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Abstract Mesoscale cellular convective (MCC) clouds occur in large-scale patterns over the ocean and
have important radiative effects on the climate system. An examination of time-varying meteorological
conditions associated with satellite-observed open and closed MCC clouds is conducted to illustrate the
influence of large-scale meteorological conditions. Marine cold air outbreaks (MCAO) influence the
development of open MCC clouds and the transition from closed to open MCC clouds. MCC neural network
classifications on Moderate Resolution Imaging Spectroradiometer (MODIS) data for 2008 are collocated
with Clouds and the Earth’s Radiant Energy System (CERES) data and ERA-Interim reanalysis to determine the
radiative effects of MCC clouds and their thermodynamic environments. Closed MCC clouds are found to
have much higher albedo on average than open MCC clouds for the same cloud fraction. Three
meteorological control metrics are tested: sea-air temperature difference (ΔT), estimated inversion strength
(EIS), and a MCAO index (M). These predictive metrics illustrate the importance of atmospheric surface
forcing and static stability for open and closed MCC cloud formation. Predictive sigmoidal relations are found
between M and MCC cloud frequency globally and regionally: negative for closed MCC cloud and positive
for open MCC cloud. The open MCC cloud seasonal cycle is well correlated with M, while the seasonality of
closed MCC clouds is well correlated with M in the midlatitudes and EIS in the tropics and subtropics. M is
found to best distinguish open and closed MCC clouds on average over shorter time scales. The possibility of
a MCC cloud feedback is discussed.

Plain Language Summary Low clouds are essential to the Earth system energy balance as they trap
heat (outgoing energy) from the surface and reflect sunlight (incoming energy) to space. Global models
incompletely capture low-cloud behavior, leading to large uncertainties in model predictions of future
climate states. Improving predictions by reducing uncertainty is necessary for developing effective climate
change adaptation/mitigation strategies. Our study investigates the environmental conditions influential
to low-cloud development, relating easily modeled quantities to key development mechanisms for
improving low-cloud model representations. Satellite-measured low clouds are grouped by their large-scale
spatial structure using a pattern-recognizing program. The two primary cloud-type patterns are hexagonal
with filled (closed) or empty (open) cells. Satellite and reanalysis data (models observationally constrained to
real world) are used to examine their characteristics. Closed clouds reflect more sunlight than open clouds
for equal cloud cover, indicating that energy balance contributions differ by cloud type and motivating the
inclusion of low cloud by type in models. Energy from the surface and turbulence in the lower atmosphere
influence open and closed cloud development. Large-scale motions of air from the high latitudes are
particularly conducive to these clouds. M, an easily modeled parameter that quantifies this air motion,
predicts open and closed cloud occurrences effectively and may be used to include low cloud by type in
models and reduce prediction uncertainty.

1. Introduction

Marine boundary layer clouds are key influencers of the climate system. They have important radiative
impacts through strongly enhancing shortwave reflection and trapping longwave radiation (Hartmann &
Short, 1980). These radiative effects, as well as latent heat production through precipitation, play a key role
in the global energy budget (Wood, 2012). Boundary layer clouds critically impact surface and top of
atmosphere (TOA) energy budgets through their influence on the solar radiation budget in the high and
midlatitudes, especially the Artic and Southern Ocean (SO) (Bennartz et al., 2013; Bodas-Salcedo et al., 2016).
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The complex microphysics and dynamic processes of low clouds have garnered much interest in recent
years because low clouds are a leading contribution to the uncertainty in the changing energy budget in
climate models (Boucher et al., 2013). The model uncertainty from cloud feedbacks and cloud-aerosol inter-
actions is due in part to difficulties in parameterizing the subgrid-scale processes important for these clouds
(Boucher et al., 2013). Bias in modeling of surface and TOA radiative fluxes in the Southern Ocean (SO) is an
excellent example of this problem and motivational for this work. Correct representation of the radiative
fluxes in the SO is important for accurately predicting global warming effects in a coupled atmosphere-
ocean model (Bodas-Salcedo et al., 2016; Trenberth & Fasullo, 2010). Problems in cloud amount and bright-
ness in the SO result in radiation biases that lead to inaccurate energy budgets and atmosphere and ocean
transport (Trenberth & Fasullo, 2010). SO biases are found to be associated with poor simulation of low and
midlevel clouds, particularly those occurring in the cold sector of cyclones and in marine cold air outbreaks
(Bodas-Salcedo et al., 2016, 2012; Field et al., 2011; Kay et al., 2016; Naud et al., 2014; Williams et al., 2013).
Marine cold air outbreaks (MCAO) are movements of cold air from the poles equatorward over compara-
tively warmer water (Abel et al., 2017; Fletcher et al., 2016a). MCAO are known to influence development
of low clouds as the warm water-cool air contrast increases the flux of energy and moisture from the surface
into the boundary layer (Abel et al., 2017; Brummer, 1996; Fletcher et al., 2016b; Kolstad et al., 2009). Papritz
et al. (2015) found that the seasonality and strength of the Southern Ocean turbulent heat flux (latent plus
sensible heat flux) is strongly controlled by cold air outbreaks. Models are especially poor at simulating the
supercooled liquid clouds that dominate the low-cloud population in the high latitudes, significant contri-
butors to reflected shortwave radiation between 70° and 40°S (Bodas-Salcedo et al., 2016; Forbes &
Ahlgrimm, 2014). Supercooled clouds are controlled by complex, subgrid-scale mixed-phase processes
(e.g., nucleation, secondary ice formation, and Wegener-Bergeron-Findeisen) that are known to be poorly
parameterized in models (Field et al., 2014; McCoy et al., 2016; Morrison et al., 2012). Some reduction in
SO biases has been achieved by implementing improved microphysics and boundary layer schemes in
certain models (Bodas-Salcedo et al., 2012; Field et al., 2014). This suggests that to find a complete solution
to the SO and, more broadly, the midlatitude biases exhibited in models, a profound understanding of the
processes associated with the clouds occurring in these regions must be developed. This understanding,
especially of clouds in cyclone cold sectors and MCAO, could be used to further improve and implement
parameterizations in models. As these clouds are in the “gray zone,” where some model resolutions are
growing close to the convective scale of the cells but may not resolve all the mesoscale circulations,
parameterizations that comprehensively capture the multiple scales are important but difficult to achieve
(Tomassini et al., 2016).

What clouds occur near and within these difficult to model, dynamic systems? To answer that, we first classify
marine boundary layer clouds broadly based on their cellular morphology (Figure 1): open mesoscale cellular
convection (MCC), closed MCC, no MCC, and cellular but disorganized cloud (Wood & Hartmann, 2006). Open
and closed MCC clouds are organized into cellular patterns on the order of 10–40 km; cellular but disorga-
nized has cellular clouds but lacks the large-scale organization of cells observed in open and closed MCC
clouds; and no MCC clouds lacks both the cellularity and large-scale structure (Atkinson & Zhang, 1996;
Wood & Hartmann, 2006). Open MCC clouds can be thought of as cumulus clouds arranged in hexagonal
rings with a clear, descending region in the center. Closed MCC clouds are essentially hexagonally shaped
cells of stratocumulus clouds arranged into a large-scale pattern with clear, descending cell edges
(Atkinson & Zhang, 1996). Cellular but disorganized is the most prominent cloud type in this grouping, occur-
ring over tropical regions in high quantities throughout the year. Crucially, open and closedMCC clouds dom-
inate the midlatitudes and subtropical stratocumulus decks (e.g., Peruvian and Namibian) (Klein & Hartmann,
1993; Muhlbauer et al., 2014). These morphology types can loosely be thought of as different stages of the
stratus to cumulus transitions observed over the eastern tropical and subtropical oceans (Wood, 2012). In
the high latitudes and midlatitudes, a parallel transition is observed to occur between closed MCC clouds
(stratocumulus-like) to open MCC clouds (cumulus-like). This transition is associated with the passage of
cyclones and cold air outbreaks (Abel et al., 2017; Atkinson & Zhang, 1996; Field et al., 2014; Fletcher et al.,
2016b). Closed and open MCC clouds dominate the midlatitudes and are potentially the difficult to model
clouds associated with cyclones and cold air outbreaks (Fletcher et al., 2016b; Muhlbauer et al., 2014).
Additionally, recent observations have confirmed that the stratocumulus/closed MCC cloud to open MCC
cloud transition in cold air outbreaks often involves mixed-phase and supercooled clouds, adding complexity
to parameterizing these clouds for the previously stated reasons (Abel et al., 2017).
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To improve understanding of how these clouds behave, one must understand
the important drivers of open and closed MCC clouds. Mesoscale cellular con-
vective clouds were first observed in the early 1960s with the dawn of the
satellite era (Agee, 1984, 1987; Agee et al., 1973; Atkinson & Zhang, 1996).
Open and closed MCC clouds have sufficiently large structures, with cell sizes
often larger than 10 km, that satellites were needed to observe their distinctive
patterns. Such cellular convection had only been observed in the laboratory
prior to these satellite sightings (Atkinson & Zhang, 1996; Bénard, 1901;
Graham, 1934; Rayleigh, 1916). Laboratory convective cells were first created
by heating thin layers of fluid from below, producing thermal instability in
the fluid, and letting surface tension (Bénard, 1901) and buoyancy (Rayleigh,
1916) effects create convection. Given this setup, it is not surprising that open
and closedMCC clouds are an atmospheric parallel to the buoyancy-driven cel-
lular convection, known as Bénard-Rayleigh cells, although real-world effects
like latent heating create formation differences (Atkinson & Zhang, 1996).
The complexities of these influences is aptly summarized by Agee (1987) at
the end of his detailed comparison between laboratory and atmospheric cells:

