This is a repository copy of *Finding All Bayesian Network Structures within a Factor of Optimal*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/140974/

Version: Accepted Version

Proceedings Paper:

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Finding All Bayesian Network Structures within a Factor of Optimal

Zhenyu A. Liao1, Charupriya Sharma1, James Cussens2 and Peter van Beek1

1David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, ON Canada
\{z6liao, c9sharma, vanbeek\}@uwaterloo.ca

2Department of Computer Science
University of York
York, United Kingdom
james.cussens@york.ac.uk

Abstract
A Bayesian network is a widely used probabilistic graphical model with applications in knowledge discovery and prediction. Learning a Bayesian network (BN) from data can be cast as an optimization problem using the well-known score-and-search approach. However, selecting a single model (i.e., the best scoring BN) can be misleading or may not achieve the best possible accuracy. An alternative to committing to a single model is to perform some form of Bayesian or frequentist model averaging, where the space of possible BNs is sampled or enumerated in some fashion. Unfortunately, existing approaches for model averaging either severely restrict the structure of the Bayesian network or have only been shown to scale to networks with fewer than 30 random variables. In this paper, we propose a novel approach to model averaging inspired by performance guarantees in approximation algorithms. Our approach has two primary advantages. First, our approach only considers credible models in that they are optimal or near-optimal in score. Second, our approach is more efficient and scales to significantly larger Bayesian networks than existing approaches.

Introduction
A Bayesian network is a widely used probabilistic graphical model with applications in knowledge discovery, explanation, and prediction (Darwiche 2009, Koller and Friedman 2009). A Bayesian network (BN) can be learned from data using the well-known score-and-search approach, where a scoring function is used to evaluate the fit of a proposed BN to the data, and the space of directed acyclic graphs (DAGs) is searched for the best-scoring BN. However, selecting a single model (i.e., the best-scoring BN) may not always be the best choice. When one is using BNs for knowledge discovery and explanation with limited data, selecting a single model may be misleading as there may be many other BNs that have scores that are very close to optimal and the posterior probability of even the best-scoring BN is often close to zero. As well, when one is using BNs for prediction, selecting a single model may not achieve the best possible accuracy.

An alternative to committing to a single model is to perform some form of Bayesian or frequentist model averaging (Claeskens and Hjort 2008, Hoeting et al. 1999, Koller and Friedman 2009). In the context of knowledge discovery, Bayesian model averaging allows one to estimate, for example, the posterior probability that an edge is present, rather than just knowing whether the edge is present in the best-scoring network. Previous work has proposed Bayesian and frequentist model averaging approaches to network structure learning that enumerate the space of all possible DAGs (Koivisto and Sood 2004), sample from the space of all possible DAGs (He, Tian, and Wu 2016, Madigan and Raftery 1994), consider the space of all DAGs consistent with a given ordering of the random variables (Buntine 1991, Dash and Cooper 2004), consider the space of tree-structured or other restricted DAGs (Madigan and Raftery 1994, Meilă and Jaakkola 2000), and consider only the k-best scoring DAGs for some given value of k (Chen, Choi, and Darwiche 2015, Chen, Choi, and Darwiche 2016, Chen, Darwiche, and Choi 2018, Chen and Tian 2014, He, Tian, and Wu 2016, Tian, He, and Ram 2010). Unfortunately, these existing approaches either severely restrict the structure of the Bayesian network, such as only allowing tree-structured networks or only considering a single ordering, or have only been shown to scale to small Bayesian networks with fewer than 30 random variables.

In this paper, we propose a novel approach to model averaging for BN structure learning that is inspired by performance guarantees in approximation algorithms. Let OPT be the score of the optimal BN and assume without loss of generality that the optimization problem is to find the minimum-score BN. Instead of finding the k-best networks for some fixed value of k, we propose to find all Bayesian networks G that are within a factor ρ of optimal; i.e.,

$$OPT \leq \text{score}(G) \leq \rho \cdot OPT,$$

for some given value of $\rho \geq 1$, or equivalently,

$$OPT \leq \text{score}(G) \leq OPT + \epsilon,$$

for $\epsilon = (\rho - 1) \cdot OPT$. Instead of choosing arbitrary values for ϵ, $\epsilon \geq 0$, we show that for the two scoring functions BIC/MDL and BDeu, a good choice for the value of ϵ is closely related to the Bayes factor, a model selection criterion summarized in (Kass and Raftery 1995).

Our approach has two primary advantages. First, our approach only considers credible models in that they are optimal or near-optimal in score. Approaches that enumerate
or sample from the space of all possible models consider DAGs with scores that can be far from optimal; for example, for the BIC/MDL scoring function the ratio of worst-scoring to best-scoring network can be four or five orders of magnitude. A similar but more restricted case can be made against the approach which finds the k-best networks since there is no a priori way to know how to set the parameter k such that only credible networks are considered. Second, and perhaps most importantly, our approach is significantly more efficient and scales to Bayesian networks with almost 60 random variables. Existing methods for finding the optimal Bayesian network structure, e.g., (Bartlett and Cussens 2013, van Beek and Hoffmann 2015) rely heavily for their success on a significant body of pruning rules that remove from consideration many candidate parent sets both before and during the search. We show that many of these pruning rules can be naturally generalized to preserve the Bayesian networks that are within a factor of optimal. We modify GOBNILP (Bartlett and Cussens 2013), a state-of-the-art method for finding an optimal Bayesian network, to implement our generalized pruning rules and to find all near-optimal networks. We show in an experimental evaluation that the modified GOBNILP scales to significantly larger networks without resorting to restricting the structure of the Bayesian networks that are learned.

Background

In this section, we briefly review the necessary background in Bayesian networks and scoring functions, and define the Bayesian network structure learning problem (for more background on these topics see (Darwiche 2009, Koller and Friedman 2009)).

Bayesian Networks

A Bayesian network (BN) is a probabilistic graphical model that consists of a labeled directed acyclic graph (DAG), $G = (V, E)$ in which the vertices $V = \{V_1, \ldots, V_n\}$ correspond to n random variables, the edges E represent direct influence of one random variable on another, and each vertex V_i is labeled with a conditional probability distribution $P(V_i | \Pi_i)$ that specifies the dependence of the variable V_i on its set of parents Π_i in the DAG. A BN can alternatively be viewed as a factored representation of the joint probability distribution over the random variables and as an encoding of the Markov condition on the nodes; i.e., given its parents, every variable is conditionally independent of its non-descendents.

Each random variable V_i has state space $\Omega_i = \{v_{i1}, \ldots, v_{ir_i}\}$, where r_i is the cardinality of Ω_i and typically $r_i \geq 2$. Each Π_i has state space $\Omega_{\Pi_i} = \{\pi_{i1}, \ldots, \pi_{ir_{\Pi_i}}\}$. We use r_{Π_i} to refer to the number of possible instantiations of the parent set Π_i of V_i (see Figure 1). The set $\theta = \{\theta_{ijk}\}$ for all $i = 1, \ldots, n$, $j = 1, \ldots, r_{\Pi_i}$, and $k = 1, \ldots, r_i$ represents parameters in G where each element in θ, $\theta_{ijk} = P(v_{ik} | \pi_{ij})$.

