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Appendix B from S. P. Ellner and M. Rees, “Integral Projection
Models for Species with Complex Demography”
(Am. Nat., vol. 167, no. 3, p. 000)

Supplementary Technical Details
This appendix fills in mathematical details from the main text and is directed mainly at theoreticians. It requires
some familiarity with linear operator theory or a willingness to look up unfamiliar terms in a reference such as
that by Dunford and Schwartz (1988). However, reading it is not necessary for building and using integral
models because the results and their practical implications are all explained in the main text. The first section
discusses the assumptions in our model related to power positivity and what can happen when they fail to hold.
“Age # Size Models with Mixing at Birth” and “Models with Uniform Senescence and Mixing at Birth”
concern mixing at birth andu-boundedness in models with age structure and models with uniform senescence,
respectively. “Local Stability Analysis for Density-Dependent Models” and “Spectral Radius ofP � aF” concern
density-dependent models, and “Net Reproductive RateR0” concerns the definition and properties of the net
reproductive rateR0.

Power Positivity, Compactness, and theu-Bounded Property

Because we assume that the kernel is continuous andX is compact, power positivity of the kernel implies that
there exists some and some such thatc 1 0 m 1 0

(m)K (y, x) ≥ c, (B1)

which we refer to as uniform power positivity (UPP). A power-positive (PP) kernel is necessarily UPP in our
model, but this is not true in general: a continuous kernel on an unbounded domain can be positive everywhere
without satisfying equation (B1). Unfortunately, “mere positiveness of the kernel is, in contrast to the matrix
case, not sufficient” (Krasnosel’skij et al. 1989, p. 94) for stable population growth. The behavior of our model
depends on the fact that a PP kernel is necessarily UPP under our assumptions. On an unbounded state space, a
biologically meaningful kernel cannot be UPP because this would imply growth to infinite population size in
finite time (see “Noncompact Domains” in app. C); on a bounded but noncompact state space, UPP would have
to be verified directly, along with the other operator properties used to prove stable population growth in
appendix C.

The potential “misbehavior” of a PP kernel on a noncompact state space is illustrated by integrodifference
equation models for spatially distributed populations. Consider a population distributed in physical space with a
Gaussian distribution of offspring dispersal distances, like that of Kot et al. (1996). The kernels for these models
are PP but not UPP. Although such populations may converge to an asymptotic growth rate, the typical behavior
of their spatial distribution is convergence to a constant linear rate of spread (Kot et al. 1996), in the sense that
the radius of the region containing any given fraction of the population grows at an asymptotically linear rate.
The result is that the fraction of the population within any fixed finite region goes to 0—there is no convergence
to an asymptotic population structure. These contrast with the behavior of a PP kernel on a compact space
(which is therefore UPP), where the fraction of individuals in any finite region of state space converges to a
positive limiting value determined by the stable distributionw.

Indefinite spread in trait space is also prevented if a PP kernel satisfies theu-bounded property, defined as
follows. If there exists a probability distribution onX such that for any initial population distributionu(x)

we have , where are positive numbers, then them-stepn(x, 0) p n (x) a(n )u(x) ≤ n(x, m) ≤ b(n )u(x) a, b0 0 0

kernel is said to beu-bounded (Krasnosel’skij et al. 1989). In appendix C, we show that any UPP kernel in our
model has an iterate that isu-bounded, and then we use the theory ofu-bounded positive operators to derive
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stable population growth. So, the implications underlying stable population theory in our model are either PP⇒

-bounded, which holds so long as the state space is compact, or mixing at -bounded, whichUPP⇒ u birth ⇒ u
holds in many age-structured models. In the main text, we have explained how biologically reasonable
assumptions lead to models with a compact state space, and at the end of appendix C, we discuss the
mathematical difficulties created by noncompact state spaces.

Age # Size Models with Mixing at Birth

Childs et al. (2003) showed that an model with finite maximum age isu-bounded and therefore hasage# size
stable population growth under two assumptions: a mixing at birth condition and the primitivity of the life cycle
graph. Here, we extend those conditions to the weaker mixing assumption stated in the text, as a step toward
analyzing models with uniform senescence. A density-independent integral projection model (IPM) can be
regarded as a linear operatorT on a space of population distribution functions; our assumptions in the main text
(continuous kernel on compact domain) imply thatT maps into itself.T was calledK in the main text;L (X)1

we change notation here for consistency with Childs et al. (2003). We decompose , whereP andFT p P � F
are the operators defined byP andF, the survival and fecundity components of the kernel.

