
This is a repository copy of Depth-based Subgraph Convolutional Auto-Encoder for 
Network Representation Learning.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/140982/

Version: Accepted Version

Article:

Zhang, Zhihong, Chen, Dongdong, Wang, Zeli et al. (3 more authors) (2019) Depth-based 
Subgraph Convolutional Auto-Encoder for Network Representation Learning. Pattern 
Recognition. pp. 363-376. ISSN 0031-3203 

https://doi.org/10.1016/j.patcog.2019.01.045

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Depth-based Subgraph Convolutional Auto-Encoder

for Network Representation Learning

Zhihong Zhanga, Dongdong Chena, Zeli Wangb,⇤, Heng Lib, Lu Baic,
Edwin R. Hancockd

aXiamen University, Xiamen, China
bThe Hong Kong Polytechnic University, Hongkong, China

cCentral University of Finance and Economics, Beijing, China
dUniversity of York, York, UK

Abstract

Network representation learning (NRL) aims to map vertices of a network
into a low-dimensional space which preserves the network structure and its
inherent properties. Most existing methods for network representation adopt
shallow models which have relatively limited capacity to capture highly non-
linear network structures, resulting in sub-optimal network representations.
Therefore, it is nontrivial to explore how to effectively capture highly non-
linear network structure and preserve the global and local structure in NRL.
To solve this problem, in this paper we propose a new graph convolutional
autoencoder architecture based on a depth-based representation of graph
structure, referred to as the depth-based subgraph convolutional autoencoder
(DS-CAE), which integrates both the global topological and local connectiv-
ity structures within a graph. Our idea is to first decompose a graph into a
family of K-layer expansion subgraphs rooted at each vertex aimed at better
capturing long-range vertex inter-dependencies. Then a set of convolution
filters slide over the entire sets of subgraphs of a vertex to extract the lo-
cal structural connectivity information. This is analogous to the standard
convolution operation on grid data. In contrast to most existing models
for unsupervised learning on graph-structured data, our model can capture
highly non-linear structure by simultaneously integrating node features and
network structure into network representation learning. This significantly
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improves the predictive performance on a number of benchmark datasets.

Keywords: Network Representation Learning, Graph Convolutional Neural
Network, Node Classification

1. Introduction

Many naturally occurring problems can be represented using an under-
lying graph or network structure, such as natural language processing [1],
computer vision [2], or social network analysis [3]. It is therefore crucial to
accurately extract useful information from a network. One promising strat-
egy is to map vertices of a network into a low-dimensional space, i.e. learn
vector representations for each vertex, with the goal of encoding meaningful
information conveyed by the graph in the learned embedding space. As a
result, the learned representation can be used directly with existing machine
learning methods to perform various network analysis tasks, such as vertex
classification [3] and clustering [4].

A successful network representation learning model should exhibit two
desirable properties: a) a High non-linearity: As [5] stated, the structure
and inherent properties of a network are highly non-linear. b) Structure-
preserving [6]: The learned representation should preserve both the global
topological arrangement information (e.g. long-range dependencies) and the
local connectivity structure of a network.

Traditional methods for graph dimensionality reduction such as Local
Linear Embedding (LLE) [7], Laplacian eigenmap [8] and IsoMAP [9, 10]
are based on a graph affinity matrix decomposition, which treats the leading
eigenvectors as a representation. However, the time complexity of these
methods is at least quadratic in the number of graph nodes, which makes
them not applicable to large-scale networks.

Motivated by the Skip-Gram model [1], which was originally used for word
representation learning in natural language processing, there is recent work
which attempts to embed very large networks using random walk and matrix
factorization based learning objective functions [11, 12, 13, 14, 15, 16, 17].
DeepWalk [12] is one of the pioneering works for learning node representa-
tions in networks. By regarding the vertices as words, DeepWalk [12] first
performs random walks over a network to generate vertex sequences. Then,
these linear sequences of vertices are treated as sentences and fed into the
Skip-Gram model to learn vertex representations. This idea has been devel-
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oped by numerous subsequent methods [14, 11, 13]. The resulting random-
walk approaches have been extensively verified on a variety of classification
and visualization tasks involving large-scale networks.

Despite the success of these network embedding approaches, the methods
have three common weaknesses. Firstly, they mainly focus on preserving the
local structure of a network. Therefore, what they learn mostly depends on
what the random walks can capture on sample. DeepWalk [12] and node2vec
[11] adopt short random walks to explore the local neighborhoods of nodes,
while LINE [13] is concerned with even more local relationships (nodes at
most two hops away). This focus on local structure implicitly ignores long-
distance global relationships, and the learned representations can fail to cap-
ture the important global structural properties of graphs. Secondly, they
all adopt shallow models which have a relatively limited capacity to capture
highly non-linear structures in the underlying network. Finally, the above
methods all consider only network structure, e.g., the links between nodes,
but ignore the node and edge attribute information, which are significant
features of the network and could potentially benefit network representation
learning.

Inspired by the impressive success of deep learning on processing regu-
lar grid data, a substantial interest has arisen in the generalization of deep
learning models to graph-structured data [18]. Several convolutional neu-
ral network architectures for learning over graphs have been proposed (e.g.,
[19, 20, 21, 22, 23]). For example, QS-CNN [23] proposes a supervised graph
convolutional method that performs a quantum walk on the graph in order
to determine the nodes belonging of each receptive field used for convolution
in a CNN. However, the network architectures and loss functions of these
methods are designed for node or whole-graph classification, and very lit-
tle work investigates how to extend deep learning models, and in particular
auto-encoders, to network representation learning. To our knowledge, only
the work of [24, 15] uses a basic autoencoder to extract complex features and
model the non-linear structure of a network. The input of SDNE [15] is a
vector of node adjacency matrix elements which represents the neighborhood
of each vertex. The encoder generates the network representation and the
decoder reconstructs the input. However, the structure of SDNE can only en-
code the neighborhood information, rather than both neighborhood and node
information. Moreover, SDNE is a stack of multiple fully connected layers
rather than convolutional layers, leading to too many parameters (neurons).

To address the above issues, we propose a depth-based subgraph con-
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volutional autoencoder (DS-CAE) for network representation learning by
comprehensively modeling both node content information and network struc-
ture. Specifically, we commence by establishing a family ofK-layer expansion
subgraphs for each vertex of a graph using graph labeling procedures (e.g.
node degree, PageRank), aimed at better capturing long-range vertex inter-
dependencies contained within a graph. We then design a set of fixed-size
convolution filters and integrate them with these subgraphs (as depicted in
Figure 3). The idea is to apply convolution filters which slide over the entire
sets of subgraphs of a vertex to extract local features in a manner analogous
to the standard convolution operation on grid data. In particular, the convo-
lution operation captures the local structural information within the graph,
and has the weight sharing property among different positions of subgraph.
The main contributions of our work are summarized as follows:

• To our knowledge, DS-CAE is the first convolution-based deep learning
method for unsupervised network representation learning. Similar to
the convolution for image processing, a subgraph-based convolution
operation is proposed to scan a tree which is extracted from various
graph structures.

• In contrast to most existing models [12, 13] for unsupervised learning
on graph-structured data, DS-CAE can capture highly non-linear net-
work structure by simultaneously integrating raw node information and
network structure into network representation learning.

• Due to the deep representation, DS-CAE can map graphs to highly non-
linear deeply learned spaces to effectively preserve both the local and
global information in original space. The code will be made available
for public use.

2. Related Work

Our algorithm is an unsupervised approach to learning over graphs. It
represents an advance in applying a new depth-based subgraph convolutional
autoencoder to graph-structured data for node embedding.

Network embedding. Many NRL models which use random walks and
matrix factorization have been proposed [25, 14, 15, 16, 26]. For example,
DeepWalk [12] performs truncated random walks on networks to transform
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unweighted graph structural information into a large collection of linear struc-
tures represented by vertex sequences. These linear vertex sequences are then
treated as sentences and fed to the Skip-Gram model to learn vertex repre-
sentations. This idea was later extended by node2vec [11], which introduced
hyperparameters to DeepWalk that tune the depth and breadth of the ran-
dom walk. LINE [13] formulates a clearer objective function which directly
depends on the structure of the graph instead of relying on random walks
for capturing the structure of the input graphs. This objective function is
based on the definition of proximity in graphs, which includes first-order and
second-order local relational network information. GraRep [14] uses higher
order proximities to learn multi-scale representations for a graph. It defines
different loss functions to capture different k-order proximities and finally
concatenates the representation of the different scales together. In addition
to the above NRL methods that focus on network topology, significant ef-
fort has also been explored aimed at incorporating user-generated contents
(e.g. text and label information) into NRL to learn more informative network
representations [27]. Text-associated DeepWalk (TADW) [28] improves the
matrix factorization underpinning DeepWalk by considering both network
structure and text features. Max-margin DeepWalk (MMDW) [29] on the
other hands integrates vertex labeling information into network representa-
tion learning and learns discriminative network representations for network
vertices using max-margin constraints between vertices carrying different la-
bels.