1Madigan and Raftery (1994) deem such models discredited when they make a similar argument for not considering models whose probability is greater than a factor from the most probable.

Figure 1: Example Bayesian network: Variables A, B, F and G have the state space $\{0, 1\}$. The variables C and E have state space $\{0, 1, 3\}$ and H has state space $\{2, 4\}$. Thus $r_A = r_B = r_F = r_G = 2$, $r_C = r_E = 3$ and $r_H = 2$. Consider the parent set of G, $\Pi_G = \{B, C\}$, The state space of Π_G is $\Omega_{\Pi_G} = \{\{0, 0\}, \{0, 1\}, \{0, 3\}, \{1, 0\}, \{1, 1\}, \{1, 3\}\}$, and $r_{\Pi_G} = 6$.

The predominant method for Bayesian network structure learning (BNSL) from data is the score-and-search method. Let $I = \{I_1, \ldots, I_N\}$ be a dataset where each instance I_i is an n-tuple that is a complete instantiation of the variables in V. A scoring function $\sigma(G | I)$ assigns a real value measuring the quality of $G = (V, E)$ given the data I. Without loss of generality, we assume that a lower score represents a better quality network structure and omit I when the data is clear from context.

Definition 1. Given a non-negative constant ϵ and a dataset $I = \{I_1, \ldots, I_N\}$, a credible network G is a network that has a score $\sigma(G)$ such that $\text{OPT} \leq \sigma(G) \leq \text{OPT} + \epsilon$, where OPT is the score of the optimal Bayesian network.

In this paper, we focus on solving a problem we call the ϵ-Bayesian Network Structure Learning (eBNSL). Note that the BNSL for the optimal network(s) is a special case of eBNSL where $\epsilon = 0$.

Definition 2. Given a non-negative constant ϵ, a dataset $I = \{I_1, \ldots, I_N\}$ over random variables $V = \{V_1, \ldots, V_n\}$ and a scoring function σ, the ϵ-Bayesian Network Structure Learning (eBNSL) problem is to find all credible networks.

Scoring Functions

Scoring functions usually balance goodness of fit to the data with a penalty term for model complexity to avoid overfitting. Common scoring functions include BIC/MDL (Lam and Bacchus 1994, Schwarz 1978) and BDeu (Buntine 1991, Heckerman, Geiger, and Chickering 1995). An important property of these (and most) scoring functions is decomposability, where the score of the entire network $\sigma(G)$ can be rewritten as the sum of local scores associated to each vertex $\sum_{i=1}^{n} \sigma(V_i, \Pi_i)$ that only depends on V_i and its parent set Π_i in G. The local score is abbreviated below as $\sigma(\Pi_i)$ when the local node V_i is clear from context. Pruning techniques can be used to reduce the number of candidate parent sets that need to be considered, but in the worst-case the number of candidate parent sets for each variable V_i is exponential in n, where n is the number of vertices in the DAG.

In this work, we focus on the Bayesian Information Criterion (BIC) and the Bayesian Dirichlet, specifically BDeu,
scoring functions. The BIC scoring function in this paper is defined as,

\[BIC : \sigma(G) = \max_{\theta} L_{G,I}(\theta) - t(G) \cdot w. \]

Here, \(w = \frac{\log N}{2} \), \(t(G) \) is a penalty term and \(L_{G,I}(\theta) \) is the log likelihood, given by,

\[L_{G,I}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{r_i} \sum_{k=1}^{r_j} \log \theta_{ijk}^{n_{ijk}}, \]

where \(n_{ijk} \) is the number of instances in \(I \) where \(v_{ik} \) and \(\pi_{ij} \) co-occur. As the BIC function is decomposable, we can associate a score to \(\Pi_i \), a candidate parent set of \(V_i \) as follows,

\[BIC : \sigma(\Pi_i) = \max_{\theta} L(\theta_i) - t(\Pi_i) \cdot w. \]

Here, \(L(\theta_i) = \sum_{j=1}^{r_i} \sum_{k=1}^{r_j} n_{ijk} \log \theta_{ijk} \) and \(t(\Pi_i) = r_{\Pi_i} (r_i - 1) \). The BDeu scoring function in this paper is defined as,

\[BDeu : \sigma(G) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{r_i} \log \frac{\Gamma(\alpha)}{\Gamma(\alpha + n_{ij})} \\
+ \frac{1}{r_i} \sum_{j=1}^{r_i} r_j \sum_{k=1}^{r_j} \log \frac{\Gamma(\alpha + n_{ijk})}{\Gamma(\alpha) \Gamma(\frac{n_{ijk}}{r_j})}, \]

where \(\alpha \) is the equivalent sample size and \(n_{ij} = \sum_k n_{ijk} \).

As the BDeu function is decomposable, we can associate a score to \(\Pi_i \), a candidate parent set of \(V_i \) as follows,

\[BDeu : \sigma(\Pi_i) = \frac{r_{\Pi_i}}{r_i} \left(\frac{\log \Gamma(\alpha)}{\Gamma(\alpha + n_{ij})} \\
+ \frac{1}{r_j} \sum_{k=1}^{r_j} \log \frac{\Gamma(\alpha + n_{ijk})}{\Gamma(\frac{n_{ijk}}{r_j})} \right). \]

The Bayes Factor

In this section, we show that a good choice for the value of \(\epsilon \) for the eBNSL problem is closely related to the Bayes factor (BF), a model selection criterion summarized in (Kass and Raftery 1995).

The BF was proposed by Jeffreys as an alternative to significance test (Jeffreys 1967). It was thoroughly examined as a practical model selection tool in (Kass and Raftery 1995). Let \(G_0 \) and \(G_1 \) be DAGs (BNs) in the set of all DAGs \(G \) defined over \(V \). The BF in the context of BNs is defined as,

\[BF(G_0, G_1) = \frac{P(I | G_0)}{P(I | G_1)}, \]

namely the odds of the probability of the data predicted by network \(G_0 \) and \(G_1 \). The actual calculation of the BF often relies on Bayes’ Theorem as follows,

\[\frac{P(G_0 | I)}{P(G_1 | I)} = \frac{P(I | G_0) \cdot P(G_0)}{P(I | G_1) \cdot P(G_1)} = \frac{P(I | G_0)}{P(I | G_1)}. \]

Since it is typical to assume the prior over models is uniform in eBNSL, the BF can then be obtained using either \(P(G | I) \) or \(P(I, G) \forall G \in G \). We use those two representations to show how BIC and BDeu scores relate to the BF.

