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Appendix B from S. P. Ellner and M. Rees, “Integral Projection
Models for Species with Complex Demography”
(Am. Nat., vol. 167, no. 3, p. 000)

Supplementary Technical Details

This appendix fills in mathematical details from the main text and is directed mainly at theoreticians. It requires
some familiarity with linear operator theory or a willingness to look up unfamiliar terms in a reference such as
that by Dunford and Schwartz (1988). However, reading it is not necessary for building and using integral
models because the results and their practical implications are all explained in the main text. The first section
discusses the assumptions in our model related to power positivity and what can happen when they fail to hold.
“Age x Size Models with Mixing at Birth” and “Models with Uniform Senescence and Mixing at Birth”

concern mixing at birth and-boundedness in models with age structure and models with uniform senescence,
respectively. “Local Stability Analysis for Density-Dependent Models” and “Spectral Radi@s-ofaF” concern
density-dependent models, and “Net Reproductive Rgteoncerns the definition and properties of the net
reproductive ratd,.

Power Positivity, Compactness, and thaei-Bounded Property

Because we assume that the kernel is continuousxaisdcompact, power positivity of the kernel implies that
there exists some>0 and some>0  such that

K™ (y, x) > c, (BY)

which we refer to as uniform power positivity (UPP). A power-positive (PP) kernel is necessarily UPP in our
model, but this is not true in general: a continuous kernel on an unbounded domain can be positive everywhere
without satisfying equation (B1). Unfortunately, “mere positiveness of the kernel is, in contrast to the matrix

case, not sufficient” (Krasnosel'skij et al. 1989, p. 94) for stable population growth. The behavior of our model
depends on the fact that a PP kernel is necessarily UPP under our assumptions. On an unbounded state space, a
biologically meaningful kernel cannot be UPP because this would imply growth to infinite population size in

finite time (see “Noncompact Domains” in app. C); on a bounded but noncompact state space, UPP would have
to be verified directly, along with the other operator properties used to prove stable population growth in

appendix C.

The potential “misbehavior” of a PP kernel on a noncompact state space is illustrated by integrodifference
equation models for spatially distributed populations. Consider a population distributed in physical space with a
Gaussian distribution of offspring dispersal distances, like that of Kot et al. (1996). The kernels for these models
are PP but not UPP. Although such populations may converge to an asymptotic growth rate, the typical behavior
of their spatial distribution is convergence to a constant linear rate of spread (Kot et al. 1996), in the sense that
the radius of the region containing any given fraction of the population grows at an asymptotically linear rate.
The result is that the fraction of the population within any fixed finite region goes to 0—there is no convergence
to an asymptotic population structure. These contrast with the behavior of a PP kernel on a compact space
(which is therefore UPP), where the fraction of individuals in any finite region of state space converges to a
positive limiting value determined by the stable distributian

Indefinite spread in trait space is also prevented if a PP kernel satisfiesbinended property, defined as
follows. If there exists a probability distributiom(x)  0X such that for any initial population distribution
n(x, 0) = ny(x) we havea(ny)u(x) < n(x, m) < B(ny)u(x) , wherey, 3 are positive numbers, thenrthstep
kernel is said to be-bounded (Krasnosel'skij et al. 1989). In appendix C, we show that any UPP kernel in our
model has an iterate that isbounded, and then we use the theoryudfounded positive operators to derive
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stable population growth. So, the implications underlying stable population theory in our model are either PP
UPP= u-bounded, which holds so long as the state space is compact, or miximglat u -bounded, which
holds in many age-structured models. In the main text, we have explained how biologically reasonable
assumptions lead to models with a compact state space, and at the end of appendix C, we discuss the
mathematical difficulties created by noncompact state spaces.