Deep Neural Networks. Deeply learned features for NRL give promising
performance when compared to traditional methods [30]. This is due to their
highly nonlinear modeling capacity and flexible scalability. The autoencoder
is one well-known deep learning based NRL method. In a manner similar to
other deep learning architectures, the auto-encoder is an end-to-end learning
architecture stacked with multiple layers of learning nodes. An auto-encoder
consists of an encoder and a decoder. The encoder uses raw data as input
and produces a representation as output. The decoder uses the learned fea-
tures from the encoder as input and reconstructs the original input as output.
The original auto-encoder is stacked with multiple fully connected layers. To
effectively and efficiently process image data, the convolutional auto-encoder
(CAE) [31] is stacked with convolutional layers. Compared with the original
auto-encoder, CAE can capture topological information residing in images
and can reduce the number of network parameters. In graph signal process-

5



ing, significant interest has arisen in the generalization of CAE to graph data
[18]. This problem is not as straightforward since the three basic operations
of a) convolution, b) pooling and c) weight-sharing are only designed for reg-
ular grids. These three points make the adaptation of CAE to graphs both
theoretically and implementation-wise challenging.

3. Preliminary Concepts

In this section, we introduce some preliminary concepts that will be used
for developing the work presented in this paper.

3.1. Graphs

A graph G is a pair of sets (V,E), where V = {v1, ..., vn} is the set of
vertices and E ✓ V ⇥V is the set of edges, formed by pairs of vertices. Each
graph can be represented by an adjacency matrix A of size n⇥n, where n is
the number of vertices in G. In particular, the element ai,j = 1 if there is an
edge between vertex vi and vertex vj, i.e. vi and vj are adjacent, and ai,j = 0
otherwise. A walk is a sequence of edges and vertices, where the endpoint
of each edge are adjacent. A path is a walk in which all vertices are distinct
(except possibly the first and last). We denote d(vi, vj) as the length of the
shortest path between vertex vi and vertex vj, and denote k-hop(vi) as the
k-neighborhoods of vertex vi, i.e. d(vi, vj) = k for any vertices vj of k-hop(vi).

3.2. Graph Labeling

A graph labeling is an assignment of integers to vertices subject to cer-
tain conditions. Formally, given a graph G = (V,E), a graph labeling Λ is
a function Λ: V ! S from the vertices V to an ordered set S. A ranking
is a function R: V ! {1, ..., |V |}. Every labeling induces a ranking R with
R(u) < R(v) if and only if Λ(u) > Λ(v). Examples of graph labeling proce-
dures are those based on sorting node degree [32], PageRank [33], eigenvector
centrality [34] and other procedures commonly used in complex network anal-
ysis [35]. In this paper, our graph labeling procedure is the commonly used
PageRank algorithm [33] for node classification. When we select a node to
construct a tree in Section 4.1, the pagerank value of the node is regarded
as a measure of the importance for that node. When two nodes are in the
same rank order because they have the same pagerank value relative to the
target node, we take the effect of two nodes on the target node to be almost
the same in terms of spatial structure.
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3.3. PageRank Algorithm

PageRank is a link analysis algorithm for websites represented by a di-
rected graph first proposed by Brin and Page [36]. It is used to determine a
rough estimate of the importance and each website. The algorithm is based
on both quantitative and qualitative assumptions. The quantitative assump-
tion is that in the web graph representation, the more links a page receives
from other pages, the more important that page. The qualitative assump-
tion is concerns the link structure to high-quality pages. The more quality
pages that point to a page, the more important that page. Based on these
two assumptions, the PageRank algorithm initially gives each page the same
importance score, and then the current score of each page is equally assigned
to each out-chain of that page. In this way, each page receives a new score
by summing all the weights passed to it from the incident in-chains. These
score values are recursively and iteratively updated until convergence to give
the final PageRank value. The PageRank algorithm can be applied to any
collection of entities represented by a directed graph.

4. Proposed DS-CAE Model

4.1. The Depth-Based Representation for a Graph

In order to exploit topological information concerning the arrangement
of vertices and edges in a graph, we develop a K-layer depth-based repre-
sentation for a graph from each vertex. Concretely, the representation is
constituted of two steps: (1) construct an m-ary tree from each vertex using
the graph grafting and graph pruning algorithm; (2) the leaf nodes of the i-
level m-ary tree are further replaced by their own neighborhood m-ary trees.
Hence a K-level m-ary tree is recursively constructed for each vertex.

For each vertex, a receptive field of the same size should be constructed.
However, the sizes of the different node’s 1-hop neighborhood are different.
We therefore propose to use graph grafting and graph pruning to normalize
each node’s neighborhood subgraph so that it is an m-ary tree. The normal-
ization includes cropping of excess nodes if the neighborhood is larger than
required and padding with dummy nodes if it is smaller than required.

Graph Grafting: For node v whose 1-hop size is less than m, we use
graph grafting to choose nodes from node k-hop(v) (k >=2) to fill node 1-
hop(v). As shown in Figure 1, besides the pink vertex itself, we still need
to incorporate m = 1 vertex into the receptive field from node k-hop(v)
(k >=2). We use nodes from node 2-hop(v), if number of nodes in 2-hop are
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(a) (b) (c)

Figure 1: An illustrative example of graph grafting. Vertices connected in dotted line are
the pink vertex’s 2-hop, the red vertex has a higher pagerank value than other vertices of
pink vertex’s 2-hop.

(a) (b) (c)

Figure 2: An illustrative example of graph pruning. The pink vertex has a smaller pagerank
value than other vertices of green vertex’s 1-hop.
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not sufficient, then we choose nodes from 3-hop and so on instead. If there
exist more nodes than required, we use the m nodes with highest pagerank
values. In this way, the neighborhood subgraph consisting of exactly m
vertices is extracted and normalized as an m-ary tree. Then we rank the leaf
nodes of the m-ary tree according to their pagerank values.

Graph Pruning: For node v whose 1-hop size is greater than m, we use
graph pruning to select nodes from node 1-hop(v). As shown in Figure 2,
besides the green vertex itself, we need to remove one node so that only
m = 3 vertices is preserved, we remove nodes with smaller pagerank values.
In this way, the neighborhood subgraph consisting of exactly m vertices is
extracted and normalized as an m-ary tree. We then rank the leaf nodes of
the m-ary tree according to their PageRank values.

Mapping Graph to Tree: With the help of graph grafting and graph
pruning, we normalize each node’s subgraph as anm-ary tree. The leaf nodes
of each m-ary tree are replaced by their own neighborhood m-ary trees. In
this way, a K-level m-ary tree is recursively constructed for each vertex.
Algorithm 1 gives the pseudocode for the Mapping Graph to Tree algorithm.

Algorithm 1: Mapping Graph to Tree

Input: graph, receptive field size m+ 1, pagerank algorithm, graph
grafting, graph pruning, the depth K

Output: normalized neighborhood graph (K-level m-ary tree) for
each vertex

1 initialization;
2 compute pagerank value for each vertex;
3 construct an m-ary tree with each vertex by the graph grafting and
graph pruning algorithm;

4 for i = 2, i  K � 1 do

5 The leaf nodes of the i-level m-ary tree are further replaced by
their own neighborhood m-ary trees;

6 end

7 return K-level m-ary tree for each vertex;

4.2. DS-CAE Model for Network Representation Learning

We first list the notation used in the paper in Table.1 and a hat ˆ above the
parameters represents the parameters of the decoder. Then, we present our
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depth-based subgraph convolution autoencoder for the K-level m-ary tree.
Figure 3 shows an example of the whole process with K = 3 and m = 3. The
encoder consists of multiple non-linear mappings that transform the input
data into the representation space. The decoder also consists of multiple
non-linear mappings which transform the representation into reconstruction
space.

Table 1: Important notations and their descriptions.