Using Laplace approximation and other simplifications in (Ripley 1996), Ripley derived the following approximation to the logarithm of the marginal likelihood for network \(G \) (a similar derivation is given in (Claeskens and Hjort 2008)),

\[\log P(I | G) = L_{G,I}(\hat{\theta}) - t(G) \cdot \frac{\log N}{2} + t(G) \cdot \frac{\log 2\pi}{2} \]
\[- \frac{1}{2} \log |J_{G,I}(\hat{\theta})| + \log P(\hat{\theta} | G), \]

where \(\hat{\theta} \) is the maximum likelihood estimate of model parameters and \(J_{G,I}(\hat{\theta}) \) is the Hessian matrix evaluated at \(\hat{\theta} \). It follows that,

\[\log P(I | G) = -BIC(I, G) + O(1). \]

The above equation shows that the BIC score was designed to approximate the log marginal likelihood. If we drop the lower-order term, we can then obtain the following equation,

\[BIC(I, G_1) - BIC(I, G_0) = \log \frac{P(I | G_0)}{P(I | G_1)} = \log BF(G_0, G_1). \]

It has been indicated in (Kass and Raftery 1995) that as \(N \to \infty \), the difference of the two BIC scores, dubbed the Schwarz criterion, approaches the true value of \(\log BF \) such that,

\[\frac{BIC(I, G_1) - BIC(I, G_0) - \log BF(G_0, G_1)}{\log BF(G_0, G_1)} \to 0. \]

Therefore, the difference of two BIC scores can be used as a rough approximation to \(\log BF \). Note that some papers define BIC to be twice as large as the BIC defined in this paper, but the above relationship still holds albeit with twice the logarithm of the BF.

Similarly, the difference of the BDeu scores can be expressed in terms of the BF. In fact, the BDeu score is the log marginal likelihood where there are Dirichlet distributions over the parameters (Buntine 1991, Heckerman, Geiger, and Chickering 1995); i.e.,

\[\log P(I, G) = -BDeu(I, G), \]

and thus,

\[BDeu(I, G_1) - BDeu(I, G_0) = \log \frac{P(I, G_0)}{P(I, G_1)} = \log BF(G_0, G_1). \]

The above results are consistent with the observation in (Kass and Raftery 1995) that the log BF can be interpreted as a measure for the relative success of two models at predicting data, sometimes referred to as the “weight of evidence”, without assuming either model is true. The desired value of BF, however, is often specific to a study and determined with domain knowledge, e.g., a BF of 1000 is more appropriate in forensic science. Heckerman, Geiger, and Chickering (1995) proposed the following interpreting
scale for the BF: a BF of 1 to 3 bears only anecdotal evidence, a BF of 3 to 20 suggests some positive evidence that G_0 is better, a BF of 20 to 150 suggests strong evidence in favor of G_0, and a BF greater than 150 indicates very strong evidence. If we deem 20 to be the desired BF in eBNSL, i.e., $G_0 = G^*$ and $c = \log(20)$, then any network with a score less than $\log(20)$ away from the optimal score would be credible, otherwise it would be discredited. Note that the ratio of posterior probabilities was defined as λ in (Tian, He, and Ram 2010, Chen and Tian 2014) and was used as a metric to assess arbitrary values of k in finding the k-best networks.

Finally, the eBNSL problem using the BIC or BDeu scoring function given a desired BF can be written as,

$$OPT \leq \text{score}(g) \leq OPT + \log \text{BF}. \tag{3}$$

Pruning Rules for Candidate Parent Sets

To find all near-optimal BNs given a BF, the local score $\sigma(\Pi_j)$ for each candidate parent set $\Pi_j \subseteq 2^{V^\prime} - \{ V_i \}$ and each random variable V_i must be computed. As this is very costly prohibitive, the search space of candidate parent sets can be pruned, provided that global optimality constraints are not violated.

A candidate parent set Π_i can be safely pruned given a non-negative constant $\epsilon \in \mathbb{R}^+$ if Π_i cannot be the parent set of V_i in any network in the set of credible networks. Note that for $\epsilon = 0$, the set of credible networks just contains the optimal network(s). We discuss the original rules and their generalization below and proofs for them can be found in the supplemental material.

Teyssier and Koller (2005) gave a pruning rule for all decomposable scoring functions. This rule compares the score of a candidate parent set to those of its subsets. We give a relaxed version of the rule.

Lemma 1. Given a vertex variable V_i, candidate parent sets Π_j and Π_j', and some $\epsilon \in \mathbb{R}^+$, if $\Pi_j \subset \Pi_j'$ and $\sigma(\Pi_j) + \epsilon \geq \sigma(\Pi_j')$, Π_j' can be safely pruned.

Pruning with BIC/MDL Score

A pruning rule comparing the BIC score and penalty associated to a candidate parent set to those of its subsets was introduced in (de Campos and Ji 2011). The following theorem gives a relaxed version of that rule.

Theorem 1. Given a vertex variable V_i, candidate parent sets Π_j and Π_j', and some $\epsilon \in \mathbb{R}^+$, if $\Pi_j \subset \Pi_j'$ and $\sigma(\Pi_j) - t(\Pi_j') + \epsilon < 0$, Π_j' and all supersets of Π_j' can be safely pruned if ϵ is the BIC function.

Another pruning rule for BIC appears in (de Campos and Ji 2011). This provides a bound on the number of possible instantiations of subsets of a candidate parent set. The following theorem relaxes that rule.

Theorem 2. Given a vertex variable V_i, and a candidate parent set Π_i such that $r_{\Pi_i} > N \log_{\epsilon} \frac{N}{r_{\Pi_i}} + \epsilon$ for some $\epsilon \in \mathbb{R}^+$, if $\Pi_i \subseteq \Pi_i'$, then Π_i' can be safely pruned if ϵ is the BIC scoring function.

The following corollary of Theorem 2 gives a useful upper bound on the size of a candidate parent set.

Corollary 1. Given a vertex variable V_i and candidate parent set Π_i, if Π_i has more than $\lfloor \log_2 N + \epsilon \rfloor$ elements, for some $\epsilon \in \mathbb{R}^+$, Π_i can be safely pruned if ϵ is the BIC scoring function.