The mixing at birth assumption is formally defined as follows. LetFn denote the offspring distribution
resulting from population distributionn. If there is a probability distributionJ0 on X such that for any
population distributionn there are positive numbersA andB (depending onn) such that

AJ ≤ Fn ≤ BJ , (B2)0 0

with whenever , we say that the model has mixing at birth.A 1 0 Fn ( 0
We first show that equation (B2) is implied by the mixing assumption of Childs et al. (2003). LetX� denote

the set of population states with positive fecundity,

�X p x � X : F(y, x)dy 1 0 .�{ }
X

Recall that the integral tacitly includes all age-specific fecundity kernels. Childs et al. (2003) assumed that
for all x in X�, wherec is some positive constant andfa is the fecundity kernel forcJ (y) ≤ f (y, x) ≤ CJ (y)0 a 0

agea individuals. More generally, suppose that for allx in X�, wherec andCc(x)J (y) ≤ f (y, x) ≤ C(x)J (y)0 a 0

are positive onX� and . Then,J � L (X)0 1

Fn(y) { F(y, x)n(x)dx p F(y, x)n(x)dx ≥ J (y) c(x)n(x)dx,� � 0 �
� �X X X

so we can take and, similarly, . When , the support ofn must� �A p c(x)n(x)dx Bp C(x)n(x)dx Fn ( 0∫ ∫X X

intersectX�, so A andB are both positive.
We now derive conditions under which some iterate ofT is u-bounded. Define a Leslie matrixL 0 by assigning

size distributionJ0 to a cohort of offspring and computing their age-specific per capita survival and fecundity, as
in appendix A, section a, of Childs et al. (2003); that is, letla be the fraction of the cohort that survives to age
a, , and letfa be the average per capita fecundity at agea of those that survive to agea. Assume thatp p l /la a�1 a

L0 is primitive and therefore power positive. Let be an initial size distribution. Becausen(y, 0) p n (y)0

postreproductives are omitted (by assumption), there exists a future timeq at which some births occur; that is,
. The value ofq can depend onn0 but cannot be larger than the maximum ageM. BecauseL 0 isFn(7, q) 1 0

primitive, there exists some time intervalQ such that all entries in are strictly positive for all . Hence, attL t ≥ Q0

any time , the population includes individuals of all ages . These individuals wereR ≥ M � Q j p 0, 1, 2, … ,M
necessarily born at timesR, , , …, . Define to be the minimum value of overR� 1 R� 2 R� M a(n ) 1 0 A(n)0

those times and to be the maximum value of over those times. The actual distribution of age 0b(n ) B(n)0

individuals in each of those years is therefore between and , and the population at timeRa(n )J (y) b(n )J (y)0 0 0 0

consists of the combined survivors from each of those cohorts. Thus,
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a(n )u (y) ≤ n(y, R) ≤ b(n )u (y), (B4)0 0 0 0

where . Because the survival kernel is bounded and continuous, it maps2 M…u p (I � P � P � � P )J L (X)0 0 1

into itself, so . This is the definition ofTR beingu0-bounded, which implies that stable populationu � L (X)0 1

theory holds forT (see app. C).

Models with Uniform Senescence and Mixing at Birth

An m-year-ahead kernel can be split into two parts, one resulting from survival over the nextm years and(m)K
the other involving some reproduction. For anym, define , them-step-ahead operator removingm mG p T � Pm

the possibility of survival from the beginning to the end of the time period, and let denote theG (y, x)m

corresponding kernel,

(m) (m)G (y, x) p K (y, x) � P (y, x). (B5)m

If there are some such thatm, c 1 0

(m)P (y, x) ≤ cG (y, x) (B6)m

for all in X, we say that the model has uniform senescence. The demographic meaning of equation (B6) isx, y
that in the long run, one’s own survival contributes less on average to any segment of the population than one’s
expected contribution via descendants—however, note thatc in equation (B6) is not assumed to be small.
Truncating the model by not allowing survival past agem gives an age-structured model with a finite maximum
age. In this section, we show that if uniform senescence holds and a truncated model satisfies the assumptions of
the preceding section, then some iterate of the kernel isu-bounded.