Age x Size Models with Mixing at Birth

Childs et al. (2003) showed that aige x size  model with finite maximum agebisunded and therefore has
stable population growth under two assumptions: a mixing at birth condition and the primitivity of the life cycle
graph. Here, we extend those conditions to the weaker mixing assumption stated in the text, as a step toward
analyzing models with uniform senescence. A density-independent integral projection model (IPM) can be
regarded as a linear operafbron a space of population distribution functions; our assumptions in the main text
(continuous kernel on compact domain) imply tiamapsL,(X) into itselfT was calledK in the main text;
we change notation here for consistency with Childs et al. (2003). We decorfipese + F , Rvaedd-
are the operators defined ByandF, the survival and fecundity components of the kernel.

The mixing at birth assumption is formally defined as follows. Eatdenote the offspring distribution
resulting from population distribution. If there is a probability distributio, on X such that for any
population distributiom there are positive numbessandB (depending om) such that

Apo < Fn< By, (B2)

with A > 0 wheneverFn # 0 , we say that the model has mixing at birth.
We first show that equation (B2) is implied by the mixing assumption of Childs et al. (2003X Leenote
the set of population states with positive fecundity,

X" ={xe X: fF(y,x)dy>

X

Recall that the integral tacitly includes all age-specific fecundity kernels. Childs et al. (2003) assumed that
Coo(Y) < f.(y, X) < Co,(y) for all x in X*, wherec is some positive constant arfidis the fecundity kernel for
agea individuals. More generally, suppose thegk)eq(y) < (¥, X) £ C(X)e,(y)  foralin X*, wherec andC
are positive orX* and g, € L,(X). Then,

Fn(y) = f':(y, x)n(x)dx = f':(y, x)n(x)dx = sﬁo(Y)fC(X)n(X)dK

X+

so we can také\ = [x-c(x)n(x)dx and, similarl = [x- C(x)n(x)dx . Whém %= 0 , the supporhahust
intersectX™, so A and B are both positive.

We now derive conditions under which some iteratélof u-bounded. Define a Leslie matrlx, by assigning
size distributiony, to a cohort of offspring and computing their age-specific per capita survival and fecundity, as
in appendix A, section a, of Childs et al. (2003); that is,lldbe the fraction of the cohort that survives to age
a, p, = I/, and letf, be the average per capita fecundity at agef those that survive to age Assume that
L, is primitive and therefore power positive. Lity, 0) = n,(y)  be an initial size distribution. Because
postreproductives are omitted (by assumption), there exists a futuregtah@hich some births occur; that is,
Fn(-, g) > 0. The value ofq can depend om, but cannot be larger than the maximum adeBecausd., is
primitive, there exists some time interv@l such that all entries i', are strictly positive for a Q . Hence, at
any timeR>M + Q, the population includes individuals of all ages 0,1, 2, ... M . These individuals were
necessarily born at timéd?, R— 1, R— 2, ..., R— M. Definea(n,) >0 to be the minimum value &{n) over
those times an@(n,) to be the maximum valueBgf) over those times. The actual distribution of age 0
individuals in each of those years is therefore betweén)e,(y) And)e «(Y) , and the population & time
consists of the combined survivors from each of those cohorts. Thus,
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a(No)Uo(y) < (Y, R) < B(no)uo(y), (B4)

whereu, = (I + P + P>+ .- + P")gp, . Because the survival kernel is bounded and continuous, it mé&xs
into itself, sou, € L,(X) . This is the definition of® beingu,-bounded, which implies that stable population
theory holds forT (see app. C).

Models with Uniform Senescence and Mixing at Birth

An myear-ahead kern&{™ can be split into two parts, one resulting from survival over thenngdrs and
the other involving some reproduction. For amy defineG,, = T™ — P™, them-step-ahead operator removing
the possibility of survival from the beginning to the end of the time period, an@ €y, X) denote the
corresponding kernel,

Gu(y, X) = K™(y,x) = P™(y, x). (B5)
If there are somén,c>0 such that

P™(y, x) < cG (¥, X) (B6)

for all x,y in X, we say that the model has uniform senescence. The demographic meaning of equation (B6) is
that in the long run, one’s own survival contributes less on average to any segment of the population than one’s
expected contribution via descendants—however, notectiratquation (B6) is not assumed to be small.
Truncating the model by not allowing survival past aggives an age-structured model with a finite maximum
age. In this section, we show that if uniform senescence holds and a truncated model satisfies the assumptions of
the preceding section, then some iterate of the kernelbsunded.

