HK data was
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downloaded from the HK Environmental Protection
department (https://cd.epic.epd.gov.hk/EPICDI/air/
station/) and TW data was downloaded from the
TW Environmental Protection Agency (https://taqm.
epa.gov.tw/taqm/en/YearlyDataDownload.aspx). MC
data has been described in detail by Zhang and Cao
(2015). TWdata (excluding aerosolmeasurements)was
reported as a mole fraction, so these were converted
into mass concentration to match MC and HK data by
using meteorological data (73 stations), and assuming
standard pressure and a temperature of 25 °C where
this was unavailable (4 stations). Together these sources
provided data from 1689 monitoring stations, with 13
from HK (the roadside stations are not used), 75 from
TW and 1601 from MC. Locations of the stations are
shown infigure 1.

Previously there have been doubts about the relia-
bility of air quality monitoring data from China, due
to manipulation of data by local environmental pro-
tection bureaus which resulted in discontinuities
around air quality targets (Andrews 2008, Ghanem
and Zhang 2014). However, by comparing Chinese
data with data from United States Embassy and Con-
sulatemonitoring stations, it has been shown that data
is more reliable since 2013 (Liang et al 2016,
Stoerk 2016). Other quality issues with the MC data

have been previously noted including a high propor-
tion of repeating values at some sites (Rohde and
Muller 2015), and periods when reported PM2.5

concentrations exceed PM10 concentrations (Liu
et al 2016b).

To address potential quality issues we applied the
following procedure to all the data used in the study.
First, we removed consecutive repeats from the data.
Values were removed fromNO2 and PM2.5 time series
when there were >4 consecutive repeats, and for O3

where there were >24 consecutive repeats. 148 and
100 stations contained >5% consecutive repeats for
NO2 and PM2.5 respectively and 1 station contained
>5% repeats for O3. The data contain a small fraction
(<0.04%) of zero values, which are unlikely to be
accurate and could be caused by lower precision
around the detection limit. We remove zero values
from the time series. After consecutive repeats and zer-
oes have been removed, if <90% of hourly data is
available for the whole time series, it is removed.
Finally, to remove day-to-day repeats, data were flag-
ged if the daily mean had a low coefficient of variation
in a certain period (see supplementary figure 1 exam-
ples, available online at stacks.iop.org/ERL/13/
114012/mmedia). If>60 d were flagged, the station is
removed. The number of stations identified at each

Figure 1. Location of air quality stations inMainlandChina (red), Taiwan (blue) andHongKong (magenta) used in this analysis. The
60 largest cities by population aremarkedwithwhite crosses, of which the 10 largest are labelled.

Table 1.The number ofmonitoring stations available for each pollutant and the number of stations that were removed during data checking.

Pollutant

Type NO2 PM2.5 O3 SO2

Initial number of stations 1689 1689 1687 1689

Number of stations with>5%consecutive repeats 148 100 1 N/A

Number of stations removed due to<90%of data being present 520 505 339 296

Number of stations removed due to ‘day-to-day’ repeats 10 37 11 25

Number of stations remaining in the analysis 1159 1147 1337 1368

3

Environ. Res. Lett. 13 (2018) 114012

https://cd.epic.epd.gov.hk/EPICDI/air/station/
https://cd.epic.epd.gov.hk/EPICDI/air/station/
https://taqm.epa.gov.tw/taqm/en/YearlyDataDownload.aspx
https://taqm.epa.gov.tw/taqm/en/YearlyDataDownload.aspx
http://stacks.iop.org/ERL/13/114012/mmedia
http://stacks.iop.org/ERL/13/114012/mmedia


stage of data quality checking are shown in table 1. The
thresholds used were chosen by applying the proce-
dure with a range of thresholds, andmanually examin-
ing the datasets to verify whether suspect data were
removed. The thresholds applied for the different pol-
lutants are given in supplementary table 1. We test the
sensitivity of our analysis to these thresholds and find
the magnitude of the trends we calculate are not sensi-
tive to the values of the thresholds we choose (supple-
mentary table 2).

The hourly data is used to calculatemonthly avera-
ges. We then deseasonalised the data (the results using
non-deseasonalised data are shown in supplementary
figure 2). To analyse the three-year time series for
monotonic, linear trends, the Mann-Kendall test was
used to assess the significance of trends (using a
threshold of p<0.05), and the Theil–Sen estimator
was used to calculate the magnitude of the trend. Both
tests are resistant to outliers, and do not require any
assumptions about the data used (Carslaw 2015, Flem-
ing et al 2018). Absolute trends were converted to rela-
tive trends by dividing by the 2015 to 2017 mean. For
O3, the trend tests were also applied to the MDA8
metric, which is used in the World Health Organisa-
tion’s (WHO) air quality guidelines (AQGs). The R
package ‘openair,’ which contains a set of tools devel-
oped specifically for analysing air quality data, was
used to perform this stage of the analysis (Carslaw and
Ropkins 2012).