Claim: for all .kP ≤ cG k 1 mk

Proof: . BecauseP jGm corresponds to a subset of all lineage pathways ofj�m j m j jP p P P ≤ P cG p cP Gm m

length that include some reproduction, it follows that .jj � m P G ≤ Gm j�m

We now construct a family of upper bounds such thatTk is -bounded from above for any . Theu u k1 m0,k 0,k

claim implies that for any , so it suffices to prove the upper bound forGk. We can expandkT ≤ (1 � c)G k 1 mk

and then regroup

k�1

k k aG p (P � F) � P p P FQ , (B7)�k a
ap0

where each term inQa is some (possibly empty) string of composedP’s andF’s. That is, starting from the left
in any term in the term-by-term expansion of , there is some numbera of successiveP’s beforek k(P � F) � P
the firstF, with , and then possibly something else after that leftmostF. Qa collects all the “something0 ≤ a ! k
elses” from terms witha successiveP’s at the left before the firstF. For any initial distributionn0, FQan0 is the
distribution of offspring from the population distributionQan0, so under mixing at birth, this is bounded above
by . Therefore,B(Q n )Ja 0 0

k�1 k�1

a aG n ≤ P B(Q n )J ≤ B (n ) P J p B (n )u , (B8)� �k 0 a 0 0 max 0 0 max 0 0,k
ap0 ap0

where and is given by equation (B4), withB (n ) p 1 � max {B(Q n ), a p 0, 1, … ,k � 1} 1 0 u M p k �max 0 a 0 0, k

.1
We now give conditions under which some iterateTR is -bounded from below for some . The loweru k 1 m0,k

bound is required to be positive, but if we mimic the derivation of equation (B8) starting from , there iskT ≥ Gk

no guarantee that . To get a positive lower bound, we use an age-structured life cycle in whichmin {A(Q n )} 1 0a 0

no individuals can live beyond age , represented schematically byk � 1
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… F F F F
…P 0 0 0

G̃ p _ P _ _ , (B9)
_ 5 

…0 0 P 0 

acting on thek-fold Cartesian product ofX with itself, corresponding to ages 0, 1, 2, …, . If is ank � 1 n (x)0

initial state distribution forT, let denote the corresponding initial distribution for , and˜ñ p (n , 0, 0, … , 0) G0 0

let p0 be projection fromXk into X by summing up individuals of all ages,

k�1

( )p : n (x), n (x), … , n (x) . n (x).�0 0 1 k�1 a
ap0

Then, for anyr because equality would hold if aP were added to the bottom right corner of .r r˜ ˜˜T n ≥ p G n G0 0 0

is an model with finite maximum life span. If mixing at birth holds, we can again define aG̃ age# size
Leslie matrix for a cohort of individuals born with distributionJ0. Assume that is primitive forL (k) L (k)0 0

some . This is a very weak assumption in a model without explicit age structure. For example, if there arek 1 m
two successive ages at which reproduction occurs in a cohort of individuals born with distribution∗ ∗(a , a � 1)

, then will be power positive for any . Then, exactly as in the previous section, for anyR∗J (y) L (k) k ≥ a0 0

sufficiently large is -bounded from below with , whereR 2 k�1˜ ˜ ˜ ˜…˜ ˜ ˜ ˜G u u p (I � P � P � � P )J J p0 0 0 0

and is the survival component of , given by equation (B9) with theF’s deleted. Therefore,˜˜(J , 0, 0, … , 0) P G0

r R˜ ˜ ˜T n ≥ p G n ≥ p a(n )u p a(n )p u p a(n )0 0 0 0 0 0 0 0 0 0

2 k�1˜ ˜ ˜… ˜# p (I � P � P � � P )J ≥ a(n )0 0 0

2 k�1…# (I � P � P � � P )J p a(n )u ,0 0 0, k

which is the definition ofTR being -bounded from below. BecauseTR is -bounded from below andTk isu u0,k 0,k

-bounded from above, some iterate ofT is -bounded (Krasnosel’skij et al. 1989, p. 95). Thus, theu u0,k 0,k

conditions required for -boundedness are mixing at birth, uniform senescence, and the Leslie matrixu L (k)0,k 0

being primitive for some .k 1 m

Local Stability Analysis for Density-Dependent Models

Let denote an equilibrium of the density-dependent model , and letzn̄ n(y, t � 1) p K(y, x, N(t))n(x, t)dx∫X

denote a small perturbation. Then, starting from in yeart, the population in year isn̄ � z t� 1

′¯ ¯n � z p K(y, x, N � W, z )(n(x) � z(x))dxG H�
X

�K 2¯ ¯p K(y, x, N)(n(x) � z(x))dx� W, z (y, x, N)(n(x) � z(x))dx� O(z ) (B10)G H� �
�N