Symbol Dimensions Definition

node(p, q) Scalar
the q-th node in level p of
the K-level m-ary tree

� Scalar the activation function

fl, f̂l Scalar the number of filters in layer l
n Scalar number of vertices
� Scalar element-wise multiplication

X l,t, X̂ l,t 1 ⇤ (1 +m)K�l�1 the hidden representation for
the t-th feature channel in layer l

Y l�1,r, Ŷ l�1,r 1 ⇤ (1 +m)K�l the r-th feature of the input
data in layer l

X l,t
p,q, X̂

l,t
p,q Scalar the t-th feature of node(p,q) in layer l

Y l�1,r
p,q , Ŷ l�1,r

p,q 1 ⇤ (1 +m)
the r-th feature of node (p, q)0s

receptive field in layer l
W l,t,r

Ŵ l,t,r

1 ⇤ (1 +m)
1 ⇤ 1

the filter mapping from the r-th
feature to the t-th feature in layer l

bl,t, b̂l,t Scalar the bias of the t-th filter in layer l

di, d̂i
1 ⇤ [(1 +m)K�1

⇤feature channel]
input and reconstructed data of

subtree with node i as the root node

D, D̂
N ⇤ [(1 +m)K�1

⇤feature channel]
D = {di}

n
i=1, D̂ = {d̂i}

n
i=1

ri Vector (1 ⇤ x) the representation of vertex i
R N ⇤ x R = {ri}

n
i=1

A = {ai,j}
n
i,j=1 N ⇤N the adjacency matrix

When convolutional auto-encoders are applied to images, a square grid is
moved over each image with a particular step size to extract structural fea-
tures as the hidden representations of each layer. More precisely, a receptive
field in the preceding layer becomes a neuron in the next layer after a con-
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encoder

decoder

conv1 conv2

Figure 3: The framework of the unsupervised network representation learning with depth-
based subgraph convolutional auto-encoder. Here, we give an example of 3-layer 3-ary tree,
and design the filter as a subtree with 3-ary. The tree will be reduced by one layer with
each layer of convolution and finally achieve a representation. The number of channels in
a tree is determined by the number of filters in the upper convolution. The decoder is the
inverse process of the encoder.
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p+1,

(q-1)m+1

p+1,

(q-1)m+2

p+1,

qm

p, q

p+1,

(q-1)m+1

p+1,

(q-1)m+2

p+1,

qm

p, q 𝑌𝑝 ,𝑞𝑙−1,𝑟1

1+m
𝑓𝑙−1(𝑟 = 1:𝑓𝑙−1)𝑌𝑝 ,𝑞𝑙−1,𝑟1

1+m
𝑓𝑙−1(𝑟 = 1:𝑓𝑙−1)

𝑏𝑙 ,𝑡
𝑊𝑙 ,𝑡 ,𝑟1

1+m
𝑓𝑙−1(𝑟 = 1:𝑓𝑙−1)𝑊𝑙 ,𝑡 ,𝑟1

1+m
𝑓𝑙−1(𝑟 = 1:𝑓𝑙−1)

1 𝑓𝑙(𝑡 = 𝑓𝑙)

𝑋𝑝 ,𝑞𝑙 ,𝑡1 𝑓𝑙(𝑡 = 𝑓𝑙)

𝑌𝑝 ,𝑞 ,𝑗=1+𝑚𝑙−1,𝑟=1𝑌𝑝 ,𝑞 ,𝑗=2𝑙−1,𝑟=1𝑌𝑝 ,𝑞 ,𝑗=1𝑙−1,𝑟=1
𝑌𝑝 ,𝑞 ,𝑗=1+𝑚𝑙−1,𝑟=𝑓𝑙−1

...

...

the t-th conv

𝑊𝑗=1+𝑚𝑙 ,𝑡 ,𝑟=1𝑊𝑗=2𝑙 ,𝑡 ,𝑟=1𝑊𝑗=1𝑙 ,𝑡 ,𝑟=1
𝑊𝑗=1+𝑚𝑙 ,𝑡 ,𝑟=𝑓𝑙−1

...

...

Figure 4: This figure illustrated the convolution process by channel. The Y l−1,r
p,q,j is the r-th

feature of node (p, q)
0

s receptive field in layer l, which multiplies with the corresponding
weight in filters, then we sum up these products and add the bias, the t-th feature of
node(p, q) in layer l can be achieved.

volution operation. In this way, the local structural features of images are
well captured. By generalizing convolutional auto-encoders to the K-level
m-ary tree obtained in the previous step of graph normalization, we scan
a subgraph-based window (m-ary tree) along the tree to extract structural
features as the hidden representation of each layer. Given the input xi, a
K-level m-ary tree with the root vertex i, the hidden representation X l,t

p,q for
node (p, q), feature t and layer l is given by

X l,t
p,q = �(

fl−1X

r=1

(
m+1X

j=1

W l,t,r
j Y l�1,r

p,q,j ) + bl,t) p  K � l + 1 (1)

where p is the p-level of the K-level m-ary tree, q is the q-th node, node
(p, q) is the q-th node in level p of K-level m-ary tree, fl�1 is the number of
filters in layer l � 1, � is the activation function, X l,t

p,q is the t-th feature of
node(p,q) in layer l, W l,t,r is the filter mapping from the r-th feature to the
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1

(1 +𝑚)𝐾−1 feature 

channel

1

1+m

feature 

channel

(1 +𝑚)𝐾−21
1𝑓1 ... 1

(1 +𝑚)𝐾−𝑙𝑌𝑙−1,𝑟 𝑓𝑙−1
(𝑟 = 1:𝑓𝑙−1)

1 𝑊𝑙,𝑡 ,𝑟 𝑓𝑙−1
1+m (𝑟 = 1:𝑓𝑙−1)

1

(1 +𝑚)𝐾−𝑙−1𝑋𝑙 ,𝑡 𝑓𝑙  (𝑡 = 𝑓𝑙) ...
1

x

reshape

1

x

vector

1

(1 +𝑚)𝐾−1 feature 

channel

1

(1 +𝑚)𝐾−1 feature 

channel

reconstruct 

loss

... 1

(1 +𝑚)𝐾−𝑙−1 𝑓𝑙 1 𝑓𝑙+1
1 (𝑟 = 1:𝑓𝑙+1) 

1

(1 +𝑚)𝐾−𝑙−1(𝑡 = 𝑓𝑙) 𝑋 𝑙 ,𝑡 𝑓𝑙+1
(𝑟 = 1:𝑓𝑙+1)𝑌 𝑙+1,𝑟 1

(1 +𝑚)𝐾−𝑙−2 𝑓𝑙+1
(𝑟 = 1:𝑓𝑙+1)𝑌 𝑙+1,𝑟resize

... 1

1+m
conv(1 ) 

1

1

x

1

1+m x

1

1

x
resize

multi-layer conv

multi-layer

𝑐𝑜𝑛𝑣 1 𝑐𝑜𝑛𝑣 𝑙

𝑐𝑜𝑛𝑣 𝑙

K-layer m-ary (K-1)-layer m-ary

𝑓1  

𝑊 𝑙,𝑡 ,𝑟

Figure 5: The framework of the convolution process in detail. The whole K-layer m-ary
tree as an input of node i, and the dimension changes after every convolution can be
clearly shown in the figure. The sketch map in the dotted box corresponds to formula (3)
and (4) respectively.

t-th feature in layer l and bl,t is the bias of the t-th filter in layer l.

Y l�1,r
p,q = {X l�1,r

p,q , X l�1,r
p+1,(q�1)m+1, ..., X

l�1,r
p+1,qm} (2)

where Y l�1,r
p,q is the r-th feature of node (p, q) receptive field in layer l � 1.

Figure 4 shows the convolution process through each channel.
The hidden representation X l,t for the t-th feature channel in layer l can

be expressed more concisely using tensor notation as

X l,t = �(

fl−1X

r=1

(W l,t,r � Y l�1,r) + bl,t) l  K (3)

where � is the element-wise multiplication.
After we obtain X l, i.e. the network representation, we can compute the

output d̂i by revising the encoder step. So the hidden representation X̂ l,t for
the t-th feature channel in layer l can be expressed as

X̂ l,t = �(

f̂l+1X

r=1

(Ŵ l,t,r � Ŷ l+1,r) + b̂l,t) (4)
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where a bilinear interpolation on the output of layer l + 1 gives the input of
layer l. The whole convolution process is shown in Figure 5.