We specifically analyse trends for large urban clus-
ters: Pearl River Delta (PRD), Yangtze River Delta
(YRD), North China Plain (NCP), and Sichuan Basin
(SCB). Additionally, we analyse trends for the Hong
Kong Special Administrative Region (HK) (which is
within the PRDdomain) andTaiwan (TW).

Air pollutant concentrations and trends

Annual mean concentrations of air pollutants during
2015–2017 are shown in figure 2 and supplementary
figures 3 and 4. Highest annual mean PM2.5 concen-
trations are found in the provinces of Hebei, Henan
and Shandong, which all have a median concentration
of >60 μg m−3. Stations in Shanghai and Guangdong
have lower PM2.5 concentrations, while the lowest
PM2.5 concentrations (20–25 μg m−3) are found in
Hong Kong, Taiwan and Xizang. The highest concen-
trations of SO2 are found in Shanxi, which has a
median concentration of >60 μg m−3, and in Hebei
which has a median concentration of 37 μg m−3.
High NO2 concentrations are found across the Tian-
jin, Hebei and Beijing region, as well as Shanghai,
Hong Kong and Chongqing. The provinces with
the highest median O3 concentrations are the high
elevation provinces of Xizang and Qinghai. Hong
Kong and Chongqing have some of the lowest O3

concentrations.

Figure 2 also shows trends in air pollutants during
2015–2017. The median trend in annual mean PM2.5

concentration across all stations is −3.4 μg m−3

year−1 or−7.2% year−1. This is comparable to Zheng
et al (2017), who find that the annual mean PM2.5

across 74 Chinese cities decreased by 23.6% between
2013–2015 (−7.9% year−1). Lin et al (2018) used satel-
lite data to suggest the Chinese PM2.5 trend steepened
from −0.65 μg m−3 year−1 between 2006–2010 to
−2.3 μg m−3 year−1 between 2011–2015. Our work
suggests that the rate of PM2.5 decline has been sus-
tained, or possibly even become faster, between
2015–2017. We find 58.4% of stations have significant
PM2.5 concentration trends, and of these, 90% are
negative. PM10 concentrations exhibit similar trends
(supplementary figure 5). The fraction of stations
meeting the WHO’s first Interim Target for annual
average PM2.5 concentration of 35 μg m−3 rose from
15% in 2015 to 20% in 2017.

Figure 3 shows the relative trends in air pollutants
at the province level (supplementary figure 6 shows
absolute trends). Negative trends in PM2.5 concentra-
tions are widespread, with all provinces experiencing
negative median trends except Shanxi and Jiangxi.
Most provinces had trends of around −10% year−1,
with faster reductions in some areas including Beijing
municipality (−14.4% year−1). Widespread reduc-
tions in PM2.5 concentrations are consistent with
trends estimated from satellite data for the period
2011–2015 (Lin et al 2018).

The median trend in annual mean SO2 concentra-
tion across all stations is −1.9 μg m−3 year−1 or
−10.3% year−1. 66% of stations have significant
trends, and of these, 90% are negative. The mean
exceedance rate of the WHO 24 h AQG fell from
10.8% in 2015 to 7.6% in 2017. Similarly to PM2.5,
negative trends in SO2 concentrations are widespread
across provinces (figure 3), with all having median
negative trends apart fromHainan and Fujian, both of
which have low absolute concentrations (supplemen-
taryfigure 3).

There is no median trend in annual mean NO2

concentration (0.0 μg m−3 year−1 or 0.1% year−1).
48% of stations have significant trends, and of these,
54% are positive. The percentage of the stations that
comply with the WHO’s annual mean AQG of
40 μg m−3 has declined, from 71% in 2015 to 66% in
2017. There is more heterogeneity in the spatial dis-
tribution of trends, with median positive trends in the
SCB, YRD and PRD domains, but median negative
trends inHK,NCP andTW (figure 2). The greater spa-
tial heterogeneity of NO2 trends could be partly due to
its comparatively shorter lifetime, so that neighbour-
ing regions can have opposing trends (e.g. HK and the
PRD). The NO2 concentration trends we report for
2015–2017 are more variable that the consistent
declines in NOx emissions (Liu et al 2016a, Van Der A
et al 2017) and NO2 concentrations (Krotkov
et al 2016) reported for the period 2011–2015.
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In contrast to PM2.5 and SO2, annual mean O3

MDA8 has a positive median trend of 4.6 μg m−3

year−1 or 5.2% year−1. 55%of stations have significant
trends, and of these, 92% are positive. Averaging
across all stations, the percentage of days where the

WHO AQG (100 μg m−3) was exceeded for MDA8
rose from 9.8% in 2015 to 12.4% in 2017. Annual
mean O3 concentrations show similar relative and
absolute trends (supplementary figures 7 and 8). The
Tropospheric Ozone Assessment Report, which did