Similarities and differences have been duly noted, but atmospheric
convection is subjected to a myriad of physical processes that are
external to the thermally-driven convective overturning…
Atmospheric convectionists should never fall into the trap of categori-
cally stating that a particular convective structure is always caused by a
single external forcing mechanism. Over and over this is seen not to be
the case…

The important influences on MCC cloud development have become clearer since the 1960s and 1970s, par-
ticularly after the advent of large-eddy simulations (LES) and in situ observations. Many of the processes that
are key in stratocumulus clouds are important for MCC clouds: shortwave heating and longwave cooling at
cloud top; turbulence and entrainment; drizzle, latent heating and evaporative cooling; and surface fluxes
of energy and moisture (Wood, 2012). Atmospheric static stability is also important and can be controlled
by numerous factors including the cloud itself and synoptic meteorology. Open MCC clouds are particularly
influenced by surface forcing, while closed MCC clouds are more affected by longwave cloud top cooling out-
side the subtropics (Kazil et al., 2014; Wood, 2012).

Two of the most investigated mechanisms for the transition and breakup of closed into open MCC clouds are
(1) cloud-aerosol-precipitation interactions and (2) advection over warmer water (Yamaguchi & Feingold,
2015). These two mechanisms can be thought of as microphysically driven and large-scale meteorologically
driven, respectively. The former has been substantiated through numerous LES modeling and observational
studies (Berner et al., 2013; Feingold et al., 2010; Savic-Jovcic & Stevens, 2008; Stevens et al., 2005; Xue et al.,
2008). Development of precipitation in closed MCC clouds can initiate cold pools, which spread out at the sur-
face and interact. Collision of cold pools at the surface produces updrafts and an upward flux of energy and
moisture. Closed MCC cloud begins to break up in locations of precipitation. In regions of enhanced surface
forcing, cloud is sustained and forms the convective cells of new open MCC clouds (Berner et al., 2013; Savic-
Jovcic & Stevens, 2008; Wood et al., 2011). Cold pools are not necessary for the closed to open transition to
occur, as a recent LES study showed that precipitation applied evenly across the domain can also drive the
transition (Vogel et al., 2016). This is consistent with precipitation being found a necessary but insufficient
condition for this transition to occur (Wood, 2012; Yamaguchi & Feingold, 2015). Closed to open transitions
may be influenced by aerosol suppression of precipitation in closed MCC clouds (Rosenfeld et al., 2006;
Xue et al., 2008). Meteorological conditions, specifically stronger subsidence, can also suppress this transition
by reducing the cloud thickness and preventing strong precipitation formation (Berner et al., 2013). The sec-
ond, meteorologically driven mechanism involves the advection of cloud over warmer water (Bretherton &
Wyant, 1997; Sandu & Stevens, 2011; Wyant et al., 1997). As the cloud moves over a comparatively warmer
surface, an increase in the surface flux of moisture occurs. This liberates more latent heating in clouds,

Figure 1. Example MODIS liquid water path subscenes identified by
the neural network algorithm into (clockwise from top left): no MCC,
closed MCC, cellular but disorganized, and open MCC clouds.
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driving stronger updrafts and enhancing cloud top entrainment of warm, dry free tropospheric air which
drives boundary layer decoupling. Along with decoupling, liquid water path (LWP) is enhanced in geometri-
cally thicker clouds which may additionally lead to precipitation (Bretherton &Wyant, 1997; Sandu & Stevens,
2011; Wood, 2012; Wyant et al., 1997). While these studies are of the subtropical stratocumulus to trade
cumulus transition, a parallel can be made to the transition from closed to open MCC clouds (Yamaguchi &
Feingold, 2015). This mechanism could explain the influence of large-scale meteorology in MCC cloud transi-
tions seen in MCAO and cyclones (Atkinson & Zhang, 1996; Fletcher et al., 2016a; Muller & Chlond, 1996;
Wood, 2012). Transitions from overcast stratocumulus to deeper, broken clouds have been observed in
MCAO, consistent with the advection mechanism (Abel et al., 2017; Fletcher et al., 2016b). Examples of open
and closed MCC clouds can be seen in the satellite imagery from the National Oceanic and Atmospheric
Administration (NOAA) and National Aeronautical and Space Administration (NASA) GOES-16 satellite
imagery in Figure 2. Classic transitions from closed to open MCC clouds are seen off California, South
America, and in an MCAO from the Antarctic. The relative influence of precipitation and advection in these
transitions is an open question as these mechanisms tend to occur together in varying degrees, making it
difficult to distinguish the primary driver of open MCC cloud formation.

The objective of this paper is to develop a predictive metric for MCC clouds using our knowledge of meteor-
ological and thermodynamic influences in the development of these clouds. It is important to note that prior
work has found rather small differences in meteorology (i.e., lower tropospheric stability, vertical velocity at
850 hPa, and temperature advection) between open and closed MCC clouds in the subtropics (Wood &
Hartmann, 2006). Meteorology is weaker in this region as well, suggesting the dominance of the precipitation
mechanism and a potential zonal difference in the importance of these mechanisms. The lack of meteorolo-
gical differences may also be explained if the differences driving transitions occur upstream of the transition
of closed MCC clouds and development of open MCC clouds and disappear later. In this study, we examine
the meteorology differences globally, especially focusing on the development of open and closed MCC
clouds in the midlatitudes and high latitudes where MCAO and cyclones dominate. Although the precipita-
tion mechanism is not investigated in detail, understanding where meteorology plays a dominant role will be
enlightening for determining the regionality of these mechanisms and where each may be the primary influ-
encer. Having a MCC cloud predictive metric may help to evaluate parametrizations of these clouds in
weather and climate models, which both have considerable cloud-related biases (Fletcher et al., 2016a). As
the impacts of these biases are radiative as well as structural (Bodas-Salcedo et al., 2012; Field et al., 2011;
Williams et al., 2013), the radiative properties of MCC clouds were motivational for our work. The earlier work
of Muhlbauer et al. (2014) on these properties is expanded upon. With a better understanding of the radiative
characteristics of open and closed MCC clouds and their connection to MCAOs and cyclone cold sectors, we
hope to make the sundry model biases more tractable.

In section 2, the data and methodology will be discussed. The MCC cloud identifications, reanalysis and satel-
lite data, and the predictive metrics are all detailed here. Three meteorological control metrics are examined:
estimated inversion strength, sea-air temperature difference, and an index for marine cold air outbreaks.
Section 3 presents the results. In section 3.1 we introduce cloud fraction-albedo relationships for open and
closed MCC clouds. Section 3.2 is a discussion of the MCC cloud seasonal cycle and what that suggests about
the dynamical predictors of cloud morphology. Section 3.3 quantifies the relationships between MCC clouds
and the predictor variables on synoptic scales. In section 3.4 we look at MCC cloud composites around cold air
outbreaks and what this says about closed to open MCC cloud transitions. We conclude with a summary and
discussion of our results and their implications in section 4.