The goal of the depth-based subgraph convolutional autoencoder is to
minimize the reconstruction error for the input data of the vertex i, referred
to as di and the reconstructed data of vertex i an denoted by d̂i. The loss
function associated with this process can be shown to be

✏ =
nX

i=1

k di � d̂i k
2
2 (5)

However, Salakhutdinov et al. [37] proved that minimizing the recon-
struction loss function does not explicitly preserve the similarity between
samples. The local pairwise proximity can be regarded as the information
obtained from the neighborhood vertices used to constrain the similarity of
the latent representation of a pair of vertices. Therefore, we add the local
pairwise proximity to exploit the similarity of linked vertices. In this case,
the loss function is defined as

✏e =
nX

i,j=1

ai,j k ri � rj k
2
2

= 2tr(RTLR) (6)

where L is the Laplacian matrix, given by L = D �A, where D 2 Rn⇥n is a
diagonal matrix with elements Di,i =

P
j ai,j and A is the adjacency matrix

of the network with elements ai,j.
For simplicity of notation, we denote the final obtained network repre-

sentations as R = {ri}
n
i=1 (i.e. R = �(WKY K�1 + bK)). For vi and vj not

linked by an edge, then ai,j = 0. Otherwise, for an unweighted graph ai,j = 1
and for a weighted graph, ai,j > 0. The objective function in Eq. (6) incurs
a penalty when vertices linked by an edge are mapped far away from each
other in the representation space. As a result, a pair of linked vertices should
ideally be mapped to close positions in the representation space.

We combine Eq. (5) and Eq. (6) and jointly minimize the following ob-
jective function

E = ✏+ ↵✏e + �✏reg (7)

where

✏reg =
1

2

X

l

X

t

X

r

(k W l,t,r k2 + k Ŵ l,t,r k2)
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is the `2-norm regularization term to prevent overfitting.

Learning Filters To optimize the aforementioned model, the goal is to
minimize the loss ✏ with respect to {W l,t,r, Ŵ l,t,r, bl,t, b̂l,t}. The key step in
learning the filters in this way is to calculate the matrix partial derivatives
@E/@W l,t,r and @L/@Ŵ l,t,r, the resulting matrix has the same size as the l-th
layer filters used to update the weights. The details how to compute the
partial derivative is as follows:

@L

@Ŵ l,t,r
=

@✏

@Ŵ l,t,r
+ �

@✏reg

@Ŵ l,t,r
(8)

@L

@W l,t,r
=

@✏

@W l,t,r
+ ↵

@✏e

@W l,t,r
+ �

@✏reg

@W l,t,r
(9)

We first consider the partial derivative @✏/@Ŵ l,t,r for the last convolution
layer, for which l = K-1 in the decoder process, and d̂i = {X̂ l,t}flt=1. As a
result the partial derivative formula for the this layer is

@✏

@Ŵ l,t,r
=

@✏

@D̂
·

@D̂

@Ŵ l,t,r
(10)

Turning our attention to the first term appearing in the derivative above,
according to Eq. (5) we have:

@✏

@D̂
= 2(D̂ �D) (11)

The above formula gives a matrix with the same dimensions as the filters
on the last convolution layer. To compute the derivative @D̂/@Ŵ l,t,r, we
can easily obtain @d̂i/@Ŵ

l,t,r and @d̂i/@W
l,t,r since d̂i = {X̂ l,t}flt=1 and X̂ l,t =

�(
Pf̂l+1

r=1 (Ŵ
l,t,r�Ŷ l+1,r)+b̂l,t), and so @D̂/@Ŵ l,t,r can be easily compute using

the fact that D̂ = {d̂i}
n
i=1. As a result

@D̂

@Ŵ l,t,r
=

nX

i=1

@d̂i

@Ŵ l,t,r
(12)

@D̂

@W l,t,r
=

nX

i=1

@d̂i
@W l,t,r

(13)

15



Here the result is still a matrix with size equal to the filters on the last
convolution layer. Therefore, the last layer of @`/@Ŵ l,t,r is accessible. Based
on back-propagation, we can recursively obtain @`/@Ŵ l,t,r, l = 1, ..., K � 1
and @`/@W l,t,r, l = 1, ..., K. For the second term, according to `2-norm
regularization, we could get

@✏reg

@Ŵ 1,t,r
= Ŵ 1,t,r (14)

@✏reg

@W 1,t,r
= W 1,t,r (15)

The first term of Eq. (8), i.e., Eq. (10), can be computed using Eq. (11)
and Eq. (12), while the second term of Eq. (8) can be computed using
Eq. (14).

We continue by calculating

@✏e

@W l,t,r
=

@✏e

@R
·

@R

@W l,t,r
(16)

Since the final network representations R = �(WKY K�1+bK), forms the last
layer of the encoder process, the calculation of the second term @R/@W l,t,r

is relatively easy. For the first term of @✏e/@R, according to Eq. (6) we have:

@✏e

@R
= 2(L+ LT ) ·R (17)

The first and third terms of Eq. (9) can be obtained in the same manner as
Eq. (8), while the second term of Eq. (9) can be obtained using Eq. (16) and
Eq. (17).

5. Experiments and Comparisons

In this section, we summarize the datasets, benchmarks, and evaluation
tasks that are commonly used in developing new network embedding meth-
ods.

5.1. Datasets

To demonstrate the effectiveness of the proposed approach on node clas-
sification and visualization tasks, we conduct experiments on six popular real
word networks currently used in network embedding literature. The datasets

16



Table 2: Statistics of datasets
Properties Pubmed Cora Wikipedia Email-Eu Citeseer Cornell
Nodes 19,717 2,708 2405 1,005 3312 195
Edges 44,338 5,429 17981 25,571 4715 304
Classes 3 7 19 42 6 5

Node features 500 1433 640 - 3703 1703

can be roughly divided into three groups according to the nature of the net-
works: citation networks, communication networks, and language network.
Table.2 summarizes the extent and properties of the six data sets studied.

Citation Networks

Pubmed1 dataset [38] consists of 19,717 scientific papers from the Pubmed
database on the subject of diabetes, where each paper is classified into one of
three classes. This citation network that joins the papers consists of 44,338
links, and each paper is represented by a Term Frequency Inverse Document
Frequency (TFIDF) vector drawn from a dictionary with 500 terms.

Cora2 dataset [38] contains 2,708 machine learning articles categorized
into seven possible machine learning subjects. Each article is represented
by a 01-valued word vector where each feature corresponds to the presence
or absence of a term draw from a dictionary. The dictionary contains 1,433
unique entries. This graph contains 5,429 citation edges. We treat the cita-
tion links as undirected edges and construct a binary, symmetric adjacency
matrix.

CiteSeer 3 dataset [39] contains 3,312 research articles crawled from the
CiteSeer repository [38], where each article is categorized into six classes.
Each article in the dataset is described by a 0/1-valued word vector indicat-
ing the absence/presence of the corresponding word from the dictionary. The
dictionary contains 3,703 unique words. This graph contains 4,732 citation
edges.

Communication Networks

1https://linqs-data.soe.ucsc.edu/public/Pubmed-Diabetes.tgz
2https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz
3https://linqs-data.soe.ucsc.edu/node/236
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Email-Eu-Core4 dataset [40] is generated from email data of a large Eu-
ropean research institution. There is an edge (u, v) in the dataset if person u
sent person v email. The dataset contains ”ground-truth” community mem-
berships of the individuals and each individual belongs to exactly one of 42
departments at the research institute. Note that each vertex of this dataset
has no vertex information so that we only take the structural information
of the vertex as the input to investigate the ability of DS-CAE on dataset
without vertex feature.

Language Networks

Wikipedia5 dataset [28] are composed of 2,405 real-world webpages from
19 classes and 17,981 hyperlinks between them, where the vertex represents
a webpage and the edge indicates that there is a hyperlink from one webpage
to another. Webpage text content is often collected as vertex features.

Cornell dataset is subnetwork from the WebKB dataset6. This is net-
work of webpages and hyperlinks. Each webpage belongs to one of five classes:
course, faculty, student, project, and staff, which serve as ground-truth. The
Cornell dataset [41] consists of 195 webpages (i.e., 42 course, 32 faculty, 83
student, 19 project, 19 staff) classified into one of five classes. This webpage
network consists of 304 links. Each webpage in the dataset is described by a
0/1-valued word vector indicating the absence/presence of the corresponding
word from the dictionary. The dictionary consists of 1703 unique words.