Corollary 1 provides an upper bound on the size of parent sets based solely on the sample size. The following table summarizes such an upper bound given different amounts of data N and a BF of 20.

| $|\Pi|$ | 10 | 500 | 10^3 | 5×10^3 | 10^4 | 5×10^4 | 10^5 |
|---|---|---|---|---|---|---|---|
| 10 | 10 | 12 | 13 | 16 | 17 | 19 | 20 |

The entropy of a candidate parent set is also a useful measure for pruning. A pruning rule, given by (de Campos et al. 2018), provides an upper bound on conditional entropy of candidate parent sets and their subsets. We give a relaxed version of their rule. First, we note that entropy for a vertex variable V_i is given by,

$$H(V_i) = -\sum_{k=1}^{r_{\Pi_i}} \frac{n_{ik}}{N} \log \frac{n_{ik}}{N},$$

where n_{ik} represents how many instances in the dataset contain v_{ik}, where v_{ik} is an element in the state space Ω_i of V_i. Similarly, entropy for a candidate parent set Π_i is given by,

$$H(\Pi_i) = -\sum_{j=1}^{r_{\Pi_i}} \frac{n_{ij}}{N} \log \frac{n_{ij}}{N}.$$

Conditional information is given by,

$$H(X \mid Y) = H(X \cup Y) - H(Y).$$

Theorem 3. Given a vertex variable V_i, and candidate parent set Π_i, let $V_j \notin \Pi_i$ such that $N \cdot \min\{H(V_i \mid \Pi_i), H(V_j \mid \Pi_i)\} \geq (1 - r_j) \cdot t(\Pi_i) + \epsilon$ for some $\epsilon \in \mathbb{R}^+$. Then the candidate parent set $\Pi_i' = \Pi_i \cup \{V_j\}$ and all its supersets can be safely pruned if ϵ is the BIC scoring function.

Pruning with BDeu Score

A pruning rule for the BDeu scoring function appears in (de Campos et al. 2018) and a more general version is included in (Cussens and Bartlett 2012). Here, we present a relaxed version of the rule in (Cussens and Bartlett 2012).

Theorem 4. Given a vertex variable V_i and candidate parent sets Π_i and Π_i' such that $\Pi_i \subset \Pi_i'$ and $\Pi_i \neq \Pi_i'$, let $r_{\Pi_i}^+ (\Pi_i')$ be the number of positive counts in the contingency table for Π_i'. If $\sigma(\Pi_i) + \epsilon < r_{\Pi_i}^+ (\Pi_i') \log r_i$, for some $\epsilon \in \mathbb{R}^+$ then Π_i' and the supersets of Π_i' can be safely pruned if ϵ is the BDeu scoring function.

Experimental Evaluation

In this section, we evaluate the proposed BF based method and compare its performance with published k-best solvers.

Our proposed method is more memory efficient comparing to the k-best based solvers in BDeu scoring and often
collects more networks in a shorter period of time. With the pruning rules generalized above, our method can scale up to datasets with 57 variables in BIC scoring, whereas the previous best results are reported on a network of 29 variables using the k-best approach with score pruning (Chen, Darwiche, and Choi 2018).

The datasets are obtained from the UCI Machine Learning Repository (Dheeru and Karra Taniskidou 2017) and the Bayesian Network Repository (Dheeru and Karra Taniskidou 2017) and the Bayesian Network Repository. Some of the complete local scoring files are downloaded from the GOBNILP website and are used for the k-best approach with score pruning (Chen, Darwiche, and Choi 2018).

The code is compiled with SCIP 6.0.0 and CPLEX 12.8.0. GOBNILP extends the SCIP Optimization Suite (Gleixner et al. 2018) by adding a constraint handler for handling the acyclicity constraint for DAGs. If multiple BNs are required GOBNILP_dev just calls SCIP to ask it to collect feasible solutions. In this mode, when SCIP finds a solution, the solution is stored, a constraint is added to render that solution infeasible and the search continues. This differs from (and is much more efficient than) GOBNILP’s current method for finding k-best BNs where an entirely new search is started each time a new BN is found. A recent version of SCIP has a separate “reoptimization” method which might allow better k-best performance for GOBNILP but we do not explore that here. By default when SCIP is asked to collect solutions it turns off all cutting plane algorithms. This led to very poor GOBNILP performance since GOBNILP relies on cutting plane generation. Therefore, this default setting is overridden in GOBNILP_dev to allow cutting planes when collecting solutions. To find only solutions with objective no worse than (OPT + ǫ), SCIP’s SCIPsetObjlimit function is used. Note that, for efficiency reasons, this is not effected by adding a linear constraint.

We first use GOBNILP_dev to find the optimal scores since GOBNILP_dev takes objective limit (OPT + ǫ) for enumerating feasible networks. Then all networks failing

| Data | n | N | T_3 (s) | |G_3| |M_3| | T_20 (s) | |G_20| |M_20| | T_150 (s) | |G_150| |M_150| |
|-----------|----|------|---------|---|---|---|---------|---|---|---|---------|---|---|---|
| tic tac toe | 10 | 958 | 1.9 | 192 | 64 | 2.0 | 192 | 64 | 3.3 | 544 | 160 |
| wine | 14 | 178 | 4.1 | 308 | 51 | 24.9 | 3,449 | 576 | 143.7 | 26,197 | 4,497 |
| adult | 14 | 32,561 | 17.5 | 324 | 162 | 45.1 | 1,140 | 570 | 55.7 | 2,281 | 1,137 |
| nlcs | 16 | 3,236 | 53.8 | 240 | 120 | 201.7 | 1,200 | 600 | 1,005.1 | 4,606 | 2,303 |
| msnbc | 17 | 58,265 | 3,483.0 | 24 | 24 | 7,146.9 | 960 | 504 | 8,821.4 | 1,938 | 1,026 |
| letter | 17 | 20,000 | OT | 24 | 24 | OT | OT | OT | OT | OT | OT |
| voting | 17 | 435 | 1.3 | 27 | 2 | 4.0 | 441 | 33 | 14.3 | 2,222 | 170 |
| zoo | 17 | 101 | 8.1 | 49 | 13 | 21.9 | 1,111 | 270 | 299.3 | 21,683 | 5,392 |
| hepatitis | 20 | 155 | 7.1 | 580 | 105 | 513.3 | 87,169 | 15,358 | 1,452.8 | 150,000 | 49,269 |
| parkinsons| 23 | 195 | 30.7 | 1,088 | 336 | 3,165.9 | 150,000 | 39,720 | 4,534.3 | 150,000 | 116,206 |
| sensors | 26 | 5456 | OT | 24 | 24 | OT | OT | OT | OT | OT | OT |
| autos | 26 | 159 | 95.0 | 560 | 200 | 2,382.8 | 50,374 | 17,790 | 6,666.9 | 150,000 | 54,579 |
| insurance | 27 | 1,000 | 49.8 | 8,226 | 2,062 | 244.9 | 104,870 | 25,580 | 414.5 | 148,925 | 36,072 |
| horse | 28 | 300 | 18.8 | 1,643 | 246 | 1,358.8 | 150,000 | 28,186 | 1,962.5 | 150,000 | 69,309 |
| flag | 29 | 194 | 16.1 | 773 | 169 | 4,051.9 | 150,000 | 39,428 | 5,560.9 | 150,000 | 122,185 |
| wdcb | 31 | 569 | 396.1 | 398 | 107 | 10,144.2 | 28,424 | 8,182 | 45,938.2 | 150,000 | 54,846 |
| mildew | 35 | 1000 | 1.2 | 1,026 | 2 | 1.2 | 1,026 | 2 | 2.1 | 2,052 | 4 |
| soybean | 36 | 266 | 7,729.4 | 150,000 | 150,000 | 16,096.8 | 150,000 | 62,704 | 8,893.5 | 150,000 | 118,368 |
| alarm | 37 | 1000 | 6.3 | 1,508 | 122 | 684.2 | 123,352 | 9,323 | 2,254.8 | 150,000 | 8,484 |
| bands | 39 | 277 | 100.9 | 7,092 | 810 | 2,032.6 | 150,000 | 48,899 | 16,974.8 | 150,000 | 95,774 |
| specific | 45 | 267 | 432.4 | 27,770 | 4,510 | 7,425.2 | 150,000 | 51,871 | 19,664.8 | 150,000 | 63,965 |
| sponge | 45 | 76 | 16.8 | 1,102 | 65 | 1,301.0 | 146,977 | 7,905 | 1,254.4 | 150,000 | 90,005 |
| barley | 48 | 1000 | 0.8 | 182 | 1 | 0.8 | 364 | 2 | 1.3 | 1,274 | 5 |
| hailfinder| 56 | 100 | 171.5 | 150,000 | 20 | 149.4 | 150,000 | 748 | 214.6 | 150,000 | 294 |
| hailfinder| 56 | 500 | 286.1 | 150,000 | 30,720 | 314.1 | 150,000 | 18,432 | 217.3 | 150,000 | 24,576 |
| lung cancer| 57 | 32 | 584.3 | 150,000 | 40,621 | 966.6 | 150,000 | 79,680 | 2,739.7 | 150,000 | 48,236 |