2. Data and Methodology
2.1. Mesoscale Cellular Convection Identification

MCC cloud types are classified using the Wood and Hartmann (2006) neural network algorithm (NNA) applied
to a full year of remotely sensed data in 2008. The essential elements of the NNA and analysis process are
briefly described below; see Wood and Hartmann (2006) for complete details. This data set was also utilized
in Muhlbauer et al. (2014). In both this work and Muhlbauer et al. (2014), the classification is assumed to be
accurately identifying instances of MCC cloud at the same level as originally tested in Wood and Hartmann
(2006) and with the same limitations. The NNA analyzes subscenes of retrievals from the National
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Aeronautic and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS)
Aqua satellite to determine cloud morphology (Platnick et al., 2003). Subscenes of the MODIS swath are
256 × 256 km2 in size (oversampled by 128 km in each direction). Liquid water path (LWP) of each
subscene, derived from cloud optical depth (τ) and effective radius (Reff) retrievals, is used to classify low-
cloud occurrences into the four morphology types discussed in section 1: open MCC, closed MCC,
homogeneous or no MCC, and cellular but disorganized cloud (Figure 1). The probability density function
(PDF) and power spectrum of the LWP in each subscene is calculated and used as inputs for the three-
layer, back-propagating NNA. The use of both the PDF (a one-point statistic) and the power spectrum (a
two-point statistic) of LWP is important for accurate cellular morphology identifications. The PDF describes
the amount of liquid present and its homogeneity in the clouds. The power spectrum describes the spatial
distribution of the LWP in the subscene, clearly marking the cellularity of MCC clouds and contributing a
higher-order statistic to the analysis. Open MCC clouds have strongly skewed LWP PDFs and more high-
frequency variance of LWP, making the PDF and power spectrum apt identifiers of this kind of MCC cloud
(Wood & Hartmann, 2006). The NNA was previously trained and tested on 1000 human-identified cloud
subscenes, split randomly into a testing and a training group. It has an 85–90% success rate in accurately

Figure 2. Visual imagery from NASA and NOAA’s GOES 16 satellite (15 January 2017) (Leslie, 2017). Circles indicate occurrences of open and closed MCC clouds off
(top) California, (middle) South America, and (bottom) in a cold air outbreak from Antarctica. Closed MCC clouds occur nearer to the coast and in the left
quadrant of the outbreak before transitioning to open MCC clouds farther equatorward.
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classifying subscenes into the four morphological types. Cases that are harder for the human observer to
identify (i.e., those cloud subscenes that have features similar to more than one morphological type)
account for many of the misidentifications (Wood & Hartmann, 2006).

In our study, the NNA is applied to the MODIS Aqua Collection 5.1 Level 2 cloud product for all marine data
from 65°N to 65°S in 2008. The power spectrum analysis in the NNA requires the clouds to be contiguous. The
NNA was trained on an earlier collection of MODIS where pixels on cloud edges were not systematically
removed from the cloud product retrieval (King et al., 2003; Platnick et al., 2003; Wood & Hartmann, 2006).
For consistency, the same method is applied for Collection 5.1. Missing cloudy pixels (i.e., those that have
been determined cloudy or probably cloudy by the MODIS MOD35 mask but discounted by the MODIS
MOD06 retrieved cloud fraction as insufficiently cloudy) are filled in the subscene through a LWP approxima-
tion that uses the retrieved LWP and the visual reflectance. A second-order polynomial fit of visible reflec-
tance to the log of optical depth is developed from the retrieved pixels in the subscene. This fit is then
used to compute optical depth for all the pixels in the subscene that have not been retrieved but are consid-
ered cloudy or probably cloudy according to the MOD35 cloud mask (Ackerman et al., 2002; King et al., 2003).
Cloud droplet number concentration (Nd) is derived for the retrieved cloud pixels using the method of
Bennartz (2007) and assuming adiabaticity of unity. The nonretrieved cloud pixels are assumed to have Nd

equal to the median Nd of the retrieved pixels. Finally, the LWP of the missing cloudy pixels in the subscene
is computed from Nd and τ using the equation (Grosvenor & Wood, 2014; Wood, 2006)

LWP ¼ 1
2

Γadτ6

A2k2N2
d

 !1=5

∝
Γadτ6

N2
d

� �1=5

(1)

where A ~ 0.0145 and k ~ 0.8 are constants and Γad = Γad(T,p) is the adiabatic rate of increase of liquid water
content with respect to height. The LWP used in the NNA consists of the retrieved pixels and the broken and
edge pixels that have been filled in through this method. As the optical depth from the logarithmic fit is
necessarily nonzero, the application of a real-world lower bound to the derived LWP values is required before
use. The MODIS instrument has an optical depth sensitivity of ~0.4 and an approximate maximum effective
radius for lowmarine clouds of this nature of ~25 μm, which leads to an estimated detection limit of ~ 5 g/m2

for LWP (Ackerman et al., 2008; Painemal & Zuidema, 2011; Wood, 2006). Instances of LWP ≤ 5 g/m2 are
assumed to be clear sky. The cloud fraction for each subscene is computed from the MOD35 cloud mask
where the cloudy and probably cloudy flagged pixels of the scene are considered cloud (Ackerman et al.,
2002). Pixels where LWP is below the above detection limit are considered clear sky in the cloud fraction
(CF). MOD35 is used instead of the retrieved cloud fraction, MOD06, as it is a superior estimate for cloud frac-
tion of broken clouds and more representative of the clouds identified by the NNA. The MODIS cloud mask
uses both mean radiances and subpixel heterogeneity to determine the cloud mask markers, a more
nuanced product than the MOD06 retrieved cloud fraction which is based on a reflectance threshold alone.
In the original NNA in Wood and Hartmann (2006), only subscenes with cloud top temperatures above 273 K
were considered usable, low-cloud cases (Ma et al., 2000). The restriction has been modified in this analysis to
subscene cloud tops being within 30°C of the surface temperature, allowing classification of higher-latitude
low clouds that have cooler cloud top temperatures and for the possibility of clouds with larger sea-air tem-
perature differences. Subscenes are still restricted to having liquid cloud tops, however, which in combina-
tion with the cloud top temperature aims to ensure that no ice-topped cloud is analyzed. Many of the
higher-latitude cloud with liquid tops are supercooled, and these may be mixed phase lower down in the
cloud (Abel et al., 2017; Field et al., 2014). Thus, the microphysical characteristics of the higher-latitude clouds
classified by the NNA could be substantially different from the more tropical clouds.

Quality screening was applied to the identification data before analysis. This included land and sea ice mask-
ing. The sea ice mask was generated based on monthly mean ice concentrations from the National Oceanic
and Atmospheric Administration (NOAA) Optimum Interpolation (OI) Sea Surface Temperature (SST) V2 data
set (Reynolds et al., 2002). Regions with monthly ice concentrations larger than 1% were masked out to
obtain only the instances of cloud over water. In addition, regions where fewer than 50 data points (binned
into 2.5 × 2.5° boxes) occurred over the year were excluded. The maximum number of points was ~500 in any
given box. This ensured that enough classifications were made in any given area for the results to be repre-
sentative of the region over the entire annual cycle. In total, there are ~800,000 subscenes globally and
~200,000 occurring between 60°S and 40°S.
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There are several neural network algorithms to classify open and closed MCC cloud other than the one used
in Wood and Hartmann (2006). Gufan et al. (2016) developed an alternative machine learning system and
applied it to satellite observations of clouds previously identified as containing good cases of cellular mor-
phology, an imagery analysis treatment of Geostationary Operational Environmental Satellite (GOES) data.
Recent success has been achieved in morphology identification using PDFs of characteristic variables
(Yamaguchi & Feingold, 2015). Their simpler methodology, which does not use the additional spectral analy-
sis of Wood and Hartmann (2006), is designed to capture the closed to open cell transition and utilizes liquid
water path, droplet number, and optical depth distribution modes and mode indexes as they evolve in time.
While effective, this simpler methodology has only been demonstrated on idealized LES and not applied to
observational data yet. The NNA fromWood and Hartmann (2006) remains themost applicable for the MODIS
analysis presented here.

2.2. Reanalysis and Satellite Data

Reanalysis data are employed in this study to examine the large-scale meteorological and thermodynamic
influences on cloud development. We used the European Center for Medium-Range Weather Forecasting
(ECMWF) ERA-Interim data set (Dee et al., 2011). Four times daily data gridded to 1 × 1° bins are used in
the latitude range 65°N to 65°S for the full year of 2008. Reanalysis data are then collocated with the MCC
cloud identifications by linearly interpolating the binned data to the individual identification points in space
and time. The collocated reanalysis data, which are associated with the center of the subscene at the time of
occurrence, is used to compute the meteorological controls (next section) associated with the NNA classifica-
tions. Note that ECMWF ERA-Interim data provides skin temperature instead of sea surface temperature, but
they are equivalent over the ocean when no ice is present. This is referred to as sea surface temperature (SST)
throughout this analysis.

Additionally, we utilized the Clouds and the Earth’s Radiant Energy System (CERES) satellite data (Wielicki
et al., 1996) to examine the radiative effect of the MCC clouds. Retrieved top of atmosphere shortwave flux
and solar insolation from the Level 2 SSF Edition 4 Instantaneous footprints are used to calculate the instan-
taneous shortwave albedo (Wielicki et al., 1996). CERES follows closely behind MODIS Aqua in the A-train con-
stellation, so the data is temporally well collocated. To spatially collocate the CERES and MODIS identification
data, CERES pixels (~25 km circles) are sampled in a circle of 128 km radius centered on the middle of each of
the square MCC cloud identification subscenes (256 × 256 km2). This is similar to the method in Muhlbauer
et al. (2014) for collocating data products of differing footprints. The albedo over the sampled circle is
estimated as the average of the TOA SW flux for the footprints within the MODIS subscene divided by the
average TOA solar insolation. This albedo includes the clear and cloudy sky associated with the MCC cloud
classification. One disadvantage to using the circular average to calculate albedo for the identified subscene
is that it misses the corners of the subscene and any cloud that may be occurring there. The albedo is
associated more with the cloud in the center of the subscene, consistent with the NNA which primarily uses
the subscene center when classifying due to the data windowing (Wood & Hartmann, 2006). However, this
collocation methodology will add a systematic bias in comparisons between albedo and any other character-
istics derived for the entire subscene (i.e., cloud fraction). The subscenes are relatively random samples of
cloud fields; thus, one scene type (e.g., open MCC clouds) is not expected to have more cloud in the
neglected corners than any other (e.g., closed MCC clouds). As a result, the bias will add variability to these
comparisons but not change the mean.