5.2. Baseline Algorithms

We compare our proposed DS-CAE with the following six state-of-art
methods.

DeepWalk [12] performs random walks to transforms a graph structure
into linear sequences. It then processes the sequences using Skip-Gram model
[1] with hierarchical softmax as the loss function.

LINE [13] learns network representations in large-scale networks using
first-order and second-order proximities separately rather than exploiting

4http://snap.stanford.edu/data/email-Eu-core.html
5https://linqs.soe.ucsc.edu/data
6https://linqs-data.soe.ucsc.edu/public/lbc/WebKB.tgz
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random walks to capture network structure. It then concatenates two repre-
sentations together.

Laplacian Eigenmaps [8], which use 1st order proximity to preserve
the graph structure, learn the graph representation by factorizing Laplacian
matrix.

TADW [28] employs matrix factorization to incorporate text features of
vertices into network representation learning.

SDNE [15] has multiple layers of non-linear functions to capture the
non-linear network structure and exploit the first-order and second-order
proximity jointly to preserve the network structure.

GraphSAGE [42] learns node representations through aggregation of its
neighborhood information.

Note that SDNE is a semi-supervised method, TADW and GraphSAGE
incorporate text features of vertices into NRL.

5.3. Parameter Settings and Evaluation Metrics

DS-CAE is a multi convolutional layer deep model and the number of
filters in each layer varies with different datasets. The number of filters in
each layer of DS-CAE is listed in Table 3. We apply grid search to set the
hyper-parameters ↵, � on the validation set. As mentioned in [12], for Deep-

Table 3: Parameters for DS-CAE and SDNE
Dataset DS-CAE SDNE
Pubmed 2000-1800 19717-2000-100
Cora 2000-1800 2708-1000-100

Wikipedia 2000-1800 2405-1000-100
Email-Eu 1200-1000 1005-500-100
Citeseer 2000-1800 3312-1000-100
Cornell 600-400 195-150-100

Walk, we set window size as 10, walk length as 40, walks per vertex as 80. As
suggested in [13], for LINE, we set the mini-batch size of stochastic gradient
descent as 1, starting value of learning rate as 0.025, the number of negative
samples as 5, and total number of samples as 10 billion. We also concatenate
1-step and 2-step representation to form final representation and do L2 nor-
malization to achieve optimal performance. As suggested in [15], for SDNE,
we apply grid search to set the hyper-parameters ↵, �, ⌫ on the validation set
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Table 4: Evaluation results of node classification on the Pubmed dataset.

Metric
Method

Percentage
10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1
( % )

DeepWalk 76.57 77.40 77.58 77.78 77.97 78.04 78.30 78.55 79.17
± 0.28 ± 0.26 ± 0.24 ± 0.28 ± 0.30 ± 0.26 ± 0.28 ± 0.25 ± 0.29

LINE 75.13 77.33 78.38 78.96 79.49 79.67 80.08 81.18 81.35
± 0.31 ± 0.29 ± 0.31 ± 0.37 ± 0.36 ± 0.27 ± 0.38 ± 0.33 ± 0.28

LE 50.31 57.51 61.14 62.28 63.05 63.19 64.15 64.58 66.43
± 0.43 ± 0.47 ± 0.41 ± 0.49 ± 0.39 ± 0.40 ± 0.45 ± 0.42 ± 0.43

TADW 68.84 69.49 70.37 73.27 75.81 78.04 79.37 80.34 80.95
± 0.40 ± 0.42 ± 0.41 ± 0.39 ± 0.42 ± 0.45 ± 0.34 ± 0.44 ± 0.36

SDNE 72.86 74.69 75.32 75.68 75.95 76.08 76.32 75.99 76.35
± 0.34 ± 0.39 ± 0.41 ± 0.32 ± 0.37 ± 0.39 ± 0.37 ± 0.35 ± 0.37

GraphSAGE 75.21 76.84 78.48 79.06 79.80 79.85 79.99 80.03 80.12
± 0.34 ± 0.36 ± 0.39 ± 0.30 ± 0.41 ± 0.33 ± 0.37 ± 0.34 ± 0.38

DS-CAE 80.99 83.00 84.89 85.49 86.61 86.84 87.41 87.75 88.59

± 0.26 ± 0.27 ± 0.30 ± 0.28 ± 0.29 ± 0.24 ± 0.27 ± 0.25 ± 0.27

Macro-F1
( % )

DeepWalk 75.20 75.89 76.06 76.20 76.26 76.12 76.49 76.60 77.90
± 0.25 ± 0.24 ± 0.19 ± 0.18 ± 0.22 ± 0.23 ± 0.26 ± 0.23 ± 0.28

LINE 71.18 72.47 73.65 74.90 76.19 76.50 77.23 77.54 78.12
± 0.29 ± 0.27 ± 0.28 ± 0.34 ± 0.32 ± 0.25 ± 0.31 ± 0.30 ± 0.27

LE 35.01 42.38 45.37 46.18 48.99 49.38 51.59 52.04 55.36
± 0.39 ± 0.41 ± 0.37 ± 0.43 ± 0.36 ± 0.31 ± 0.38 ± 0.35 ± 0.35

TADW 61.93 64.75 67.07 70.64 72.99 75.04 77.13 78.56 79.70
± 0.35 ± 0.38 ± 0.37 ± 0.33 ± 0.38 ± 0.30 ± 0.29 ± 0.34 ± 0.31

SDNE 68.50 70.25 71.42 71.67 71.97 72.01 72.21 71.68 72.06
± 0.32 ± 0.34 ± 0.31 ± 0.29 ± 0.35 ± 0.38 ± 0.37 ± 0.33 ± 0.36

GraphSAGE 74.47 76.56 77.81 78.00 78.74 78.61 78.67 78.28 78.97
± 0.31 ± 0.35 ± 0.36 ± 0.27 ± 0.36 ± 0.28 ± 0.27 ± 0.34 ± 0.30

DS-CAE 80.52 82.85 84.63 85.32 86.33 86.26 87.16 87.47 88.50

± 0.23 ± 0.24 ± 0.22 ± 0.24 ± 0.28 ± 0.21 ± 0.19 ± 0.22 ± 0.26

and the dimension of each layer is listed in Table 3. GraphSAGE provides
a variety of approaches to aggregating features within a sampled neighbor-
hood and we choose the unsupervised method of GraphSAGE-mean because
it almost results in the best accuracy.

For node classification task, we adopt Micro-F1 and Macro-F1 as many
other works do [14, 15]. Micro-F1 gives equal weight to each document
and hence considered as an average over all the document/category pairs, it
tends to be dominated by the classifier’s performance on common categories.
Macro-F1 gives equal weight to each category, it tends to be dominated by
rare categories.

5.4. Experiment Results on Node Classification

We generate the representations for the vertices from the network rep-
resentation learning and use them as features to classify each vertex into a
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Table 5: Evaluation results of node classification on the Cora dataset.

Metric
Method

Percentage
10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1
( % )

DeepWalk 65.76 72.83 74.95 75.78 76.73 77.19 77.90 78.51 78.26
± 0.90 ± 0.93 ± 0.84 ± 0.95 ± 0.99 ± 0.89 ± 0.92 ± 0.93 ± 0.97

LINE 61.51 65.18 66.35 68.15 70.53 70.65 70.90 74.15 78.4
± 0.95 ± 1.11 ± 1.05 ± 1.01 ± 1.15 ± 1.10 ± 1.08 ± 1.03 ± 0.98

LE 30.68 31.06 31.86 31.32 31.02 31.83 31.73 32.84 35.06
± 0.78 ± 0.81 ± 0.83 ± 0.86 ± 0.80 ± 0.79 ± 0.71 ± 0.82 ± 0.76

TADW 52.32 57.98 61.56 65.82 68.64 71.67 74.40 76.85 78.54
± 0.91 ± 0.84 ± 0.89 ± 0.85 ± 0.96 ± 0.97 ± 0.87 ± 0.82 ± 0.93

SDNE 62.35 66.81 69.46 70.94 71.46 72.53 72.79 73.98 73.78
± 0.85 ± 0.89 ± 0.88 ± 0.85 ± 0.81 ± 0.93 ± 0.78 ± 0.74 ± 0.77

GraphSAGE 40.18 44.35 52.44 69.01 72.82 76.08 76.74 77.92 78.82
± 0.93 ± 0.82 ± 0.89 ± 0.86 ± 0.83 ± 0.96 ± 0.85 ± 0.84 ± 0.78