X X

�K 2¯ ¯p n � K(y, x, N)z(x)dx� W, z (y, x, N)n(x)dx� O(z ).G H� �
�N

X X

So, to leading order, we have
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�K
′ ¯z p K(y, x, N)z(x)dx� W, z (y, x, N)n(x)dxG H� �

�N
X X

p J(y, x, N)z(x)dx, (B11)�
X

where

J(y, x, N) p K(y, x, N) � Q(y, N)W(x),

�K
¯Q(y, N) p (y, x, N)n(x)dx.�

�N
X

The linearized stability condition is that the spectral radius of the Jacobian operatorJ defined by equation (B11)
should be!1; becauseJ is a compact operator (so long asJ is continuous), the spectral radius ofJ is the
maximum magnitude of its eigenvalues. These calculations and the stability condition are very similar to the
matrix case (Caswell 2001, sec. 16.4).

We now apply the general stability criterion to a model with density dependence in fecundity, as stated in the
text. Specifically, consider a kernel of the form

K(y, x, N) p P(y, x) � g(N)J(y)f (x). (B12)

Here, f is the total raw fecundity of a typex individual, J is the distribution of offspring types,N is total
offspring production (i.e., ), and the offspring survival rateg is assumed to be smooth andW p f
undercompensatory; that is, , but , and we assume that the kerneldg/dN ! 0 d(Ng(N))/dN ≥ 0 P(y, x) � J(y)f (x)
is power positive. In the absence of population structure, equation (B12) reduces to the difference equation

, for which it is easy to prove that there exists at most one positive equilibrium, which, ifn p Pn � fn g( fn )t�1 t t t

it exits, is locally stable.
Exactly the same holds for equation (B12). In “Spectral Radius ofP � aF,” we derive a result implying that

the spectral radius of the operator corresponding to the kernel is a strictly increasing functionP(y, x) � aJ(y)f (x)
of a for . Under our assumptions, the spectral radius is also the dominant eigenvalue (see app. C).a ≥ 0
Consequently, becauseg is decreasing, there is at most one for which the dominant eigenvalue of equationN 1 0
(B12) equals 1. The corresponding eigenvector is unique up to multiplicative scalings, and only one scaling will
give the proper value of , so there is at most one equilibrium for equation (B12). Some routine calculus showsN
that equation (B12) has a Jacobian kernel of the form , where are the survival and fecundity¯J(n) p P � aF P, F
components of and . The spectral radius of is therefore!1, so is locally stable.¯ ¯K(y, x, N) 0 ≤ a ! 1 J(n) n
Existence of an equilibrium can often be related to the model’s behavior at low and high densities, using results
from degree theory (Krasnosel’skii and Zabreiko 1984, sec. 44). For example, an equilibrium must exist for
equation (B12) if the zero equilibrium is unstable (i.e., the spectral radius for ), the total offspringK(y, x, 0) 1 1
production has a finite upper bound, and a population without recruitment cannot persist (i.e., the spectralNg(N)
radius for ) but dies off at a bounded rate.P ! 1

Spectral Radius ofP � aF

We show here that the spectral radius of the integral operatorTa defined by the kernelj(a) K (y, x) p P(y, x) �a

is a strictly increasing function ofa for , under our usual assumptions aboutX, continuity, andaF(y, x) a ≥ 0
nonnegativity of kernel components and assuming thatK1 is power positive (hence UPP) and thatF is nonzero.

Let ; we need to show that (the case is treated separately below). As in the matrixb 1 a 1 0 j(b) 1 j(a) a p 0
case, power positivity is determined by the support of the transition kernel, so bothKb andKa are UPP and
satisfy the assumptions for stable population growth in appendix C. Letw be the dominant eigenvector ofTa,
with eigenvalue ; because of UPP,w is strictly positive. Then, , with strict inequality at somej(a) T w ≥ T wb a

points (because is nonzero andw is strictly positive). Letm be an iterate such that (and therefore(m)(b � a)F Ka

) is strictly positive. We then have that everywhere onX, and, consequently,(m) m m�1K T (T w � T w) 1 0 T w 1b b b a b
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, with the outermost inequality being strict everywhere onX. Because bothm m�1 m�1T T w ≥ T w p j(a) wb a a

members of that inequality are strictly positive, their ratio is a continuous function and therefore attains its
minimum value, which must be11. Therefore, for some , we have . This impliesm�1 m�1