Table 1: The search time T, the number of collected networks |G| and the number of MECs |M| in the collected networks at BF = 3, 20 and 150 using BIC, where n is the number of random variables in the dataset, N is the number of instances in the dataset and OT = Out of Time.
Table 2: The search time T and the number of collected networks k, $|G_k|$ and $|G_{20}|$ for KBest, KBestEC and GOBNILP_dev (BF = 20) using BDeu, where n is the number of random variables in the dataset, N is the number of instances in the dataset, OM = Out of Memory, OT = Out of Time and ES = Error in Scoring. Note that $|G_k|$ is the number of DAGs covered by the k-best MECs in KBestEC and $|M_{20}|$ is the number of MECs in the networks collected by GOBNILP_dev.

| Data | n | N | T_k (s) | k | T_{20} (s) | $|G_{20}|$ | $|G_k|$ | $|M_{20}|$ |
|----------|-----|-----|----------|----|-------------|----------|--------|---------|
| tic tac toe | 10 | 958 | 0.2 | 10 | 0.5 | 67 | 6 | 67 |
| wine | 14 | 178 | 3.4 | 10 | 12.0 | 60 | 35.9 | 8,734 | 6,262 |
| adult | 14 | 32,561 | 3.4 | 10 | 63.5 | 68 | 9.3 | 792 | 19 |
| nltcs | 16 | 3,236 | 11.8 | 10 | 47,338.4 | 552 | 125.5 | 652 | 326 |
| msnbc | 17 | 58,265 | 26.0 | 10 | 18,788.0 | 200 | 56,344.8 | 20 | 10 |
| letter | 17 | 20,000 | 34.1 | 10 | 101.9 | 30 | 6.0 | 621 | 207 |
| voting | 17 | 435 | 33.5 | 10 | 99.8 | 52 | 8,418.8 | 29,073 | 6,761 |
| zoo | 17 | 101 | 1,041.7 | 100 | 1,843.4 | 100 | 441.4 | 28,024 | 3,534 |
| hepatitis | 20 | 155 | 351.2 | 10 | 872.3 | 89 | 1,125.9 | 150,000 | 42,448 |
| parkinsons | 23 | 195 | 3,908.2 | 10 | OT | 1,000 | OT | 1,515.9 | 150,000 | 42,448 |
| autos | 26 | 159 | OM | 1 | OM | — | OT | — | — |
| insurance | 27 | 1,000 | OM | 1 | OM | — | OT | — | — |

The results also indicate that the number of collected networks and the number of MECs at three BF levels varies substantially across different datasets. In general, datasets with smaller sample sizes tend to have more networks collected at a given BF since near-optimal networks have similar posterior probabilities to the best network. Although the desired level of BF for a study, like the p-value, is often determined with domain knowledge, the proposed approach, given sufficient samples, will produce meaningful results that can be used for further analysis.

Bayes Factor vs. k-Best

In this section, we compare our approach with published solvers that are able to find a subset of top-scoring networks with the given parameter k. The solvers under consideration are KBest_12b from (Tian, He, and Ram 2010), KBestEC from (Chen and Tian 2014), and GOBNILP 1.6.3 (Bartlett and Cussens 2013), referred to as KBest, KBestEC and GOBNILP below. The first two solvers are based on the dynamic programming approach introduced in (Silander and Myllymäki 2006). Due to the lack of support for BIC in

5http://web.cs.iastate.edu/~jtian/Software/UAII-10/KBest.htm
6http://web.cs.iastate.edu/~jtian/Software/AAAI-14-yetian/KBestEC.htm
KBest and KBestEC, only BDeu with an equivalent sample size of one is used in corresponding experiments.

The most recent stable version of GOBNILP is 1.6.3 that works with SCIP 3.2.1. The default configuration is used and experiments are conducted for both BIC and BDeu scoring functions. However, the k-best results are omitted here due to its poor performance. Despite that GOBNILP can iteratively find the k-best networks in descending order by adding linear constraints, the pruning rules designed to find the best network are turned off to preserve sub-optimal networks. In fact, the memory usage often exceeded 64 GB during the initial ILP formulation, indicating that the lack of pruning rules posed serious challenge for GOBNILP. GOBNILP_dev, on the other hand, can take advantage of the pruning rules presented above in the proposed BF approach and its results compare favorably to KBest and KBestEC.

The experimental results of KBest, KBestEC and GOBNILP_dev are reported in Table 2, where n is the number of random variables in the dataset, N is the number of instances in the dataset, and k is the number of top scoring networks. The search time T is reported for KBest, KBestEC and GOBNILP_dev (BF = 20). The number of DAGs covered by the k MECS \(|G_k| \) is reported for KBestEC. In comparison, the last two columns are the number of found networks \(|G_{20}| \) and the number of MECs \(|M_{20}| \) using the BF approach with a given BF of 20 and BDeu scoring function.