DS-CAE 67.07 73.96 76.14 78.62 79.26 79.91 81.05 81.08 82.54

± 0.89 ± 0.86 ± 0.74 ± 0.81 ± 0.88 ± 0.76 ± 0.63 ± 0.70 ± 0.75

Macro-F1
( % )

DeepWalk 64.05 69.89 72.21 75.81 75.99 76.52 77.04 77.90 77.32
± 0.81 ± 0.86 ± 0.91 ± 0.87 ± 0.93 ± 0.90 ± 0.84 ± 0.96 ± 0.89

LINE 58.05 62.77 66.65 68.78 70.97 72.04 72.84 77.79 79.56
± 0.93 ± 1.06 ± 0.99 ± 0.95 ± 1.12 ± 1.08 ± 1.03 ± 0.96 ± 0.92

LE 36.55 36.47 36.44 36.40 36.12 36.42 36.17 35.87 36.26
± 0.75 ± 0.73 ± 0.77 ± 0.77 ± 0.74 ± 0.76 ± 0.65 ± 0.67 ± 0.70

TADW 50.98 56.16 61.17 65.65 68.01 71.07 74.41 76.34 79.80
± 0.83 ± 0.79 ± 0.86 ± 0.81 ± 0.95 ± 0.93 ± 0.84 ± 0.79 ± 0.89

SDNE 59.42 64.63 67.61 69.01 69.82 70.93 71.36 72.63 72.04
± 0.81 ± 0.77 ± 0.86 ± 0.79 ± 0.84 ± 0.83 ± 0.78 ± 0.69 ± 0.75

GraphSAGE 43.37 47.69 50.32 55.68 60.66 63.99 66.43 71.59 72.35
± 0.85 ± 0.79 ± 0.84 ± 0.86 ± 0.81 ± 0.87 ± 0.79 ± 0.74 ± 0.71

DS-CAE 65.14 70.95 73.30 77.28 77.61 78.92 79.57 81.26 82.80

± 0.78 ± 0.75 ± 0.73 ± 0.77 ± 0.79 ± 0.71 ± 0.60 ± 0.62 ± 0.68
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Table 6: Evaluation results of node classification on the Email-Eu dataset.
Metric

Method
Percentage

10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1
( % )

DeepWalk 52.03 61.69 63.52 65.25 65.17 67.14 68.21 68.35 68.59
± 1.17 ± 1.20 ± 1.23 ± 1.21 ± 1.19 ± 1.25 ± 1.18 ± 1.24 ± 1.20

LINE 36.00 46.55 50.57 53.01 54.52 57.31 58.74 59.97 60.20
± 1.13 ± 1.15 ± 1.16 ± 1.18 ± 1.21 ± 1.19 ± 1.14 ±1.16 ± 1.11

LE 29.70 30.90 30.11 30.28 30.81 31.48 31.19 31.15 32.87
± 1.18 ± 1.19 ± 1.15 ± 1.11 ± 1.23 ± 1.14 ± 1.20 ± 1.14 ± 1.23

TADW 30.17 36.32 42.47 46.43 51.49 54.48 59.93 58.21 61.39
± 1.26 ± 1.22 ± 1.21 ± 1.18 ± 1.20 ± 1.13 ± 1.17 ± 1.24 ± 1.21

SDNE 52.38 62.56 64.02 66.13 67.00 67.31 69.18 70.66 71.32
± 1.24 ± 1.28 ± 1.19 ± 1.21 ± 1.27 ± 1.14 ± 1.17 ± 1.23 ± 1.29

GraphSAGE 36.86 46.69 50.32 53.68 54.95 57.08 58.32 59.99 60.35
± 1.18 ± 1.17 ± 1.22 ± 1.16 ± 1.19 ± 1.17 ± 1.14 ± 1.19 ± 1.14

DS-CAE 40.79 54.82 60.32 63.79 68.54 68.76 70.32 72.09 73.11

± 1.15 ± 1.19 ± 1.11 ± 1.05 ± 1.17 ± 1.08 ± 1.12 ± 1.12 ± 1.17

Macro-F1
( % )

DeepWalk 23.67 31.09 35.33 37.21 37.87 39.86 40.59 40.22 41.84
± 1.08 ± 1.15 ± 1.14 ± 1.18 ± 1.17 ± 1.19 ± 1.11 ± 1.13 ± 1.16

LINE 17.82 22.19 25.70 28.83 30.43 33.50 34.81 35.66 39.87
± 0.94 ± 1.03 ± 1.16 ± 1.14 ± 1.18 ± 1.21 ± 1.11 ± 1.09 ±1.14

LE 11.08 11.36 12.11 13.48 15.15 15.16 16.28 18.73 19.54
± 1.15 ± 1.18 ± 1.11 ± 1.05 ± 1.19 ± 1.19 ± 1.16 ± 1.12 ± 1.20

TADW 15.54 17.81 19.17 20.26 23.03 24.43 27.71 27.89 27.79
± 1.19 ± 1.21 ± 1.22 ± 1.17 ± 1.26 ± 1.28 ± 1.14 ± 1.13 ± 1.20

SDNE 23.76 31.63 36.85 37.98 38.01 39.78 40.76 40.37 41.62
± 1.22 ± 1.25 ± 1.18 ± 1.15 ± 1.20 ± 1.28 ± 1.13 ± 1.17 ± 1.21

GraphSAGE 17.77 22.69 25.32 28.68 30.95 33.08 34.32 35.99 38.35
± 1.14 ± 1.09 ± 1.15 ± 1.14 ± 1.07 ± 1.16 ± 1.11 ± 1.08 ± 1.12

DS-CAE 21.58 25.57 33.11 34.48 39.35 41.26 42.85 43.95 44.67

± 1.12 ± 1.16 ± 1.08 ± 1.13 ± 1.15 ± 1.13 ± 1.05 ± 1.07 ± 1.05
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Table 7: Evaluation results of node classification on the Wikipedia dataset.

Metric
Method

Percentage
10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1
( % )

DeepWalk 58.66 63.82 66.50 67.35 65.57 68.60 70.22 70.89 68.46
± 0.78 ± 0.80 ± 0.77 ± 0.85 ± 0.84 ± 0.79 ± 0.78 ± 0.80 ± 0.83

LINE 56.48 59.09 63.90 65.38 65.50 64.10 61.97 67.98 67.72
± 0.79 ± 0.83 ± 0.81 ± 0.88 ± 0.85 ± 0.80 ± 0.89 ± 0.79 ± 0.84

LE 29.78 30.97 30.11 30.23 30.21 31.78 31.59 31.75 32.56
± 0.37 ± 0.42 ± 0.43 ± 0.40 ± 0.44 ± 0.42 ± 0.41 ± 0.43 ± 0.41

TADW 54.08 60.65 63.59 64.79 66.91 67.35 68.00 66.73 64.73
± 0.83 ± 0.89 ± 0.84 ± 0.85 ± 0.86 ± 0.84 ± 0.83 ± 0.86 ± 0.81

SDNE 46.98 52.57 54.99 56.25 57.14 57.97 57.74 58.26 58.56
± 0.74 ± 0.78 ± 0.79 ± 0.79 ± 0.81 ± 0.76 ± 0.79 ± 0.82 ± 0.79

GraphSAGE 45.54 47.81 52.17 55.26 56.03 57.43 57.71 58.89 60.79
± 0.75 ± 0.79 ± 0.82 ± 0.83 ± 0.82 ± 0.79 ± 0.81 ± 0.83 ± 0.80

DS-CAE 49.03 57.10 59.39 61.26 67.41 69.73 70.90 71.52 73.32

± 0.72 ± 0.78 ± 0.74 ± 0.81 ± 0.81 ± 0.75 ± 0.76 ± 0.79 ± 0.74

Macro-F1
( % )

DeepWalk 42.41 51.48 56.30 57.94 58.21 59.30 60.30 63.03 63.93
± 0.72 ± 0.76 ± 0.73 ± 0.75 ± 0.79 ± 0.76 ± 0.79 ± 0.80 ± 0.76

LINE 39.18 41.54 45.73 49.54 52.48 51.37 55.50 55.68 53.00
± 0.74 ± 0.79 ± 0.73 ± 0.81 ± 0.79 ± 0.77 ± 0.75 ± 0.78 ± 0.75

LE 11.88 11.76 12.21 13.88 15.75 15.26 16.38 18.33 19.44
± 0.32 ± 0.35 ± 0.37 ± 0.38 ± 0.42 ± 0.41 ± 0.39 ± 0.41 ± 0.40

TADW 37.84 44.62 48.83 50.26 53.17 53.31 53.66 51.50 53.30
± 0.72 ± 0.81 ± 0.82 ± 0.82 ± 0.84 ± 0.81 ± 0.83 ± 0.85 ± 0.80

SDNE 29.95 34.30 37.02 38.59 38.70 39.75 39.74 39.49 38.67
± 0.71 ± 0.73 ± 0.76 ± 0.79 ± 0.78 ± 0.79 ± 0.75 ± 0.73 ± 0.74

GraphSAGE 25.54 27.81 29.17 30.26 33.03 34.43 37.71 37.89 37.79
± 0.72 ± 0.75 ± 0.76 ± 0.81 ± 0.82 ± 0.80 ± 0.77 ± 0.76 ± 0.75

DS-CAE 39.25 46.91 51.26 55.56 56.85 59.66 61.20 64.22 65.26

± 0.69 ± 0.75 ± 0.71 ± 0.78 ± 0.81 ± 0.74 ± 0.73 ± 0.75 ± 0.72
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Table 8: Evaluation results of node classification on the Citeseer dataset.