� 1 0 T w 1 (1 � �)j(a) wb

(via the formula ; or see lemma 9.2 in Krasnosel’skij et al. 1989) thatn 1/nj(A) p lim kA k j(b) ≥ (1 �nr�

.1/(m�1)
�) j(a)

Now consider . If , we are done because (in app. C, we show that this is true for anya p 0 j(0) p 0 j(b) 1 0
UPP kernel in our model). If , letw be a corresponding eigenvector scaled so that at some point,j(0) 1 0 w(x) 1

. We claim thatw must be nonnegative. As explained in appendix C, any eigenvector for a continuous kernel in0
our model must lie in , and its corresponding eigenvalue is the same whether we consider the operator asL ∩ L1 2

acting inL1 or L2. If w is not nonnegative, then , with strict inequality at some point, implyingT FwF ≥ FT wF0 0

that . The outermost inequality implies that the spectral radius ofkT FwFk 1 kFT wFk p j(0)kwk p j(0)kFwFk0 1 0 1 1 1

T0 is greater than , a contradiction implying thatw must be nonnegative. Now, letm be an iterate such thatj(0)
is strictly positive, and hence everywhere. Then, as above, , with strict inequality(m) m m mK T w 1 0 T T w ≥ T T wb b b b 0 b

at some points. We then have that everywhere onX, implying thatm m m 2m�1T (T T w � T T w) 1 0 T w 1b b b 0 b b

everywhere. Because both sides of the outer inequality are continuous and hence bounded,2m�1 2m�1T w p j(0) w0

some small multiple of the right-hand side will be uniformly smaller than their difference. So, again, there exists
such that , implying .2m�1 2m�1

� 1 0 T w 1 (1 � �)j(0) w j(b) 1 j(0)b

Net Reproductive RateR0

R0 is formally defined as the dominant eigenvalue of the operatorR corresponding to the next-generation kernel
. The biological interpretation ofR is thatRn is the total offspring production over2 …R p F � FP � FP �

their lifetime by a set of individuals with state distributionn. However, we need to show that the series defining
R is actually convergent. LetP andF be the operators corresponding to the survival-growth and fecundity
kernels, respectively. Suppose that all states suffer some unavoidable mortality; that is, for∗P(y, x)dy ≤ p ! 1∫X

all x. The L1 operator norm ofP is then at mostp∗; hence, the sequence is convergent and2 …F � FP � FP �

equals . The corresponding kernel sum is pointwise convergent because . Using this�1 (k�1) ∗ kF(I � P) P (y, x) ≤ (p )
bound, it is easy to show that the limit kernel is continuous and therefore bounded; hence,R is a compact
operator.

We also need a dominant eigenvalue forR. As with matrix models, this requires additional assumptions
becauseR does not necessarily satisfy the assumptions for stable population growth when doesT p P � F
(Cushing and Yicang 1994). Our model forOnorpordumsatisfies two related assumptions, each of which implies
a dominant eigenvalue. The first is mixing at birth. If equation (B2) holds, then for any population staten,

, where . Consequently,R is u-bounded and therefore satisfies the operator�1A(z)J ≤ Rn ≤ B(z)J z p (I � P) n0 0

properties P1–P3 (see app. C), which imply the existence of a unique dominant eigenvalue equal to the spectral
radius. The second has to do with the operator .R andQ have the same eigenvalues (this is�1Q p (I � P) F
equivalent to the familiar result for matrices thatA andBAB�1 have the same eigenvalues). For our model,Q is
positive and therefore power positive, which again implies properties P1–P3 in appendix C. We know thatQ is
positive in our model becauseFn is positive on the complete range of offspring types for any nonzero
population distributionn; hence, is positive for any possible descendant of any2 …Qn p (I � P � P � )Fn
possible newborn, which is the entire state space.

Usually, R0 has to be computed by iteratingR or Q, but it can be calculated explicitly if there is exact mixing
at birth, meaning that . Then, the only eigenvector ofR is J0 because the range ofF is theF(y, x) p J (y)f (x)0

span ofJ0. A direct calculation then shows thatR0 is the average per capita lifetime offspring production from a
cohort of newborns with state distributionJ0. For iteratingR or Q, it is important to remember that the “kernel”
for the identity operator is ad function . So, however the model is implemented,I must beI(y, x) p d (x)y

represented by a matrixI such that for any state vectorn. You can then use matrix inversion to find theIn p n
matrix representingQ or R.