2.3. Meteorological Control Metrics

Three meteorological control metrics are employed in our study, each capturing an aspect of large-scale
dynamic and thermodynamic influences on MCC cloud development. They are estimated inversion strength
(EIS), sea-air temperature difference (ΔT), and the marine cold air outbreak index (M) (Fletcher et al., 2016a;
Kolstad & Bracegirdle, 2008; Wood & Bretherton, 2006). Each is calculated using reanalysis data. EIS is a
measure of the strength of the boundary layer inversion, an indicator of the static stability of the lower
atmosphere (Wood & Bretherton, 2006). It is a correction to the lower troposphere stability (LTS) metric,
originally introduced in Klein and Hartmann (1993), which accounts for the tropospheric temperature profile.
The tropospheric profile is assumed to have a structure closer to a moist adiabat rather than a dry one, result-
ing in a gradient that is more temperature sensitive. Wood and Bretherton (2006) found a strong linear rela-
tionship between EIS and cloud cover in the key stratocumulus regions across the globe. It has been recently
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shown that EIS, along with being a good predictor of cloud cover in the relatively quiescent zones such as the
tropics, is a good predictor of cloud cover in dynamically active regions behind cold fronts (Naud et al., 2016).
EIS is calculated as in Wood and Bretherton (2006):

EIS ¼ LTS� Γ850
m z700 � LCLð Þ; LTS ¼ θ700 � θ1000 (2)

In this equation, θ1000 is the potential temperature of the surface air, LCL is the lifting condensation level, and
Γm

850 is the moist adiabatic lapse rate at 850 hPa. Surface relative humidity, used in the LCL calculation, is
approximated as 0.8 in light of its narrow distribution from 60°N to 60°S (Wood & Bretherton, 2006). The
second metric, air-sea temperature difference (ΔT), indicates the contrast between the ocean and atmo-
sphere heat content and is informative of the energy that could be fluxed from the ocean to atmosphere.
This is simply the difference between the surface temperature and the 2 m temperature:

ΔT ¼ TSST � T2m (3)

The final metric tested is the MCAO index (M), originally defined by Kolstad and Bracegirdle (2008) and
modified by Fletcher et al. (2016a) into temperature units. It is an index effective at identifying occurrences
of marine cold air outbreaks. While somewhat similar to LTS (above), it is calculated at different pressure
levels and uses the temperature of the sea surface instead of the air at the surface. This emphasizes the
extreme temperature contrast between the cold polar air moving above comparatively warmer water, a
dynamically favorable condition for planetary boundary layer cloud development. M is defined as

M ¼ θSST � θ800 (4)

The effectiveness of these metrics as predictive factors for open and closed MCC clouds is tested in the sub-
sequent section. An example of M, EIS, and ΔT values and the associated MCC cloud identifications in a
Southern Hemisphere winter marine cold air outbreak is shown in Figure 3. The cloud field shown in this
example is midway through a transition from closed to open MCC cloud under the influence of the MCAO,
a plume of cold air moving counterclockwise from the higher latitudes (35°S) to the lower latitudes (20°S).
Assuming that the wind is in near-geostrophic balance, the flow approximately follows the sea level pressure
(SLP) contours (arrows in Figure 3d). As the cold air moves from high to low latitudes, it passes over increas-
ingly warmer SSTs (Figure 3d). The MCAO both disrupts the stability of the boundary layer and moves the
closed MCC clouds over the warming ocean in its path. The latter can be seen by the cloud field filling out
the outbreak plume, which matches the shape of the SST and SLP patterns in Figure 3d. We expect, from
the theories presented earlier, that a decreasing stability caused by the motion in the MCAO and increasing
surface forcing due to the warmer ocean-cooler air temperature contrast will encourage the closed MCC
clouds to transition to open MCC clouds. In this example, locations where the atmosphere has been affected
by the meteorology for longer (bottom right) or is strongly forced by the SSTs (top left) have already transi-
tioned. Of the metrics, M (Figure 3a) best coincides with the expected MCC occurrences and the cold air out-
break expanse (as inferred from the SST and SLP pattern in Figure 3d). The strongest M values, weakest
stability (EIS, Figure 3c), and largest surface forcing (ΔT, Figure 3b) occur in the most sustained region of
the outbreak (bottom right) and are associated with the most open MCC clouds in the scene. The weakest
M values, larger EIS, and weaker ΔT occur at the edge of the cold air outbreak (middle and left) and are asso-
ciated with more closed MCC clouds. The alignment of MCC clouds and the behavior of the variables in this
example are in keeping with the theory of meteorological influence on MCC clouds discussed in section 1,
and the importance of surface forcing for the development of open MCC clouds is particularly demonstrated.

3. Results
3.1. Cloud Fraction-Albedo Relations

Many studies have demonstrated that fractional cloud cover is a useful quantifier of cloud radiative effect.
Hartmann and Short (1980) originally showed the relation between cloud fraction (CF) and total or all-sky
albedo and the subsequent cloud impact on radiative balance. More recently, variations in CERES all-sky
albedo and MODIS cloud fraction were found to be well correlated (Loeb et al., 2007). This suggests that glob-
ally, cloud cover anomalies are a good proxy for all-sky albedo. From these and other works, we would expect
the radiative effect of open and closed MCC cloud to be primarily determined by their CF. Open and closed
MCC clouds have overlapping distributions of cloud cover with closed MCC clouds having larger mean CF
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than open MCC clouds (Figure 4, bottom) (Muhlbauer et al., 2014). Where open and closed MCC clouds occur
with the same CF, we would expect a similar scene albedo based on the above logic. Similar cloud fractions in
open and closedMCC clouds are very likely to occur across the globe (Figure 4, bottom). One reason is that the
size of individual cloud cells comprising the large-scale MCC cloud pattern can change with boundary layer
depth (Muhlbauer et al., 2014; Wood & Hartmann, 2006). A spreading of the MCC pattern will occur for
deeper boundary layers, modifying the cloud fraction and producing a spread in possible CF for a given type.

Such a qualitative analysis does not consider macrophysics (e.g., liquid water path, LWP) or microphysics (e.g.,
droplet concentration, Nd) known to be contributing factors to the cloud albedo (Boers & Mitchell, 1994;
George & Wood, 2010; Wood, 2006). Indeed, when examined in PDF form, the microphysical and radiative
characteristics of open and closed MCC clouds suggest large differences between types. For example, closed
MCC cloud hasmore frequent light drizzle, while openMCC cloud has a higher fraction of heavy drizzle. Closed
MCC cloud also tends toward higher shortwave reflectance than open MCC cloud, but the magnitude of
reflectance and difference between NNA-determined cloud types changes regionally (Muhlbauer et al.,
2014). A technique for quantifying cloud radiative effect while considering the contribution of microphysical

Figure 3. Example marine cold air outbreak occurring in the Southern Hemisphere winter (13 August 2008). MCC cloud
identifications are overlaid on MODIS Aqua surface reflectance with contours of meteorological control metrics (in K):
(a) ΔT, (b) EIS, and (c)M. Identifications are colored by type: closedMCC (blue), openMCC (red), no MCC (green), and cellular
but disorganized (yellow) clouds. The M = �5 K contour marks the edge of the strongest part of the cold air outbreak.
(d) Surface temperature and sea level pressure contours show the approximate flow (arrows following SLP assuming
geostrophic balance) of cold air over warming water.
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andmacrophysical variations of the cloud is to develop an explicit relation-
ship between the cloud fraction and the all-sky albedo (Bender et al., 2011,
2017, 2016; Engstrom et al., 2015, 2014; Webb et al., 2001). The observed
spread in total albedo for any fixed cloud fraction will be due primarily to
the variability in factors affecting the optical depth of the cloud (Bender
et al., 2016). Solar zenith angle will affect the albedo as well, particularly
in high-latitude, high cloud fraction cases (Bender et al., 2017; Engstrom
et al., 2015). A correction can be made to remove this influence from the
variability but should be kept inmind otherwise (Bender et al., 2017). A sim-
ple separation into cloud types was accomplished in prior analysis by
choosing stratocumulus-dominant regions to investigate (Bender et al.,
2011, 2016; Engstrom et al., 2014). However, these relationships have not
been separated based on MCC cloud type or cloud morphology explicitly.
In future work, we can use these relations to address whether the higher
shortwave reflectance of closed MCC clouds is due more to cloud fraction
or microphysical and macrophysical reasons.