Claim: P* < cG, for allk > m.

Proof: PI*™ = PIP™< PicG,, = cP!G,,. Becaus®'G,, corresponds to a subset of all lineage pathways of
lengthj + m that include some reproduction, it follows G, < G, ,,

We now construct a family of upper bounds,,  such thats u, -bounded from above for anlg>m . The
claim implies thatfT* < (1 + ¢)G, for ank > m , so it suffices to prove the upper bound3dpiWe can expand
and then regroup

k—1
G, = (P+F)"—Pk= > P%FQ,, (B7)
a=0

where each term i, is some (possibly empty) string of compoded andF's. That is, starting from the left
in any term in the term-by-term expansion & + F)*— P* , there is some numlmdrsuccessivé®’s before
the firstF, with 0 < a<k, and then possibly something else after that leftnkosD, collects all the “something
elses” from terms witha successivé®’s at the left before the firde. For any initial distributiomn,, FQ_n, is the
distribution of offspring from the population distributid,n,, so under mixing at birth, this is bounded above
by B(Q.ny)¢,. Therefore,

k=1

k—1
G, < Zo P*B(Q.No)¢0 < Bra(N 9 ZO P% o= B pnafN U g0 (B8)

whereB,.(n,) = 1+ max{B(Q,n,),a =0,1, ... k— 1} >0 andu,, is given by equation (B4), witM = k —
1

We now give conditions under which some iterateis u, ,-bounded from below for somle>m . The lower
bound is required to be positive, but if we mimic the derivation of equation (B8) starting TromG, , there is
no guarantee thahin {A(Q.n,)} >0 . To get a positive lower bound, we use an age-structured life cycle in which
no individuals can live beyond ade— 1 , represented schematically by
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FF - FFJ
. 0
G = H : OD (B9)

Tom

acting on thek-fold Cartesian product ok with itself, corresponding to ages 0, 1, 2, k-1 nlf(x). is an
initial state distribution forT, letn, = (n,, 0,0, ..., 0)denote the corresponding initial distribution 8r , and
let w, be projection fromX* into X by summing up individuals of all ages,

k-1

7o (No(X), Ny(X), oy N1 () = 2 My(X).

a=0

Then,T'n, > 7 ,G'N, for anyr because equality would hold if @ were added to the bottom right corner Gf

G is anage x size model with finite maximum life span. If mixing at birth holds, we can again define a
Leslie matrixL ,(k) for a cohort of individuals born with distributian. Assume that. ,(k) is primitive for
somek>m. This is a very weak assumption in a model without explicit age structure. For example, if there are
two successive agda*, a* + 1) at which reproduction occurs in a cohort of individuals born with distribution
@o(Y), thenL 4(k) will be power positive for ang> a" . Then, exactly as in the previous section, foRany
sufficiently largeG® _isli, -bounded from below wily = (I + P+ P* + ==« + P*Y)p, , whepg =
(¢, 0,0, ...,0)andP is the survival component @& , given by equation (B9) with Fteedeleted. Therefore,

Tne > m,G™Ny > ma(N )y = a(n 97 fl o= a(n )
x ol + P+ P2+ -+ P13, > a(no)
x (I +P+ P>+ -+ PN, = a(No)Ug,,
which is the definition ofT® beingu, , -bounded from below. Becausg is u, -bounded from below an@* is
U, -bounded from above, some iterateofis u, -bounded (Krasnosel'skij et al. 1989, p. 95). Thus, the

conditions required fou, , -boundedness are mixing at birth, uniform senescence, and the Leslidgfkjrix
being primitive for some& >m .