As the number of requested networks k increases, the search time for both KBest and KBestEC grows exponentially. The KBest and KBestEC are designed to solve problems of size fewer than 20\(^7\), and so they have some difficulty with larger datasets. They also fail to generate correct scoring files for msnbc. KBestEC seems to successfully expand the coverage of DAGs with some overhead for checking equivalence classes. However, KBestEC took much longer than KBest for some instances, e.g., nlcts and letter, and the number of DAGs covered by the found MECs is inconsistent for nlcts, letter and zoo. The search time for the BF approach is improved over the k-best approach except for datasets with very large sample sizes. The generalized pruning rules are very effective in reducing the search space, which then allows GOBNILP_dev to solve the ILP problem subsequently. Comparing to the improved results in (Chen, Choi, and Darwiche, 2015; 2016), our approach can scale to significantly larger networks without resorting to larger networks if the scoring file can be generated.\(^8\)

Now we show that different datasets have distinct score patterns in the top scoring networks. The scores of the 1,000-best networks for some datasets in the KBest experiment are plotted in Figure 2. A specific line for a dataset indicates the deviation \(\epsilon \) from the optimal BDeu score by the k-best network. For reference, the red dash lines represent different levels of BFs calculated by \(\epsilon = \log(BF) \) (See Equation 3). The figure shows that it is difficult to pick a value for \(k \) \textit{a priori} to capture the appropriate set of top scoring networks. For a few datasets such as adult and letter, it only takes fewer than 50 networks to reach a BF of 20, whereas zoo needs more than 10,000 networks. The sample size has a significant effect on the number of networks at a given BF since the lack of data leads to many BNs with similar probabilities. It would be reasonable to choose a large value for \(k \) in model averaging when data is scarce and vice versa, but only the BF approach is able to automatically find the appropriate and credible set of networks for further analysis.

Figure 2: The deviation \(\epsilon \) from the optimal BDeu score by \(k \) using results from KBest. The corresponding values of the BF \((\epsilon = \log(BF), \text{see Equation } 3) \) are presented on the right. For example, if the desired BF value is 20, then all networks falling below the dash line at 20 are credible.

\(^{7}\)Obtained through correspondence with the author.

\(^{8}\)We are unable to generate BDeu score files for datasets with over 30 variables.

Conclusion

Existing approaches for model averaging for Bayesian network structure learning either severely restrict the structure of the Bayesian network or have only been shown to scale to networks with fewer than 30 random variables. In this paper, we proposed a novel approach to model averaging inspired by performance guarantees in approximation algorithms that considers all networks within a factor of optimal. Our approach has two primary advantages. First, our approach only considers \textit{credible} models in that they are optimal or near-optimal in score. Second, our approach is significantly more efficient and scales to much larger Bayesian networks than existing approaches. We modified GOBNILP (Bartlett and Cussens 2013), a state-of-the-art method for finding an optimal Bayesian network, to implement our generalized pruning rules and to find all \textit{near}-optimal networks. Our experimental results demonstrate that the modified GOBNILP scales to significantly larger networks without resorting to restricting the structure of the Bayesian networks that are learned.
References

Supplemental Material
Proofs of Pruning Rules

We discuss the original pruning rules and prove their generalization below. A candidate parent set \(\Pi_i \) can be safely pruned given a non-negative constant \(\epsilon \in \mathbb{R}^+ \) if \(\Pi_i \) cannot be the parent set of \(V_i \) in any network in the set of credible networks. Note that proofs of the original rules can be obtained by setting \(\epsilon = 0 \).

Proof of Lemma 1

Teyssier and Koller (2005) give a pruning rule that is applicable for all decomposable scoring functions.

Theorem 1A. (Teyssier and Koller 2005) Given a vertex variable \(V_j \), and candidate parent sets \(\Pi_j \) and \(\Pi'_j \), if \(\Pi_j \subset \Pi'_j \) and \(\sigma(\Pi_j) \leq \sigma(\Pi'_j) \), \(\Pi'_j \) can be safely pruned.

Let us relax this pruning rule.

Lemma 2. Given a vertex variable \(V_j \), candidate parent sets \(\Pi_j \) and \(\Pi'_j \), and some \(\epsilon \in \mathbb{R}^+ \), if \(\Pi_j \subset \Pi'_j \) and \(\sigma(\Pi_j) + \epsilon \geq \sigma(\Pi'_j) \), \(\Pi'_j \) can be safely pruned.

Proof. Consider networks \(G \) and \(G' \) that are the same except for the parent set of \(V_j \), where \(G \) has the parent set \(\Pi_j \) for \(V_j \) and \(G' \) has the parent set \(\Pi'_j \) for \(V_j \).

\[
\sigma(G) = \sigma(\Pi_j) + \sum_{i\neq j} \sigma(\Pi_j) [\sigma(\cdot) \text{ is decomposable}]
\leq \sigma(\Pi'_j) + \epsilon + \sum_{i\neq j} \sigma(\Pi_j) \quad \text{[given]}
= \sigma(G').
\]

Thus, \(G' \) cannot be in the set of credible networks.

Proof of Theorem 2

An additional pruning rule can be derived from Theorem 1A that is applicable to the BIC/MDL scoring function.

Theorem 2A. (de Campos and Ji 2011) Given a vertex variable \(V_i \), and candidate parent sets \(\Pi_i \) and \(\Pi'_i \), if \(\Pi_i \subset \Pi'_i \) and \(\sigma(\Pi_i) - t(\Pi'_i) < 0 \), \(\Pi'_i \) and all supersets of \(\Pi'_i \) can be safely pruned if \(\sigma \) is the BIC/MDL scoring function.

Here, \(t(\Pi'_i) \) is the penalty term in the BIC scoring function. This pruning rule can also be relaxed.

Theorem 2. Given a vertex variable \(V_i \), candidate parent sets \(\Pi_i \) and \(\Pi'_i \), and some \(\epsilon \in \mathbb{R}^+ \), if \(\Pi_i \subset \Pi'_i \) and \(\sigma(\Pi_i) - t(\Pi'_i) + \epsilon < 0 \), \(\Pi'_i \) and all supersets of \(\Pi'_i \) can be safely pruned if \(\sigma \) is the BIC scoring function.

Proof.

\[
\sigma(\Pi_i) - t(\Pi'_i) + \epsilon < 0 \quad \text{[given]}
\Rightarrow -\sigma(\Pi_i) + t(\Pi'_i) - \epsilon > 0
\Rightarrow -\sigma(\Pi'_i) + t(\Pi'_i) - L(\Pi'_i) - \epsilon > 0 \quad [L(\Pi'_i) < 0]
\Rightarrow \sigma(\Pi'_i) > \sigma(\Pi_i) + \epsilon.
\]

By Lemma 1, \(\Pi'_i \) cannot be an optimal parent set. Using the fact that penalties increase with increase in parent set size, supersets of \(\Pi'_i \) cannot be in the set of credible networks. The result follows.