It is immediately apparent that the CF-albedo relationships are different
for open and closed MCC clouds (Figure 4). For a given cloud fraction
closed MCC cloud tends to have a higher scene albedo than open MCC
cloud, confirming our suspicion that the scene albedo of different MCC
cloud types is not determined by cloud fraction alone. Each cloud type
can assume a wide range of cloud fractions. The distribution of scene
albedo around the means partially overlaps between cloud types at higher
cloud fractions. It is likely that the few open MCC clouds identified at these
very high CF have been captured immediately post transition from closed
MCC clouds. These cases, relating back to the original discussion of the
NNA and its limitations, would be part of the “harder to identify by eye”

portion of the scenes. However, for cloud fractions between 0.5 and 0.8, both cloud morphologies occur fre-
quently (26% of closed MCC clouds and 34% of open MCC clouds, see probability distribution function of CF
in Figure 4) and are well separated in scene albedo (by 0.05 on average). What is the potential effect of the
albedo difference between open and closed MCC clouds? Assuming typical incoming solar radiation is
~340 Wm�2, this 0.05 difference in scene albedo between types would lead to ~17 Wm�2 reflected to space
dependent on MCC cloud type for the same cloud fraction. Estimating the Southern Ocean shortwave cloud
radiative effect as ~ �70 W m�2 (Hartmann, 2016), this is a significant change (~24% change in radiative
effect from switching between open and closed MCC clouds excluding the change in CF that could occur).

How do the MCC cloud CF-albedo curves compare to the CF-albedo relationships found for all low clouds
(Bender et al., 2011, 2017, 2016; Engstrom et al., 2015, 2014; Webb et al., 2001)? Even though the low-cloud
relationships are for different time averages (annual and monthly means) than the MCC cloud curves, it is still
instructive to compare. Marine low clouds are found to have a quasi-exponential relationship between CF
and all-sky albedo globally when averaged over a long period (2002–2014) (Engstrom et al., 2015). While
MCC cloud CF-albedo curves have exponential traits as well, the curve shape changes significantly between
type and would not be well described by one exponential. Clearly, grouping all low-cloud types together
results in morphological differences being obscured. This suggests that using a low-cloud CF-albedo relation-
ship to evaluate models may have limitations in the eventuality of improved low-cloud parameterizations
being implemented (particularly if MCC clouds are parametrized). Zonal differences exist in the global low-
cloud relationships: midlatitudes contribute to the top of the curve (high CF and high albedo), subtropics
to the middle, and tropics to the bottom (lower cloud fraction, lower albedo) (Bender et al., 2017). MCC cloud
CF-albedo relationships are broadly consistent, exhibiting similar zonal differences to Bender et al. (2017) (not
shown). The near-exponential CF-albedo relationship for low clouds indicates that albedo sensitivity to
increases in cloud cover increases strongly with cloud fraction (Bender et al., 2017; Engstrom et al., 2015),
as seen in other studies (Webb et al., 2001). As the MCC cloud CF-albedo relationships are quasi-exponential,
they will have a similar sensitivity. The sensitivity of open and closed MCC clouds may be different, however,
as they are not described by the same curve and have different rates of increase with CF. There are several

Figure 4. (top) Quantiles of cloud fraction versus subscene albedo for open
(red) and closed (blue) MCC clouds globally (65°S to 65°N) for 2008. Black
dots indicate mean albedo within CF quantile bins; variability of data is
shown with 1σ shading. (bottom) Probability distribution function of CF for
open and closed MCC clouds in the same region and time.
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interesting possibilities for why there are large differences in albedo between cloud morphologies even for
the same CF, but these will be investigated in more detail in subsequent work.

3.2. MCC Climatology

The first step to understanding MCC cloud is to observe the location and frequency of their occurrence. Klein
and Hartmann (1993) established the spatial distribution of low-cloud cover and its seasonality but did not
distinguish between types of low cloud. Muhlbauer et al. (2014) focused on the seasonal frequencies of open,
closed, and cellular but disorganized MCC clouds. We expand that work by identifying the magnitude and
phase of the seasonal cycle globally for open and closed MCC clouds. Consistent with Muhlbauer et al.
(2014), a cloud occurrence frequency is defined as the number of times a cloud type (e.g., open MCC cloud)
is observed in a region and time period (e.g., over a month) divided by the number of times all NNA-identified
cloud types occur in that region and time:

f type ¼ ntype= nopen þ nclosed þ nnoMCC þ ndisorganized
� �

(5)

Monthly frequencies were calculated in every 5 × 5° grid box for open and closed MCC clouds. This grid box
size is chosen to properly allow for the 2.5° scene identifications. The annual average of fopen (openMCC cloud
occurrence frequency) and fclosed (closed MCC cloud occurrence frequency) can be seen in Figures 5a and 5b,
respectively. ClosedMCC clouds aremost predominant in the persistent stratocumulus regionsmarked by the
Klein-Hartmann boxes (Klein & Hartmann, 1993), as previously observed by Muhlbauer et al. (2014) and
Atkinson and Zhang (1996). This is consistent with the idea that closed MCC clouds most commonly occur
over cold water to the west of continents, regions of strong stratocumulus decks (Atkinson & Zhang, 1996).
OpenMCC cloud ismore uniformly distributed across the globe. A shift from fclosed to fopen is seen further west
and equatorward of the closed MCC cloud regions, the areas of stratocumulus breakup (Bretherton & Wyant,
1997; Wyant et al., 1997; Yamaguchi & Feingold, 2015). Cellular but disorganized cloud is the most frequent
type identified, occurring prominently in the tropics (Muhlbauer et al., 2014). Clouds without MCC are infre-
quently observed, the rarest of the four classification types. These last twoNNA classification cases do not con-
tain the organized cellular morphology of interest and so will not be discussed further in this analysis. Because
of their ubiquity, especially in themidlatitudes, understanding the forces and controllingmeteorology driving
open and closed MCC cloud occurrences is important.

We examine the seasonal cycle to help determine the meteorological factors in MCC cloud development. A
sinusoidal least squares curve fit with a fixed 1 year periodicity was applied to the monthly mean MCC cloud
frequencies in each grid box. From this fit we determined the amplitude (half the difference between max-
imum and minimum) and peak month of cloud occurrence for both types. The seasonal cycle amplitude
and associated season of peak occurrence is shown for fopen (Figures 5c and 5e) and fclosed (Figures 5d and
5f). The pattern of seasonality and peak season is consistent in the midlatitudes and becomes more variable
and statistically insignificant in the subtropics and tropics for both closed and open MCC clouds. fopen has the
largest seasonal cycle in the midlatitudes consistent with the observations in Muhlbauer et al. (2014). Open
MCC clouds exhibit a monthly maximum in occurrence in the hemisphere winter (December-January-
February (DJF) in the Northern Hemisphere (NH) and June-July-August in the Southern Hemisphere (SH)).
The seasonality and peak season are more varied and less significant in the tropics for open MCC clouds.
fclosed has the largest seasonal amplitude in the Klein-Hartmann boxes and upper midlatitudes. In the midla-
titudes, they peak in the summer of the appropriate hemisphere (June-July-August for the NH, and DJF for
the SH). Similar to fopen, the fclosed seasonal cycle and peak time of occurrence are not coherent and statisti-
cally significant in the subtropics and tropics. The southeast Pacific (SEP) and southeast Atlantic (SEA) are the
two regions of exception, with somewhat coherent patterns of seasonality peaking in September-October-
November. The ill-defined seasonal pattern of both MCC cloud types in the tropics is not entirely unexpected
as the meteorology and dynamics in that area predominantly favor cellular but disorganized clouds
(Muhlbauer et al., 2014).