Local Stability Analysis for Density-Dependent Models

Let n denote an equilibrium of the density-dependent maglt + 1) = [x K(y, X, N(t))n(x, t)dx , and let
denote a small perturbation. Then, starting front z in yiedine population in yeat+ 1 is

n+z = fK(y, X, N + (W 2)(n(X) + z(x))dx

X

fK(y, x, N)(n(x) + z(x))dx + (W, 2) f%(y, x, N)(n(x) + z(x))dx + O(z?) (B10)

n-+ f K(y, X, N)z(x)dx + (W, 2) f% (y, x, N)n(x)dx + O(z?).

X

So, to leading order, we have
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. K _
Z = | K(y,x, N)z(x)dx + (W, 2) a—N(y, X, N)n(x)dx
X X

= fJ(y, x, N)z(x)dx, (B11)

X

where
J(y, % N) = K(y, x, N) + Q(y, N)W(x),

Ay = f % 0

X

The linearized stability condition is that the spectral radius of the Jacobian opédrd&fined by equation (B11)
should be<1; becausd is a compact operator (so long &ss continuous), the spectral radius dis the
maximum magnitude of its eigenvalues. These calculations and the stability condition are very similar to the
matrix case (Caswell 2001, sec. 16.4).

We now apply the general stability criterion to a model with density dependence in fecundity, as stated in the
text. Specifically, consider a kernel of the form

K(y, %, N) = P(y, x) + g(N)e(y)f(x). (B12)

Here,f is the total raw fecundity of a type individual, ¢ is the distribution of offspring types\l is total
offspring production (i.e.W = f ), and the offspring survival rgtés assumed to be smooth and
undercompensatory; that idg/dN <0, bdNg(N))/dN >0 , and we assume that the Kpel) + o(y)f(x)
is power positive. In the absence of population structure, equation (B12) reduces to the difference equation
n.. = Pn + fn,g(fn,), for which it is easy to prove that there exists at most one positive equilibrium, which, if
it exits, is locally stable.

Exactly the same holds for equation (B12). In “Spectral RadiuB &f aF,” we derive a result implying that
the spectral radius of the operator corresponding to the k&(yek) + ap(y)f(x) is a strictly increasing function
of a for a> 0. Under our assumptions, the spectral radius is also the dominant eigenvalue (see app. C).
Consequently, becausgis decreasing, there is at most oNe> 0 for which the dominant eigenvalue of equation
(B12) equals 1. The corresponding eigenvector is unique up to multiplicative scalings, and only one scaling will
give the proper value dil , so there is at most one equilibrium for equation (B12). Some routine calculus shows
that equation (B12) has a Jacobian kernel of the fom) = P + aF , WRdfe are the survival and fecundity
components oK(y,x,N) an@<a<1 . The spectral radiusl(f) is therefdreson is locally stable.
Existence of an equilibrium can often be related to the model’'s behavior at low and high densities, using results
from degree theory (Krasnosel'skii and Zabreiko 1984, sec. 44). For example, an equilibrium must exist for
equation (B12) if the zero equilibrium is unstable (i.e., the spectral radiuk(fpix, 0) > 1 ), the total offspring
productionNg(N) has a finite upper bound, and a population without recruitment cannot persist (i.e., the spectral
radius forP < 1) but dies off at a bounded rate.

Spectral Radius of P + aF

We show here that the spectral radi(g) of the integral opefataiefined by the kernek,(y, x) = P(y, x) +
aF(y, x) is a strictly increasing function & for a > 0, under our usual assumptions ab&ytcontinuity, and
nonnegativity of kernel components and assuming khas power positive (hence UPP) and thafs nonzero.

Let b>a> 0; we need to show that(b) > o(a) (the caze= 0 is treated separately below). As in the matrix
case, power positivity is determined by the support of the transition kernel, sdkhathd K, are UPP and
satisfy the assumptions for stable population growth in appendix Cwllet the dominant eigenvector @f,
with eigenvalues(a) ; because of URR,is strictly positive. ThenT ,w > T w , with strict inequality at some
points (becausé — a)F is nonzero ands strictly positive). Letm be an iterate such th&™ (and therefore
K{m) is strictly positive. We then have that(T,w — T,w) >0 everywhereXnand, consequently, ™ *w >
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ToT w>TIMw = o(@)™*w, with the outermost inequality being strict everywhereXanBecause both
members of that inequality are strictly positive, their ratio is a continuous function and therefore attains its
minimum value, which must bel. Therefore, for some >0 , we ha¥g"'w> (1 + g)o(a)™*w . This implies
(via the formulag(A) = lim ... |A"|*" ; or see lemma 9.2 in Krasnosel'skij et al. 1989) dta} > (1 +
8)1/(m+1)0(a)_