Metric
Method

Percentage
10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1
( % )

DeepWalk 53.10 55.36 57.74 57.55 58.63 57.88 58.15 60.18 60.63
± 0.23 ± 0.25 ± 0.29 ± 0.22 ± 0.20 ± 0.27 ± 0.24 ± 0.27 ± 0.28

LINE 44.46 44.60 47.82 48.77 48.79 49.58 50.10 50.38 51.49
± 0.22 ± 0.26 ± 0.30 ± 0.27 ± 0.25 ± 0.29 ± 0.22 ± 0.24 ± 0.25

LE 55.45 54.15 58.86 60.31 59.84 58.34 59.56 61.99 56.33
± 0.19 ± 0.25 ± 0.27 ± 0.22 ± 0.26 ± 0.24 ± 0.21 ± 0.22 ± 0.27

TADW 67.29 69.56 70.88 70.59 69.73 70.81 70.12 71.24 70.68
± 0.20 ± 0.21 ± 0.23 ± 0.20 ± 0.19 ± 0.18 ± 0.21 ± 0.21 ± 0.20

SDNE 17.85 18.05 18.85 19.22 19.6 20.11 21.12 21.40 22.93
± 0.21 ± 0.15 ± 0.19 ± 0.20 ± 0.18 ± 0.18 ± 0.19 ± 0.21 ± 0.20

GraphSAGE 66.31 69.61 70.14 70.16 70.04 70.28 70.47 70.48 70.69
± 0.19 ± 0.20 ± 0.23 ± 0.21 ± 0.18 ± 0.19 ± 0.21 ± 0.20 ± 0.19

DS-CAE 68.10 69.69 70.03 70.29 70.40 70.26 70.63 71.37 71.39

± 0.18 ± 0.20 ± 0.22 ± 0.19 ± 0.16 ± 0.17 ± 0.18 ± 0.19 ± 0.17

Macro-F1
( % )

DeepWalk 49.26 51.17 53.01 53.59 54.39 53.51 52.65 55.40 55.87
± 0.19 ± 0.22 ± 0.25 ± 0.18 ± 0.19 ± 0.17 ± 0.18 ± 0.23 ± 0.19

LINE 40.79 41.55 43.96 44.28 44.20 45.03 45.59 45.69 45.15
± 0.17 ± 0.19 ± 0.28 ± 0.24 ± 0.23 ± 0.20 ± 0.18 ± 0.19 ± 0.17

LE 50.41 49.14 53.93 55.23 54.91 52.95 54.04 57.56 53.51
± 0.16 ± 0.24 ± 0.21 ± 0.19 ± 0.16 ± 0.17 ± 0.14 ± 0.20 ± 0.18

TADW 61.39 65.17 67.70 68.91 69.05 69.21 68.42 67.35 67.32
± 0.16 ± 0.17 ± 0.19 ± 0.18 ± 0.15 ± 0.17 ± 0.15 ± 0.19 ± 0.15

SDNE 15.81 16.13 16.55 16.78 17.09 17.21 17.36 17.93 18.03
± 0.19 ± 0.12 ± 0.11 ± 0.10 ± 0.15 ± 0.16 ± 0.13 ± 0.18 ± 0.14

GraphSAGE 62.20 65.21 66.34 66.73 66.71 66.73 66.82 67.04 68.19
± 0.18 ± 0.18 ± 0.21 ± 0.19 ± 0.17 ± 0.18 ± 0.15 ± 0.19 ± 0.17

DS-CAE 62.33 65.37 69.74 67.64 68.69 69.83 69.78 68.37 68.64

± 0.15 ± 0.18 ± 0.19 ± 0.17 ± 0.14 ± 0.13 ± 0.13 ± 0.16 ± 0.14
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Table 9: Evaluation results of node classification on the Cornell dataset.

Metric
Method

Percentage
10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1
( % )

DeepWalk 27.84 35.90 38.69 35.90 39.80 38.46 44.07 33.33 30.00
± 0.25 ± 0.33 ± 0.35 ± 0.34 ± 0.37 ± 0.30 ± 0.35 ± 0.39 ± 0.25

LINE 32.95 38.46 41.61 41.88 35.71 39.74 35.59 41.02 34.99
± 0.22 ± 0.34 ± 0.36 ± 0.33 ± 0.41 ± 0.39 ± 0.34 ± 0.32 ± 0.31

LE 28.41 37.18 39.41 35.90 36.73 38.46 35.60 30.77 30.00
± 0.25 ± 0.31 ± 0.28 ± 0.36 ± 0.34 ± 0.29 ± 0.32 ± 0.35 ± 0.26

TADW 43.18 41.67 43.07 47.01 40.82 47.44 49.15 41.03 35.00
± 0.26 ± 0.38 ± 0.37 ± 0.34 ± 0.40 ± 0.35 ± 0.34 ± 0.36 ± 0.35

SDNE 35.23 37.50 38.07 38.64 39.20 39.77 40.34 40.91 40.05
± 0.23 ± 0.25 ± 0.27 ± 0.23 ± 0.28 ± 0.23 ± 0.24 ± 0.24 ± 0.23

GraphSAGE 36.84 39.55 41.03 41.41 41.77 42.03 44.06 41.41 40.19
± 0.21 ± 0.27 ± 0.24 ± 0.20 ± 0.25 ± 0.26 ± 0.28 ± 0.27 ± 0.28

DS-CAE 48.28 48.39 48.19 50.00 42.76 44.97 42.40 40.15 42.27

± 0.20 ± 0.20 ± 0.23 ± 0.24 ± 0.29 ± 0.25 ± 0.21 ±0.24 ± 0.25

Macro-F1
( % )

DeepWalk 19.04 17.55 20.92 14.88 22.04 17.92 24.76 13.52 14.52
± 0.23 ± 0.31 ± 0.34 ± 0.38 ± 0.37 ± 0.25 ± 0.26 ± 0.28 ± 0.21

LINE 25.15 23.20 24.89 25.58 23.33 20.51 15.65 19.88 18.41
± 0.20 ± 0.28 ± 0.24 ± 0.22 ± 0.23 ± 0.27 ± 0.31 ± 0.29 ± 0.21

LE 24.20 22.19 22.25 18.69 22.62 20.43 15.18 12.90 9.60
± 0.25 ± 0.28 ± 0.23 ± 0.32 ± 0.35 ± 0.27 ± 0.30 ± 0.28 ± 0.25

TADW 25.14 16.06 19.56 23.86 20.97 21.13 21.89 17.17 15.43
± 0.24 ± 0.39 ± 0.28 ± 0.29 ± 0.28 ± 0.25 ± 0.21 ± 0.22 ± 0.26

SDNE 18.17 19.04 19.15 19.21 22.29 20.30 17.24 17.29 19.79
± 0.18 ± 0.19 ± 0.19 ± 0.18 ± 0.23 ± 0.22 ± 0.24 ± 0.19 ± 0.24

GraphSAGE 19.48 17.48 18.94 19.35 21.19 21.01 22.78 20.35 19.75
± 0.19 ± 0.20 ± 0.18 ± 0.19 ±0.22 ± 0.23 ± 0.21 ± 0.22 ± 0.23