The timing and location of the open MCC cloud seasonality is consistent with a strong connection to marine
cold air outbreaks. MCAOs occur in the high latitudes and midlatitudes, with cold air plumes traveling up
even into the subtropics. They also peak in hemisphere winters. The spatial and temporal parallels between
open MCC clouds and MCAOs is in line with earlier theories in the literature (Agee, 1987; Atkinson & Zhang,
1996; Muhlbauer et al., 2014; Wood, 2012). We will quantify this relationship in the following section.
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3.3. MCC Relationship to M, EIS, and ΔT

In this section, we compare the seasonal cycles of different cloud morphologies with the seasonal cycles of
our three meteorological control variables: EIS, ΔT, and M. Correlation coefficients between the sinusoidal
seasonal fit of the MCC cloud frequency (shown in Figures 5c and 5d) and the three metrics indicate where
the strongest seasonal cycle relationships exist across the globe (Figure 6). For all metrics, especially ΔT and
M, the largest coherent pattern of seasonal cycle correlations with MCC clouds occurs in the midlatitudes. The
exception to this is the fclosed-EIS correlation in the SEP and SEA (Figure 6d). This strong pattern suggests that
closed MCC clouds in these regions are more sensitive to static stability than surface forcing, consistent with
the strong CF-EIS relationship found in these regions (Wood & Bretherton, 2006). This is consistent with the

Figure 5. (a, c, and e) Open and (b, d, and f) closed MCC cloud climatologies: annual mean frequency (Figures 5a and 5b), seasonal cycle amplitude (Figures 5c and
5d), and season of peak frequency (Figures 5e and 5f). Gray areas indicate where there is insufficient data retrieved and classified in 2008 to make an accurate
estimate of the frequency. Black dots are where the fit and subsequent results are not significant at a 95% confidence level. Confidence is determined based on a
Poisson count method using the number of occurrences.
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tendency for closed MCC clouds to have slightly larger stability than open MCC clouds but little difference in
temperature advection or other characteristics of large-scale meteorology in these regions (Wood &
Hartmann, 2006). The fopen-M correlation (Figure 6e) is particularly large and significant over the midlatitudes,
consistent with the theory connecting them to cold air outbreaks which occur frequently and have strong
seasonality in this region (Fletcher et al., 2016a).

The midlatitudes are the largest region of correlation for the seasonal cycles and thus warrant a more
extensive examination (Figure 7). The mean and variability of monthly fclosed, fopen, EIS, ΔT, and M aver-
aged across the NH (30°–60°N) and SH (30°–60°S) midlatitude bands are shown in Figure 7 (a and b for
occurrence frequencies; c–e for metrics). The seasonality of the NH has been shifted back by 6 months
to align with the SH seasonality. Variability is a combination of spatial, from the latitude bands, and sub-
monthly. For example, differences between monthly standard deviations in the NH will be associated with
the temporal variability while differences between NH and SH standard deviation for the same month are
associated more with spatial variability. The seasonal cycle correlation coefficients for the combined mid-
latitudes and separate NH and SH midlatitudes are located in Table 1 and are significant at 95% confi-
dence level for a 24- and 12-point correlation, respectively. Examining the combined midlatitude
correlations first, both fopen and fclosed have the strongest seasonal cycle correlation in the midlatitudes
with M. ΔT ranks a close second everywhere except the SH where EIS is comparable (fopen) or superior
(fclosed) to the other metrics. The effectiveness of EIS in the SH is largely connected with the edges of
the SEA and SEP regions, already noted to be regions dominated more by stability than surface forcing.
EIS is especially weak in the NH, weakening the combined correlation for both fopen and fclosed. The results
in Figure 6 elucidate these relationships. Surface forcing (ΔT and M) appears much more important for
fclosed in the NH than stability (+EIS), which leads to the weakened overall correlation for EIS (Table 1).
The larger surface forcing is likely due to the stronger land-sea contrast in the NH enhancing cold air
outbreaks, especially in the NEA as seen in Figure 6b. This enhancement can also be seen in the larger
amplitude of the ΔT seasonal cycle in the NH compared to the SH (Figure 7e). Surface forcing and
instability (-EIS) are clearly both important for these cloud types, making the combined effect, captured
by M, superior. This is especially true for fopen whose correlations with M are a larger improvement from
a simple stability relationship than for fclosed. Overall, the variability of the metrics is much larger in the
winter for M, ΔT, and fopen and in the summer for EIS and fclosed. All metrics have larger seasonal ampli-
tudes and variability in the NH than the SH, particularly ΔT. The frequencies are more consistent across
hemispheres than the metrics, although fclosed has slightly more variability in the summer NH compared
to SH. Note that a similar analysis was performed on the tropics, but the incoherent seasonal cycle
correlations that exist across 30°S to 30°N (see Figure 6) are not found to be significant when the tropical
band is considered as a whole. The consistently robust positive seasonal correlation between M and fopen
globally suggests that M is a good open MCC cloud seasonality predictor. M may also be a good predictor
for closed MCC globally, but it is best in the midlatitudes. EIS also has merit for prediction of subtropical
closed MCC cloud seasonality.

As an aside, a notable reduction in fopen and increase in fclosed occurs in the midwinter in the Northern
Hemisphere (occurring on the left side of W in Figure 7 panels, recalling that the NH time is shifted back
6 months). This reduction may be the result of a midwinter lull in storm activity that can occur in the
Pacific basin in the NH at this time (Nakamura, 1992). The tropospheric jet maximizes in winter over the
Pacific. When the jet grows too strong, suppression of baroclinic waves will occur and reduce the meridional
flux of heat and zonal momentum (Nakamura, 1992). The midwinter suppression negatively affects the stor-
miness in the Pacific storm tracks (i.e., midlatitude cyclones and associated cold air outbreaks) (Nakamura,
1992; Penny et al., 2010). A plateauing of M and increase in EIS consistent with this theory is clearly observed
during the same midwinter period as the fopen decrease and fclosed increase (Figures 7c and 7d). The MCC
cloud frequency behavior may be evidence for the influence of midwinter baroclinic wave suppression on
low-cloud fields.

To explain why M has a strong seasonal cycle correlation with both open and closed MCC clouds in the mid-
latitudes, we can examine the relations betweenM, EIS, and ΔT. Recall thatM is an estimate of the strength of
a cold air outbreak, EIS estimates the static stability, and ΔT estimates the strength of surface heating. M can
be written with a few approximations as a function of EIS and ΔT using equations (2)–(4):
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M ¼ 1000
p0

� �R=cp
ΔT − EIS− Γ 850

m ðz800−LCLÞeΔT−EISþ const: (6)

The relationship between these three metrics for each cloud type is graphically shown with two-dimensional
histograms ofM by ΔT and EIS (Figures 8a and 8b). Each histogram is calculated using a composite of the MCC
cloud identified data for the global, yearlong data set. All subscenes, from the midlatitudes, subtropics, and
tropics are included (65°S to 65°N). The M-ΔT-EIS relationship is shown separately for open and closed MCC
clouds but are nearly identical as equation (6) shows (Figures 8a and 8b, respectively). In both cases, M
depends equally on EIS and ΔT in corroboration with the linear equation derived for M (equation (6)). We
can also examine the dependence of open and closed MCC cloud occurrence frequency on EIS and ΔT
(Figures 8c and 8d, respectively). fopen (Figure 8c) mimics the shading of the associated M in Figure 8a,

Figure 6. Seasonal cycle correlation coefficients between (a, c, and e) open and (b, d, and f) closed MCC cloud occurrence frequency fits from Figure 5 and
meteorological control metrics: ΔT (Figures 6a and 6b), EIS (Figures 6c and 6d), and M (Figures 6e and 6f). As in Figure 5, gray indicates where insufficient data
and dots where fit is insignificant. White is where the correlation is not significant for 12 points (all months).
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exhibiting an equal dependence on EIS and ΔT. The highest fopen occurs at the largest M values (i.e., a
stronger MCAO). These composites show that both low static stability and strong surface forcing favor
open MCC clouds; M can capture both of those factors effectively. fclosed (Figure 8d) has a slightly weaker
relationship with M (Figure 8b), depending more on EIS than ΔT. Closed MCC clouds are more frequent at
weaker M, opposite to the open MCC cloud behavior (Figure 8c). This dependence on EIS is consistent
with the seasonal cycle correlation coefficient map in Figure 6d showing a large region of correlation in
the SEP and SEA for fclosed. As a result, the strong dependence on ΔT and M observed in the midlatitudes

(Figure 7 and Table 1) is skewed toward EIS when the relationship is
examined globally. Closed MCC clouds also tend to be sustained by
longwave cloud top cooling more than by surface forcing, which
may contribute to the smaller closed MCC cloud dependence on ΔT
when regions of less prominent meteorological forcing are included
(Shao & Randall, 1996; Wood, 2012; Wood et al., 2011).

Using the composite data from Figure 8, we can establish a functional
dependence of fopen and fclosed on M (gray dots, Figures 9a and 9b).
Parallel relationships can be developed between the mean binned
EIS and ΔT and their associated frequencies, as shown in the supple-
ment (gray dots, Figure S1). Examining these relationships with the
composited EIS-ΔT data is especially enlightening as it shows the

Figure 7. Seasonal cycles of midlatitude occurrence frequency for (a) open and (b) closedMCC clouds and the threemeteorological control metrics: (c) EIS, (d)M, and
(e) ΔT. Cloud frequencies and metric values are averaged across midlatitude bands (30–60°S, solid; 30–60°N, dashed). Combined spatial and submonthly 1σ
standard deviations are included for reference (shading). NH seasonality has been shifted by 6 months to match SH (i.e., winter and summer are aligned). Midwinter
lull, discussed in the text, occurs to the left of W in the NH.