Figure 2.Trends in concentrations of (a), (b)PM2.5, (c), (d)O3MDA8, (e), (f)NO2, (g), (h) SO2 acrossMainlandChina,HongKong
andTaiwan during 2015–2017. Left-hand panels (a), (c), (e), (g) show the sign of trend (blue: significant negative, red: significant
positive, grey: insignificant) andmean concentration (size of circle). Right hand panels (b), (d), (f), (h) show the frequency of stations
against the relative trends. Themedian relative and absolute trend as well as the percentage of stationswith significant trends is shown
on each panel. The percentage of significant trends that are negative (blue) or positive (red) are also shown. The black dotted line
shows themedian trend across all sites. Triangles show themedian trend for the regional domains shown in the left-hand panels: Pearl
River Delta (PRD), Yangtze RiverDelta (YRD), NorthChina Plain (NCP), Sichuan Basin (SCB), HongKong Special Administrative
Region (HK) andTaiwan (TW). The left panels are zoomed to show the trends over themore populous regions of China, whilemedian
trends and%of significant sites on the right panels refer to allMainlandChina,HongKong andTaiwan.

5

Environ. Res. Lett. 13 (2018) 114012



not aggregate trends specifically for China due to lack
of stations with long records, also reports significant
positive trends over East Asia, (Chang et al 2017, Flem-
ing et al 2018). All the megacity regions highlighted in
figure 2 have medians greater than the overall median,
and there are only 4 regions in figure 3 with median
negative trends. During 2005–2013, Chinese megacity

clusters shifted from a VOC-limited (NOx saturated)
O3 production regime towards a mixed regime, due to
reductions in NOx emissions, which has lessened the
NOx titration effect resulting in increases in O3 con-
centration (Jin and Holloway 2015). Meanwhile,
increasing NOx emissions in less developed cities has
led to a shift fromNOx limited regimes towards mixed

Figure 3.Relative trends in (a)PM2.5, (b)O3MDA8, (c)NO2 and (d) SO2 by province or region (bolded). Themedian (red line),
interquartile range (IQR) (box) and IQR±IQR*1.5 (whiskers) of the trend across the stations in each province/region is shown. The
number of stations in each province/region is indicated at the top of the plot.
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regimes, which have high O3 production efficiency
(Jin andHolloway 2015).

Discussion and conclusion

We find substantial changes in the concentrations of
air pollutants across China during the period of
2015–2017.We report negative trends in annual mean
PM2.5 (−3.4 μg m−3 year−1) and SO2 (−1.9 μg m−3

year−1) concentrations and positive trends in annual
mean O3 MDA8 (4.7 μg m−3 year−1) concentrations.
The observed trends are widespread across China and
occur consistently across most of the country. In
contrast we find spatially variable changes in NO2,
with no overall trend across China. Trends in PM2.5

and SO2 concentrations are consistent with previous
studies, that report negative trends in both PM2.5 (Ma
et al 2016a, Lin et al 2018) and SO2 (Krotkov et al 2016,
Van Der A et al 2017) between ∼2007 and 2015. Our
study therefore suggests that declines in PM2.5 and SO2

concentrations that have been reported for 2007–2015
continued between 2015 and 2017.

The trends we report are calculated over a rela-
tively short period and could be caused by a variety of
different factors. Air pollution is strongly dependent
on weather. Interannual variability in meteorology
and synoptic weather conditions (Leung et al 2018)
may therefore play a role in the trends we observe here.
Air pollution over China is influenced by variability in
atmospheric circulation such as El Nino Southern
Oscillation (ENSO) (Cao et al 2015, Zhao et al 2017)
and the Asian monsoon (Li et al 2016, Cai et al 2017).
El Nino years are associated with greater surface PM2.5

in southern China and lesser PM2.5 in northern China
compared to La Nina years (Zhao et al 2017). ENSO
variability is therefore unlikely to cause the spatially
extensive trends in air pollutants across all of China
that we report. It is possible that ENSO may have
retarded the reduction in surface PM2.5 over northern
China during 2015–2017. Changes in land cover and
local meteorological conditions also alter the emis-
sions of natural aerosol and trace gases (Fu et al 2016),
including dust and biogenic volatile organic com-
pounds that can form secondary organic aerosol and
alter concentrations of O3. Leung et al (2018) suggest
that PM2.5 across the NCP will decrease by 0.5 μg m

−3

by the 2050s due to climate change, substantially less
than the changes we report over the past 3 years. Since
the trends over the period 2015–2017 are consistent
with trends over the period 2007–2015, occur
consistently across the country and coincide with
declining Chinese anthropogenic emissions (Zheng
et al 2018), we suggest that the trends are likely domi-
nated by these emission changes. Future work needs to
use air quality models to fully assess the contribution
of different drivers of the trends reported here. It will
be particularly important to establish what is causing
the widespread increase in O3 concentrations, so that

emissions control policies can be most effectively
targeted.
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