Now considera = 0 . Ife(0) = 0, we are done becaug®) > 0 (in app. C, we show that this is true for any
UPP kernel in our model). 16(0) >0 , lelv be a corresponding eigenvector scaled so that at some pgigt>
0. We claim thatw must be nonnegative. As explained in appendix C, any eigenvector for a continuous kernel in
our model must lie irL, n L, , and its corresponding eigenvalue is the same whether we consider the operator as
acting inL, or L,. If wis not nonnegative, thefi,|w| > [Tw| , with strict inequality at some point, implying
that ||To|wl||.> [T W|||. = o(0) ||w||, = a(0) |||w||| » The outermost inequality implies that the spectral radius of
T, is greater tharw(0) , a contradiction implying thatmust be nonnegative. Now, let be an iterate such that
K™ is strictly positive, and henc&w >0 everywhere. Then, as aboyelw > T,T "w , With strict inequality
at some points. We then have thgf(T,T ™w — T,T, W) >0  everywhereXpmplying that T 2™ *w >
T2™w = ¢(0)*"'w everywhere. Because both sides of the outer inequality are continuous and hence bounded,
some small multiple of the right-hand side will be uniformly smaller than their difference. So, again, there exists
£ > 0 such thatT™"*w > (1 + £)o(0)*"*w , implyings(b) > ¢(0) .

Net Reproductive RateR,

R, is formally defined as the dominant eigenvalue of the opefdtoprresponding to the next-generation kernel
R = F + FP + FP? + ---. The biological interpretation dR is thatRn is the total offspring production over

their lifetime by a set of individuals with state distribution However, we need to show that the series defining
R is actually convergent. Le® andF be the operators corresponding to the survival-growth and fecundity

kernels, respectively. Suppose that all states suffer some unavoidable mortality; fh@(¥sx)dy<p* <1 for
all x. TheL, operator norm oP is then at mosp*; hence, the sequenée+ FP + FP?+ ---  is convergent and
equalsF(I — P)"* . The corresponding kernel sum is pointwise convergent beB&ti8¢y, x) < (p*)* . Using this

bound, it is easy to show that the limit kernel is continuous and therefore bounded; Reisca,compact
operator.

We also need a dominant eigenvalue RarAs with matrix models, this requires additional assumptions
becauseR does not necessarily satisfy the assumptions for stable population growthTwheR + F does
(Cushing and Yicang 1994). Our model fOnorpordumsatisfies two related assumptions, each of which implies
a dominant eigenvalue. The first is mixing at birth. If equation (B2) holds, then for any populatiomstate
A(2)¢, < RN < B(2)¢, Wherez = (I — P)™'n. Consequentl is u-bounded and therefore satisfies the operator
properties P1-P3 (see app. C), which imply the existence of a unigue dominant eigenvalue equal to the spectral
radius. The second has to do with the oper&oe (I — P)"*F R andQ have the same eigenvalues (this is
equivalent to the familiar result for matrices thfatand BAB* have the same eigenvalues). For our mo@els
positive and therefore power positive, which again implies properties P1-P3 in appendix C. We kn@nighat
positive in our model becauden is positive on the complete range of offspring types for any nonzero
population distributiom; hence,Qn = (I + P + P2+ --)Fn is positive for any possible descendant of any
possible newborn, which is the entire state space.