Proof of Theorem 2

Theorem 2A. (de Campos and Ji 2011) Given a vertex variable \(V_i \) and candidate parent set \(\Pi_i \) such that \(r_{\Pi_i} > \frac{N \log w}{w + 1} \), if \(\Pi_i \subset \Pi'_i \) then \(\Pi'_i \) can be safely pruned if \(\sigma \) is the BIC scoring function.

Corollary 3B. (de Campos and Ji 2011) Given a vertex variable \(V_i \) and candidate parent set \(\Pi_i \), if \(\Pi_i \) has more than \(\log_2 N \) elements, \(\Pi_i \) can be safely pruned if \(\sigma \) is the BIC scoring function.

Let us relax the pruning rule given in Theorem 3A.

Theorem 3. Given a vertex variable \(V_i \), and a candidate parent set \(\Pi_i \) such that \(r_{\Pi_i} > \frac{N \log_2 r_i}{w + 1} + \epsilon \) for some \(\epsilon \in \mathbb{R}^+ \), if \(\Pi_i \subset \Pi'_i \), then \(\Pi'_i \) can be safely pruned if \(\sigma \) is the BIC scoring function.

Proof.

\[
\sigma(\Pi'_i) - \sigma(\Pi_i)
\]
\[
= \frac{-\max_{\theta_i} L(\Pi'_i) + t(\Pi'_i) \cdot w + \max_{\theta_i} L(\Pi_i) - t(\Pi_i) \cdot w}{\theta_i}
\]
\[
\geq -\max_{\theta_i} L(\Pi'_i) + t(\Pi'_i) \cdot w - t(\Pi_i) \cdot w
\]
\[
\geq - \sum_{j=1}^{r_{\Pi_i}} n_{ij} \left(- \sum_{i=1}^{r_{\Pi'_i}} \frac{n_{ijk}}{n_{ij}} \log \frac{n_{ijk}}{n_{ij}} \right) + t(\Pi'_i) \cdot w - t(\Pi_i) \cdot w
\]
\[
\geq - \sum_{j=1}^{r_{\Pi_i}} n_{ij} H(\theta_{ij}) - t(\Pi'_i) \cdot w + t(\Pi_i) \cdot w
\]
\[
\geq - \sum_{j=1}^{r_{\Pi_i}} n_{ij} \log r_i + r_{\Pi_i} \cdot (r_e - 1) \cdot (r_i - 1) \cdot w
\]
\[
\geq - \sum_{j=1}^{r_{\Pi_i}} n_{ij} \log r_i + r_{\Pi_i} \cdot (r_i - 1) \cdot w
\]
\[
= - N \log r_i + r_{\Pi_i} \cdot (r_i - 1) \cdot w
\]
\[
> \epsilon.
\]

Step 0 uses the definition of BIC. Step 1 uses \(\max_{\theta_i} L(\Pi'_i) \) is negative. Step 2 uses the fact that the maximum likelihood estimate, \(\theta_{ijk}^{*} = \frac{n_{ijk}}{n_{ij}} \) and \(n_{ij} = \sum_{i=1}^{r_i} n_{ijk} \). Step 3 uses the definition of entropy. Step 4 uses the definition of the penalty function \(t \). Step 5 uses \(r_e \geq 2 \). Finally, the RHS in Step 6 follows because of the definition of \(n_{ij} \). Step 7 uses the assumption of the theorem.

Using Lemma 1, we get the result as desired.

Proof of Corollary 1

Using Theorem 2, we can get a relaxed version of Corollary 3B.

Corollary 4. Given a vertex variable \(V_i \) and candidate parent set \(\Pi_i \), if \(\Pi_i \) has more than \(\log_2 N + \epsilon \) elements, for some \(\epsilon \in \mathbb{R}^+ \), \(\Pi_i \) can be safely pruned if \(\sigma \) is the BIC scoring function.
Proof. Assuming \(N > 4 \), take a variable \(V_i \) and a parent set \(\Pi_i \) with \(|\Pi_i| = \lfloor \log_2 N + \epsilon \rfloor \) elements. Because every variable has at least two states, we know that \(r_{\Pi_i} \geq 2 |\Pi_i| \geq N + \epsilon > N \frac{\log r_i}{w - 1} + \epsilon \), because \(w = \log \frac{N}{2} \) gives us \(\frac{\log r_i}{w(r_i - 1)} < 1 \), and by Theorem 2 we know that no proper superset of \(\Pi_i \) can be an optimal parent set for \(V_i \) as desired. \(\square \)

Proof of Theorem 5

Lemma 5A. (de Campos et al. 2018) Given a vertex variable \(V_i \), and candidate parent sets \(\Pi_i, \Pi'_i \) such that \(\Pi_i = \Pi'_i \cup \{ V_j \} \) for some variable \(V_j \notin \Pi'_i \), we have \(L(\Pi_i) - L(\Pi'_i) \leq N \cdot \min \{ H(V_i | \Pi'_i), H(V_j | \Pi'_i) \} \).

Proof. First, consider the definition of \(L_i(\Pi_i) \),

\[
L(\Pi_i) = \sum_{j=1}^{r_i} \sum_{k=1}^{r_i} n_{ijk} \log \theta_{ijk}^r,
\]

where \(\theta_{ijk}^r \) is the maximum likelihood estimate. This gives us \(N \cdot H(V_i | \Pi_i) = -L(\Pi_i) \). Thus, we get,

\[
L(\Pi_i) - L(\Pi'_i) = N \cdot (H(V_i | \Pi'_i) - H(V_i | \Pi_i)) \leq N \cdot H(V_i | \Pi'_i).
\]

We use the fact that entropy is positive. Now, consider the definition of mutual information,

\[
I(X, Y | Z) = H(X | Z) = H(X | Y \cup Z).
\]

This gives us,

\[
L(\Pi_i) - L(\Pi'_i) = N \cdot I(V_i, V_j | \Pi'_i) \geq N \cdot (H(V_j | \Pi'_i) - H(V_j | \Pi'_i \cup \{ V_j \})) \leq N \cdot \min \{ H(V_i | \Pi'_i), H(V_j | \Pi'_i) \}.
\]

Step 3 combines Steps 1 and 2. The result follows as desired. \(\square \)

Theorem 5B. (de Campos et al. 2018) Given a vertex variable \(V_i \), and candidate parent set \(\Pi_i \), let \(V_j \notin \Pi_i \) such that \(N \cdot \min \{ H(V_i | \Pi_i), H(V_j | \Pi_i) \} \geq (1 - r_j) \cdot t(\Pi_i) \). Then the candidate parent set \(\Pi'_i = \Pi_i \cup \{ V_j \} \) and all its supersets can be safely pruned if \(\sigma \) is the BIC scoring function.

We can relax this rule.