Evolutionary analysis of our model uses the fact that and have the same sign. We now proveR � 1 l � 10

this under the assumptions thatT is power positive and thatQ has a positive, simple, strictly dominant
eigenvalue whose corresponding right eigenvector is nonnegative (it is sufficient for this thatQ be power
positive, as in our model, because stable population theory then holds forQ). These assumptions are very similar
to those required in the matrix case by Cushing and Yicang (1994). It seems likely thatu-boundedness of some
iterate ofT would be sufficient, but a proof eludes us.
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If , then ; hence, , and so . Thus, 1 is an eigenvalue ofQ.l p 1 (P � F)w p w Fw p (I � P)w Qw p w
Suppose that 1 is not the dominant eigenvalue ofQ. Then, there exists a real eigenvalue , withr 1 1
corresponding nonnegative eigenvectorz. As w is strictly positive (becauseT is power positive), we have

in the L2 inner product and can therefore write , with and . We canAw, vS 1 0 w p a z� a u a 1 0 Au, zS p 01 2 1

then apply toQ the proof in appendix C of convergence to stable distribution (theorem 2), with the conclusion
that converges to a nonzero multiple ofz. This implies ; hence, the dominant eigenvalue ofQ isn nQ w/r w p z
1; that is, . Reversing this argument shows that whenever .R p 1 l p 1 R p 10 0

Suppose . Then, implies that , and, therefore,l 1 1 (P � F)w p lw Fw p lw � Pw p (I � P)w � (l � 1)w

�1Qw p w � (l � 1)(I � P) w p w � (l � 1)

2 …# (I � P � P � )w ≥ w � (l � 1)w p lw.

As in the previous section, by theorem 9.4 of Krasnosel’skij et al. (1989), this implies that some eigenvalue of
Q, and hence the dominant eigenvalue, is at leastl; that is, .R ≥ l 1 10

Suppose that . Then, consider the family of operators , with corresponding , , and soR 1 1 P � aF l(a) R (a)0 0

on. Because , we have ; so, for , we have and,∗ ∗Q(a) p aQ(1) R (a) p aR (1) a p 1/R (1) ! 1 R (a ) p 10 0 0 0

therefore, . The result of the previous section then implies that .∗ ∗l(a ) p 1 l p l(1) 1 l(a ) p 1
We have shown that and . Therefore, we must also have .l 1 1⇔R 1 1 l p 1⇔R p 1 l ! 1⇔R ! 10 0 0

The relationship betweenR0 andl is useful in density-dependent models where density affects only the initial
survival of offspring. Specifically, suppose that the kernel has the formK(y, x, N; v) p P(y, x; v) �

, wherev is a vector of parameters characterizing the life history of individuals after the initialg(N)F (y, x; v)0

impact of density dependence. As in the previous section, ifg is undercompensatory, a population generally
tends to a stable equilibrium. Evolutionarily stable strategy (ESS) life histories are then identified by invasibility
analysis involving a resident typevr at a stable equilibrium with weighted total population and a rare invaderN
with different parametersvi. The next-generation operator for the invader is ; hence,�1R p g(N)F (v )(I � P(v ))i 0 i i

the invader’sR0 is , where is the dominant eigenvalue of . is the net�1˜ ˜ ˜g(N)R (v ) R (v) F (v)(I � P(v)) R0 i 0 0 0

reproductive rate when offspring are counted before the initial density-dependent mortality and is a density-
independent property of the adult life history. The resident’sR0 is because the resident has˜g(N)R (v ) p 1 l p0 r

. The invader therefore has and consequently if and only if . The ESS adult life˜ ˜1 R 1 1 l 1 1 R (v ) 1 R (v )0 0 i 0 r

history is therefore characterized by maximization of . In models with exact mixing at birth, the dominantR̃ (v)0

(and only) eigenvector of is the offspring distributionJ0; hence, is given by the integral�1 ˜F (v)(I � P(v)) R (v)0 0

of , which is the average per capita pre–density dependence offspring production of a�1F (v)(I � P(v)) J0 0

randomly chosen newborn.

References Cited Only in Appendix B

Cushing, J. M., and Z. Yicang. 1994. The net reproductive value and stability in structured population models.
Natural Resource Modeling 8:297–333.

Dunford, N., and J. T. Schwartz. 1988. Linear operators. I. General theory. Wiley, New York.
Krasnosel’skii, M. A., and P. P. Zabreiko. 1984. Geometrical methods of nonlinear analysis. Springer, Berlin.