Usually, R, has to be computed by iteratiigyor Q, but it can be calculated explicitly if there is exact mixing
at birth, meaning tha(y, X) = ¢,(y)f(x) . Then, the only eigenvectoRols ¢, because the range &fis the
span ofg,. A direct calculation then shows thR} is the average per capita lifetime offspring production from a
cohort of newborns with state distributia®. For iteratingR or Q, it is important to remember that the “kernel”
for the identity operator is & functionl(y, x) = 6,(x). So, however the model is implementedyust be
represented by a matrixsuch thain = n for any state vectar You can then use matrix inversion to find the
matrix representin@ or R.

Evolutionary analysis of our model uses the fact tRagt- 1 and1l have the same sign. We now prove
this under the assumptions thgatis power positive and thad has a positive, simple, strictly dominant
eigenvalue whose corresponding right eigenvector is nonnegative (it is sufficient for th3 tlepower
positive, as in our model, because stable population theory then hold¥) fathese assumptions are very similar
to those required in the matrix case by Cushing and Yicang (1994). It seems likely-bloaindedness of some
iterate of T would be sufficient, but a proof eludes us.
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If X\ =1 then (P + F)w = w; henceFw = (I — P)w , and sQw = w . Thus, 1 is an eigenvalu® of
Suppose that 1 is not the dominant eigenvalu€®ofThen, there exists a real eigenvajue 1, with
corresponding nonnegative eigenvecoAs w is strictly positive (becaus€ is power positive), we have
(w, ) >0 in the L, inner product and can therefore write= a,z+a,u ,with>0 afud2 =0 .We can
then apply toQ the proof in appendix C of convergence to stable distribution (theorem 2), with the conclusion
thatQ"wlp" converges to a nonzero multiple ofThis impliesw = z; hence, the dominant eigenvaluegQofs
1; that is,R, = 1. Reversing this argument shows that 1 whenByer 1 .

Supposeé\>1 . ThenP + F)w = Aw implies theiv = \w — Pw = (I — P)w + (A — 1)w, and, therefore,

Qw=w+A-1D(1-P)'w=w+(\—-1)
x (I +P+P2+ -yw>w+ (A — 1w = A\w.

As in the previous section, by theorem 9.4 of Krasnosel’skij et al. (1989), this implies that some eigenvalue of
Q, and hence the dominant eigenvalue, is at l@ashat is,R;,> N> 1.

Suppose thaR,> 1 . Then, consider the family of operakrs aF , with correspoiigR,(a), , and so
on. Becaus®(a) = aQ(1) , we haw,(a) = aR,(1) ; so, fat = 1/R,(1)<1 , we h&Rga*) = 1 and,
therefore \(@*) = 1 . The result of the previous section then impliesXxhat A(1) >\(@") = 1 .

We have shown that >1<R;>1 amd=1=<R,=1 . Therefore, we must also havd - R, < 1

The relationship betweeR, and \ is useful in density-dependent models where density affects only the initial
survival of offspring. Specifically, suppose that the kernel has the #fyx, N; 6) = P(y, x; 6) +
a(N)F (v, x; 6), wheref is a vector of parameters characterizing the life history of individuals after the initial
impact of density dependence. As in the previous sectiog,isfundercompensatory, a population generally
tends to a stable equilibrium. Evolutionarily stable strategy (ESS) life histories are then identified by invasibility
analysis involving a resident typge at a stable equilibrium with weighted total populatilin  and a rare invader
with different parameter8. The next-generation operator for the invadeRis= g(N)F,(0,)(I — P(6))™* ; hence,
the invader'sR, is g(N)R,(6.), whereR,(6) is the dominant eigenvalueg{6)(1 — P(#))* R, is the net
reproductive rate when offspring are counted before the initial density-dependent mortality and is a density-
independent property of the adult life history. The resideRyss g(N)R,(6,) = 1 because the resident has=
1. The invader therefore hd&,>1 and consequektlyl if and onB, (@) > R,(6,) . The ESS adult life
history is therefore characterized by maximizatiorRy(f) . In models with exact mixing at birth, the dominant
(and only) eigenvector of,(0)(I — P(6))* is the offspring distributigg hence,R,(f) is given by the integral
of R,(0)(1 — P(6)) *e,, Which is the average per capita pre—density dependence offspring production of a
randomly chosen newborn.
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