Theorem 5. Given a vertex variable \(V_i \), and candidate parent set \(\Pi_i \), let \(V_j \notin \Pi_i \) such that \(N \cdot \min \{ H(V_i | \Pi_i), H(V_j | \Pi_i) \} \geq (1 - r_j) \cdot t(\Pi_i) + \epsilon \) for some \(\epsilon \in \mathbb{R}^+ \). Then the candidate parent set \(\Pi'_i = \Pi_i \cup \{ V_j \} \) and all its supersets can be safely pruned if \(\sigma \) is the BIC scoring function.

Proof. Consider allocation of \(\{ n_{ijk} \}_{k=1}^{r_i} \) items over the \(r_i \) bins. There are two cases.

\[
\sigma(\Pi'_i) \leq \min \{ \sum_{k=1}^{r_i} \log \frac{\Gamma(n_{ijk} + \alpha')}{\Gamma(\alpha')} \leq \log \frac{\Gamma(n_{ijk} + \alpha'')}{\Gamma(\alpha'')}
\]

Proof. Let \(\{ n_{ijk} \}_{k=1}^{r_i} \) be non-negative integers with a positive sum, \(n_{ijk} = \sum_{k=1}^{r_i} n_{ijk} \) and \(\alpha'' \) be a positive real number. Then

\[
\sum_{k=1}^{r_i} \log \frac{\Gamma(n_{ijk} + \alpha'')}{\Gamma(\alpha'')} \leq \log \frac{\Gamma(n_{ijk} + \alpha'')}{\Gamma(\alpha'')}
\]

Proof. Consider allocation of \(\{ n_{ijk} \}_{k=1}^{r_i} \) items over the \(r_i \) bins. There are two cases.
Let there be some index \(k^* \) such that \(n_{ij,k^*} = n_{ij} \). This means that \(n_{ij,k} = 0 \) for all \(k \neq k^* \). It follows that
\[
\sum_{k=1}^{r_i} \log \frac{\Gamma(n_{ij,k} + \alpha')} {\Gamma(n_{ij} + \alpha')} = \log \frac{\Gamma(n_{ij,k^*} + \alpha'_{k^*})} {\Gamma(n_{ij} + \alpha')}.
\]

Let there be two indices \(k_1 \) and \(k_2 \) such that \(n_{ij,k_1} > 0 \) and \(n_{ij,k_2} > 0 \). Without loss of generality, we can assume that \(n_{ij,k_1} \geq n_{ij,k_2} \). We move one item from bin \(k_1 \) to bin \(k_2 \). The sum \(n_{ij} \) remains constant. By Lemma 6A, an increase in the RHS by \(\log(n_{ij,k_1} + \alpha') - \log(n_{ij,k_2} - 1 + \alpha') \), results in a corresponding increase in the LHS. Note that the assumption \(n_{ij,k_1} \geq n_{ij,k_2} \) means that this increase is positive. By increasing counts at the expense of small counts in this way a sequence of distributions of the fixed sum \(n_{ij} \) over the \(r_i \) bins can be constructed for which the LHS of Lemma 6B is increasing. The sequence terminates when \(n_{ij,k^*} = n_{ij} \) for some \(k^* \). The result follows.

Proof. If \(n_{ij} > 0 \), then
\[
\sum_{i=0}^{n_{ij}} \log \left(\frac{i + \alpha'/r_i} {i + \alpha'} \right) = -\log r_i \sum_{i=1}^{n_{ij}} \log \left(\frac{i + \alpha'/r_i} {i + \alpha'} \right) \leq -\log r_i.
\]

Note that as \(r_i \geq 2 \), and \(\alpha' > 0 \), it is clear that \(i + \alpha'/r_i < i + \alpha' \). This means that each term in \(\sum_{i=1}^{n_{ij}} \log \left(\frac{i + \alpha'/r_i} {i + \alpha'} \right) \) is negative. This gives us the second inequality. The result then follows from Theorem 6C as desired.

Corollary 6E. (Cussens and Bartlett 2012) Given a vertex variable \(V_i \) and candidate parent sets \(\Pi_i \) and \(\Pi'_i \) such that \(\Pi_i \subset \Pi'_i \) and \(\Pi_i \neq \Pi'_i \), let \(r_i^+(\Pi'_i) \) be the number of positive counts in the contingency table for \(\Pi'_i \). If \(\sigma(\Pi_i) < r_i^+(\Pi'_i) \) log \(r_i \) then \(\Pi'_i \) and the supersets of \(\Pi'_i \) can be safely pruned.

The corollary can be generalized to a new pruning rule.

Theorem 6. Given a vertex variable \(V_i \) and candidate parent sets \(\Pi_i \) and \(\Pi'_i \) such that \(\Pi_i \subset \Pi'_i \) and \(\Pi_i \neq \Pi'_i \), let \(r_i^+(\Pi'_i) \) be the number of positive counts in the contingency table for \(\Pi'_i \). If \(\sigma(\Pi_i) + \epsilon < r_i^+(\Pi'_i) \log r_i \), for some \(\epsilon \in \mathbb{R}^+ \) then \(\Pi'_i \) and the supersets of \(\Pi'_i \) can be safely pruned.

Proof. Let \(G' \) be a Bayesian network where \(\Pi'_i \) or one of its supersets is a parent set for \(V_i \). Let \(G' \) be another Bayesian network where \(\Pi_i \) is the parent set for \(V_i \).

Consider the LHS of Corollary 6D. It is the local BDeu score for a parent set \(\Pi'_i \) which has \(r_{n_{ij}} \) counts \(n_{ij} \) in its contingency table and counts \(n_{ij,k} \) in the contingency table for \(\Pi'_i \cup \{V_i\} \), where \(\alpha' = \alpha/r_{n_{ij}} \), for some ESS \(\alpha \). If \(r_i^+(\Pi'_i) \log r_i > \sigma(\Pi_i) + \epsilon \) then \(\sigma(\Pi_i) + \epsilon \) is lower than the local BDeu score for \(\Pi'_i \) due to Corollary 6D. Take a candidate parent set \(\Pi''_i \). If \(\Pi'_i \subset \Pi''_i \) then \(r_i^+(\Pi''_i) \leq r_i^+(\Pi'_i) \) and so \(r_i^+(\Pi''_i) \log r_i \leq r_i^+(\Pi'_i) \log r_i \), as \(r_i \geq 2 \). From this it follows that the local score for \(\Pi''_i \) must also be more than \(\sigma(\Pi_i) + \epsilon \). Using Lemma 1, the result follows as desired.

Corollary 6D. (Cussens and Bartlett 2012) Given that \(r_i^+ := \{|j : n_{ij} > 0\}| \), then
\[
\sum_{j=1}^{r_{n_{ij}}} \frac{\Gamma(\alpha')} {\Gamma(n_{ij} + \alpha')} + \sum_{k=1}^{n_{ij}} \frac{\Gamma(n_{ijk} + \alpha'_{k})} {\Gamma(n_{ij} + \alpha')} \leq -r_i^+ \log r_i.
\]