DS-CAE 26.67 27.45 24.94 26.80 24.15 21.33 21.81 16.21 19.95

± 0.18 ± 0.21 ± 0.23 ± 0.20 ± 0.25 ± 0.24 ± 0.19 ± 0.23 ± 0.21
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set of labels. For all models we use a one-vs-rest logistic regression imple-
mented by LibLinear [43], extended to return the most probable labels as
[12]. Specifically, we randomly sample a portion of labeled vertices and use
them as training data. The rest of the vertices are used as test data. We
randomly sample 10% to 90% of the vertices as the training samples and
use the left vertices to test the performance. We repeat this process 5 times
and report the average performance in terms of both Micro-F1 and Macro-
F1 as many other works do [15]. Table 4 - 9 report the average Micro-F1
and Macro-F1 values of the different algorithms on node classification. The
boldfaced values are the best results. From these tables, we have following
observations:

(1) For datasets with node features (Cora, Pubmed, Wiki), our proposed
DS-CAE outperforms each of the competing methods with different training
ratios. Specially, as shown in Table 4, for the large dataset-Pubmed, DS-
CAE outperforms the best baseline in each training ratio by 4.4% to 7.3% in
Micro-F1 and 5.3% to 8.91% in Macro-F1. It indicates the effectiveness and
robust of DS-CAE on node classification task. However, in Cornell dataset,
we observed that the performances of DS-CAE are dropping when the number
of training example increases. A possible explanation is the imbalance of data
samples in this dataset. The Cornell dataset [41] consists of 195 webpages
(i.e., 42 course, 32 faculty, 83 student, 19 project, 19 staff) classified into one
of five classes. Here, the samples of student class accounts for nearly 50% of
the total, while the project and staff class samples account for only 10%.

(2) For the dataset without node features (Email-Eu), DS-CAE outper-
forms other baselines with training ratios from 50% to 90%. Mainly because
DS-CAE takes the structure of each vertex neighborhood as input and con-
structs a richer representation. This means a larger training dataset can
learn a better representation than other baselines and in turn gives a better
precision. Note that our DS-CAE is not designed for this kind of dataset,
but the performance shows a good generalization ability for our DS-CAE
method.

(3) DS-CAE has an encouraging performance when train ratio is large.
The accuracies of most of the baselines increase slowly as training ratio
increases, that is because DeepWalk based models (DeepWalk, LINE and
TADW) are ‘shallow’ models which have relatively limited capacity to cap-
ture the highly nonlinear structures of graphs. SDNE can only encode the
structural information rather than both structure and node feature infor-
mation. Our proposed DS-CAE outperforms GraphSAGE-mean (taking the
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elementwise mean value of feature vectors) suggesting that assigning different
importance to different nodes within a subgraph while dealing with different
sized neighborhoods may be beneficial. DS-CAE takes the node feature of
each vertex neighborhood as input and takes local pairwise proximity into
consideration. This gives a richer representation and larger datasets can
learn a better representation. This shows the advantage of our DS-CAE in
Big Data.

To summarize, all of the above observations demonstrate that DS-CAE
can learn high-quality and rich representation, which are conducive to node
classification. Moreover, the experimental results on the node classification
task demonstrates the effectiveness of our DS-CAE method.

(a) DS-CAE (b) SDNE (c) LINE

(d) DeepWalk (e) LE (f) TADW

(g) GraphSAGE

Figure 6: Visualization of the Pubmed dataset. Each point indicates a paper.
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5.5. Experiment Results on Visualization

We visualize the learned representations of citation dataset-Pubmed on a
2D space by t-SNE [44] in Figure 6, where the same category of papers were
labeled as the same color. Similar to [14], we also use the Kullback-Leibler
divergence as a quantitative evaluation metric, the lower the KL divergence,
the better the performance. We report the results in Table 10, the boldfaced
values are the best one.

Table 10: KL-divergence for the Pubmed dataset
Algorithm DS-CAE SDNE LINE GraphSAGE TADW DeepWalk LE

KL divergence 0.85638 0.91299 1.13514 1.05960 1.00638 1.09793 1.04166

From Figure 6, we observe that DS-CAE learns a better clustering and
separation of the vertices. On the contrary, the baseline methods showed un-
clear boundaries and most points belonging to different categories are mixed
with each other. The results shown in Table 10 also quantitatively demon-
strate the superiority of DS-CAE in the visualization task.

5.6. Parameter Sensitivity

We investigate the parameter sensitivity in this section. Specifically, we
first evaluate how the node classification accuracies vary with increasing re-
ceptive field size of m + 1 and the depth K of the m-ary tree. We report
Micro-F1 and Macro-F1 values on the dataset of Pubmed in Figure 7.

We first investigate how the size of receptive field affects the performance
in Figure 7(a) and Figure 7(b) with a fixed depth K = 3. We can see that the
classification accuracy first increases to a maximum value at m+ 1 = 2 and
decreases with increasing m. Note that when m + 1 = 1, the encoder only
uses the node features of each vertex. We show how the value of depth K
affects the performance in Figure 7(c) and Figure 7(d) with a fixed receptive
field size m+1 = 2. We can see that the classification accuracy first increases
to a maximum value at K = 3 and then decreases with increasing K. This
phenomenon is intuitive because to gradually propagate information from the
local vertex level to the global graph level, we could expand the subtree rooted
at each vertex with the aim to capture the structural information around each
vertex. One approach is to gradually expand the subtree structure rooted at
each vertex until it reaches the global graph level, and in so doing include
more vertices. However, vertices that are far away from the root vertex
are likely to have low relevance to the root vertex. Including them may
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(a) (b)

(c) (d)

Figure 7: Impact of the receptive size and the depth of m-ary tree on performance for
node classification.

encourage the propagation of noise, and this may compromise performance.
Thus, to provide compromise which allows a trade-off between local and
global information, we set the depth of m-ary tree as 3. Our experiments also
demonstrate that the choice of these parameters provides better performance.
This observation further verifies the effectiveness of our proposed DS-CAE
which integrates both global topological arrangement information and local
connectivity properties within a graph to conduct graph convolutional auto-
encoder.

Besides the reconstruction loss ✏ which is used to preserve global net-
work structure, our objective function in Eq. (7) also uses two additional
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(a) (b)

(c) (d)

Figure 8: Impact of α and β values in Eq. (7) on performance for node classification.

losses, namely a) ✏e is used to preserve the local network structure using first
order proximity and b) ✏reg is an `2-norm regularizer term used to prevent
overfitting. These two losses are controlled using two hyperparameters - ↵
balances the significance between global network structure and local network
structure, and � is a regularization coefficient that is used to control the
reconstruction weights in the training graph. We have investigated the effect
of different ↵ values on the classification performance on the Cora dataset
in Figure 8(a) and Figure 8(b). When ↵=0, the performance is totally de-
termined by the global network structure. The larger the value of ↵, the
more the model concentrates on the local network structure. From Figure
8(a) and Figure 8(b), we can see that the performance when ↵=0.2 is better
than that when ↵=0. This demonstrates that both global network structure
and local network structure are essential for network embedding methods
to accurately characterize the network structure. Finally, we show how the
value of � affects the performance in Figure 8(c) and Figure 8(d). We can
see that the performance improves as the hyperparameter � grows from zero
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to unity. However, when � is too large, the performance deteriorates instead.
The reason is that an appropriate regularization term is needed to constrain
the model so as to prevent over-fitting. However, when the constraint is too
strong, the model cannot learn effective representations.

6. Conclusions

In this paper, we have explored the challenging problem of how to use
the convolutional autoencoder for modeling non-lattice graphical structures.
The convolution process makes use of both global topological arrangement
information and local connectivity structures within a graph. In particular,
the proposed model DS-CAE can comprehensively integrate node content
information and network structure into unsupervised network representa-
tion learning, thus the learned representation can capture highly non-linear
relationships between nodes and complex features of a network. Experimen-
tal results on node classification and visualization tasks show our DS-CAE
method is superior to a number of baseline methods.

Our future plans are to extend the work in a number of ways. First, in
prior work, we have developed methods for characterizing graphs using the
commute time [45] and the heat kernel [46]. For an undirected graph, both
of these methods encapsulate the path length distribution between vertices.
It would be interesting to use the commute time or heat kernel as a means
of node ordering. Second, the current formulations of graph convolution are
restricted to use vertex information and do not make use of edge labels. It
would be interesting to design network representation learning framework
which simultaneously learns properties from both graph vertices and edges.
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