Table 1
Seasonal Cycle Correlation Coefficients for Figure 7 Midlatitude Bands

fopen fclosed

Regions ML NH SH ML NH SH

EIS �0.60 �0.57 �0.94 0.77 0.72 0.91
M 0.91 0.94 0.98 �0.85 �0.94 �0.87
ΔT 0.79 0.92 0.98 �0.81 �0.92 �0.89

Note. Analysis performed using band averages for the NH (30–60°N), SH
(30–60°S), and the combined NH and SH bands (ML). Italics indicate where
correlations are insignificant at 95%.
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cloud behavior across a wide range of environmental and synoptic conditions (i.e., within a series of ranges of
EIS and ΔT). This will clarify the relative importance of the three metrics. To quantify this importance, one can
examine the strength of the correlation coefficients for the linear regression of these relationships (global
values, Table 2). It is clear that the relationship between M and fopen, fclosed is significantly stronger than
either EIS or ΔT with the frequencies. Furthermore, the relationship between M and fopen and fclosed is well
described by a sigmoidal function (line in Figures 9a and 9b). The growth curve associated with fopen is
strongly correlated to the binned data (Figure 9a, R = +0.94), while the decay curve associated with fclosed
is slightly less correlated (Figure 9b, R = �0.83). A weaker correlation for fclosed compared to fopen is
consistent with the stronger dependence on EIS seen in Figure 8d. Note that if one composites by M alone
(line with shading for 2σ uncertainty in Figures 9a and 9b) the result is within the range of the composited
data binned by EIS and ΔT (gray dots). The similarity between the two binning methods suggests
robustness to the sigmoidal relationships between M and MCC cloud occurrence frequency. It also
indicates that the MCC behavior is not obscured by the EIS-ΔT binning.

We can test our theory for the weaker global relationship between M and fclosed by repeating our histogram
analysis for fclosed over a subset of regions (Figures 9d, S1b, and S1d): midlatitudes (black dots, 30–60°N and
30–60°S) and tropical (gold dots, 30°S to 30°N). The midlatitude fclosed has a good relation to M, slightly less
scattered than the global relationship but similar (Figure 9d). fclosed in the tropics and subtropics have a much
weaker relation to M and are far more scattered. This is consistent with the SEP and SEA regions being well
correlated by EIS and minimally influenced byM and ΔT. The relationships between EIS, ΔT, and fclosed shown
in Table 2 and Figures S1a and S1c confirm this as EIS dominates in the tropics over M and ΔT. fopen can be
similarly analyzed in a subset of regions (Figures 9c, S1a, and S1c). Both the midlatitude and tropical

Figure 8. Two-dimensional composite histograms of M and occurrence frequency, respectively, for (a and c) open and (b and d) closed MCC clouds. Data are for all
subscenes globally (65°S to 65°N) in 2008. The number of MCC cloud identifications (black contours in Figures 8a and 8b) indicates data spread in the histograms.
Every histogram bin is required to have 50 or more identifications.
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histogram results for fopen have strong relations toM. The subtropics and tropics show a slightly weaker relation
and many more clouds occurring at lower M. This suggests that meteorology may be less important for open

MCC cloud development in this region, consistent with research
suggesting internal, precipitation associated mechanisms may be
more important in these areas (e.g., Feingold et al., 2010; Savic-Jovcic
& Stevens, 2008; Wood et al., 2011). For both open and closed MCC
clouds, a large number of occurrences exist below M = 0 or �5 K.
M = 0 K is often considered the cutoff for what is considered an
MCAO event (Fletcher et al., 2016a, 2016b), although we have relaxed
this definition to M = �5 K to encompass more low-cloud occurrences
around MCAOs (discussed in the subsequent section and seen in
Figure 3). The distinction between M as a metric for strong surface
forcing and low stability instances and what is considered a technical
MCAO event (strong M scenarios) is important to keep in mind.

Figure 9. (a and b) Sigmoidal fits (line) of global composited data from Figure 8 (gray dots) for open and closed MCC clouds, respectively. Global data binned
byM alone included for reference (line with shading for 2σ Poisson counting error). (c and d) ΔT-EIS composites computed for midlatitude (black) and tropical (gold)
data are compared to global composite data (gray dots) for open and closed MCC clouds, respectively.

Table 2
Correlation Coefficients for Regional EIS-ΔT Binned Data From Figures 9 and S1

fopen fclosed

Regions G ML T G ML T

M 0.91 0.91 0.85 �0.81 �0.84 �0.63
ΔT 0.72 0.69 0.75 �0.51 �0.59 0.12
EIS �0.62 �0.65 �0.53 0.74 0.68 0.88

Note. Regions analyzed are global (G, 65°S to 65°N), combinedmidlatitudes (ML,
30–60°N and S), and tropics (T, 30°S to 30°N). Italics indicate where correlations
are insignificant at 95%.
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Is the predictive strength of the M-MCC cloud occurrence frequency rela-
tionship only due to the strong correlation between the seasonal cycle of
cloud occurrence and metric values? We can demonstrate that there is a
strong connection on a shorter time scale (i.e., with the seasonal cycle
removed) by looking at the monthly PDF median difference between the
metric values for open and closed MCC clouds and averaging the differ-
ences over the full year (shown in Figures 10a–10c respectively for EIS,
ΔT, and M). That is, in every 5 × 5° grid box the median of the monthly
metric PDF has been computed for open and closedMCC clouds and differ-
enced. The annual average of the monthly median difference is then com-
puted (Figure 10). The significance of this difference (i.e., whether or not
the medians are separated statistically for the range of the metric) is tested
with aWilcoxen rank sum orMann-Whitney U test. Bins that have failed the
significance test at 95% confidence (e.g., their PDFs overlap making the
difference nonsignificant) are marked with a black dot in Figure 10. The
seasonal cycle of the data is effectively removed by computing the
differences monthly and then averaging the result over the year. Thus, sig-
nificant differences denote the separation of open and closed MCC cloud
metric values on short time scales. The results show that M is superior to
the other metrics tested in distinguishing open and closed MCC clouds
on subseasonal time scales. This superiority has two sources: (1) M has
the largest separation in value between open and closedMCC clouds (color
in Figure 10c) and (2)M shows the most grid boxes with statistically signif-
icant separation between the average open and closed values (fewest dots
or test failures in Figure 10c). All plots are on the same temperature scale,
�5 to 5 K, clearly showing the magnitude of separation for each metric.
The metrics have very different scales, however, so the separation must
be considered alongside the significance test results. The strongest and
most statistically significant separation of open and closed MCC cloud
occurs forM in the midlatitudes. Comparing all metrics across the two lati-
tude bands of 30–60°N and S, there are a total of 160 grid boxes that are
significant for ΔT (Figure 10a), 257 for EIS (Figure 10b), and 332 for M
(Figure 10c). The separation between open and closed values of M is not
statistically significant over the tropical region, as expected due to the
differing dynamics and mechanisms that exist there. Interestingly, ΔT has
the most statistically significant points in the tropics. The direction of the
ΔT difference also switches between open and closed MCC clouds in this
region. We can conclude from the analysis in this section thatM is the best
of the three metrics at distinguishing between open and closed MCC
clouds in latitudes poleward of 30°N and S at short time scales.

3.4. Composites of MCAO and MCC Cloud Environments

In the previous sections of this paper, we have shown that the MCAO
index, M, is a good predictor of MCC cloud occurrence frequency. There
is an especially strong relationship of M to open MCC clouds. Thus far we
have examined these clouds and their relationships in a static framework,
through snapshots of cloud occurrence and associated meteorology.
These systems are very dynamic, however, with clouds evolving in time
through the influence of MCAOs. How well is M able to capture the

Lagrangian evolution of these clouds? While the bulk of this question will be answered in subsequent work,
a preliminary answer can be found by compositing the MCC cloud occurrence data around MCAO events
(Figure 11). Composites of three NNA identification cloud types are shown in Figure 11 for the full year of data
in the Northern (30–60°N) and Southern (30–60°S) hemispheres, respectively: closed MCC (a and d), open
MCC (b and e), and cellular but disorganized clouds (c and f). MCAO events are identified as contiguous

Figure 10. Means of monthly differences between the open and closedMCC
cloud identified meteorological control metric distribution medians within
each grid cell: (a) ΔT, (b) EIS, and (c)M. As in Figure 5, gray indicates regions of
insufficient data. Dots denote where the distributions do not have signifi-
cantly differentmedians at 95% confidence as tested by aWilcoxen rank sum.
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regions havingM>�5 K. As previously discussed, this is a relaxed limit compared to the typical definition of
a MCAO event whenM ≥ 0 K (marking the strongest of outbreaks). The choice ofM =�5 K is more inclusive of
low-cloud occurrences around the cold air outbreak (Fletcher et al., 2016a, 2016b). Our reasoning is guided by
the results in Figures 8 and 9 showing a significant portion of open MCC clouds occurring below M = 0 K
before dropping off below M = �5 K. Closed MCC clouds are also numerous between M = 0 and �5 K. As
we are interested in capturing the evolution of these cloud types, it is important not to over restrict the cases
examined. Additionally, our MCAO composite analysis is qualitative so the choice of MCAO event cut off can
be more flexible. When compositing around these events, the grid point where M is a maximum within the
closed contour of M ≥ �5 K is chosen as the center MCAO and positioned at the composite origin (as in
Fletcher et al., 2016a). The composite mean location of M = �5 K is also shown (dashed line). For reference,
contours of composite sea level pressure are overlaid.

Examining the MCC cloud evolution along the mean flow (arrows in Figure 11, as deduced from sea level
pressure contours assuming near geostrophic wind balance) in these composites is a reasonable proxy for
Lagrangian evolution of MCC clouds around MCAOs. Note that the SLP contours are not streamlines so
this is not the exact time evolution of the clouds but an approximation. High stability over high-latitude
oceans drives extensive low cloud, frequently of the closed MCC cloud form and occasionally, with the
right shearing wind conditions, roll cloud (Atkinson & Zhang, 1996; Fletcher et al., 2016a, 2016b). Marine
cold air outbreaks begin over cold surface temperatures (tail of arrow, Figures 11g and 11h), before head-
ing equatorward and pulling these low clouds along over warmer SST. Indeed, Figures 11a and 11d show
the highest frequency of closed MCC clouds at the start of the flow (top in a, bottom in d). Roll clouds are
identified by the NNA as closed MCC clouds, so this includes both cases. The MCAO advects the clouds
over progressively warmer water as it heads to the equator, transitioning closed to open MCC clouds
(Abel et al., 2017; Atkinson & Zhang, 1996; Fletcher et al., 2016b; Wyant et al., 1997). Open MCC clouds
are most frequent in the center of the composites in Figures 11b and 11e, slightly to the east of the mean
center of the MCAO event and consistent with the flow traced from the SLP contours. The fopen maximum
occurs slightly downstream from the peak M values in the Lagrangian perspective, intriguingly. This is
consistent with results found in Fletcher et al. (2016a) for composites of ERA-Interim planetary boundary
layer (PBL) height around stronger MCAOs (M > 6 K instead of �5 K). They found that a minimum in
PBL height occurred far upstream of the M maximum (where closed MCC clouds would occur) and a
maximum in PBL height about 200–500 km downstream of the maximum in M (where we see open
MCC clouds) (Fletcher et al., 2016a). This could be an indication that time is needed for the development
of open MCC clouds (i.e., that they need to be advected beyond the peak M that influenced them before
developing sufficiently). Finally, as the flow continues to move the clouds toward the equator, the open
MCC clouds will continue to evolve into aggregated cumulus cloud which is captured by the cellular
but disorganized cloud category of the NNA. This final transition is seen more clearly in the SH
(Figure 11f) but still exists in the NH (Figure 11c). A larger amount of cumulus and other disorganized
clouds occur in the NH than the SH relative to the other types shown, obscuring the final stage of the
transition. The MCAO composites in Figure 11 show that the evolution of open and closed MCC clouds
is influenced by MCAO events consistent with theory.

An intriguing and yet unexplored discovery was made about the environment that open and closed MCC
clouds occur within. Along with the meteorological differences illustrated previously, open and closed
MCC clouds have very different large-scale vertical velocities (measured in pressure coordinates as ω700,
Figure 12a). Zonally averaged annual mean values of ω700 are generally more positive for open MCC clouds
than closed, indicating larger subsidence in the environment of those clouds. In the subtropics and tropics,
openMCC clouds are weakly subsiding or without significant vertical wind. This overlaps with the weakly sub-
siding or strongly ascending closed MCC clouds seen in those areas. In the midlatitudes, along with greater
subsidence, open MCC clouds have more positive values of M than closed MCC clouds as we showed earlier
in Figure 10. For comparison purposes, M has been plotted similar to ω700 in Figure 12b. The connection
between regions of stronger M values and more subsidence indicates large-scale dynamics at work in
MCAO. This is consistent with the descending air, known as the dry intrusion or airstream, typically found
on the cold side of cyclones (Catto, 2016; Field & Wood, 2007; Schultz, 2001). It is remarkable that open cells
are associated with both weak static stability and strong subsidence. Berner et al. (2013) showed that subsi-
dence can suppress transition from closed to open cells, making this finding somewhat counterintuitive and
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worthy of future explanation. The source of subsidence, mechanics of its influence on open and closed MCC
clouds, and the evolution of open and closed MCC clouds with MCAO will be investigated with the help of
Lagrangian trajectories in the future.

Figure 11. Composites of (a and d) closed MCC, (b and e) open MCC, and (c and f) cellular but disorganized cloud occurrence frequency; and (g and h) surface tem-
perature around MCAO events (M ≥ �5 K). Sea level pressure contours are included for reference. As in Figure 3, mean flow arrows are sketched assuming
approximate geostrophic balance (Figures 11a, 11d, 11g, and 11h). Lagrangian evolution of clouds approximately follows MCAO flow (arrows) from high to low
latitudes over warming water (Figures 11g and 11h). NH (30–60°N, Figures 11a–11c) and SH (30–60°S, Figures 11d–11f) composited separately. When an MCAO
event is identified, MCC cloud subscenes occurring within 3 h of the event and within 2000 km of the MCAO center are identified. The location of the MCC cloud
subscene relative to MCAO center is identified on an equal area grid, and the frequency with which each MCC cloud type occurs in each grid box (bin size
200 × 200 km) is calculated.M, surface temperature, and sea level pressure derived from ERA-Interim are interpolated to the same equal area grid (200 × 200 km) prior
to compositing. Times during which an MCAO event is identified, but for which there is no corresponding MCC cloud subscene, are not included in the
ERA-Interim data compositing.
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4. Summary and Discussion

We set out to test the hypothesis that the frequency of occurrence of open MCC cloud is strongly tied to cold
air outbreaks and that a simple metric can be used to predict MCC cloud occurrence. Three metrics were cho-
sen to represent the key influences on development: M, the marine cold air outbreak index; EIS, estimated
inversion strength; and ΔT, sea-air temperature difference.

We discovered several important aspects of open and closed MCC structure, radiative impacts, and formation
mechanisms. These are as follows:

First, open and closed MCC clouds have distinct cloud fraction-albedo relations, such that the structure and
microphysical properties of open and closed MCC clouds are sufficiently different that the same fractional
cloud coverage yields a different optical depth and albedo. Closed MCC cloud, for a given cloud fraction,
tends to have a higher albedo than open MCC cloud except at very high cloud fractions. The CF-albedo rela-
tionships show that prediction of open and closed MCC based on cloud fraction alone will be insufficient as it
cannot capture the complex MCC cloud morphology.

Second, open and closed MCC clouds have a well-defined geographic distribution and strong seasonality.
Closed MCC clouds occur in the cold Eastern subtropical oceans and over summertime midlatitude oceans,
while open MCC clouds are widespread globally, as in Muhlbauer et al. (2014). The seasonal cycle of open
MCC cloud is best correlated with the MCAO index. A strong connection between outbreaks and open
MCC cloud development in the midlatitudes is found, consistent with the literature (Agee, 1987; Atkinson
& Zhang, 1996; Muhlbauer et al., 2014; Wood, 2012). The seasonal cycle of closed MCC cloud is well correlated
with M in the midlatitudes and EIS in the subtropics (specifically SEA and SEP), consistent with previous stu-
dies (Wood & Hartmann, 2006).

Third, M is a superior predictor of open MCC cloud occurrence largely because the MCAO index better
encompasses both surface forcing and static instability. Surface forcing has been previously established as
a driver of open MCC cloud development (Kazil et al., 2014); we find that static instability is favorable to open
MCC cloud as well. Strong sigmoidal relationships were found betweenM and occurrence frequency of open
and closed MCC clouds. Open MCC cloud occurrence frequency grows strongly with M in all regions. M is a
slightly weaker predictor for closed MCC cloud globally because of the cloud type’s stronger dependence
on EIS over ΔT in the tropics. Of the metrics tested, M is also the best discriminator between occurrence of
open and closed MCC clouds on sub seasonal time scales.

Fourth, open and closed MCC clouds evolve with MCAO events. Composites of MCC around MCAO events
indicate that MCAOs from regions of cold surface temperature off high-latitude ice and land drive a transition
from closed to open MCC clouds and then to cellular but disorganized clouds as they progress equatorward
over warmer ocean. Midlatitude and tropical open MCC clouds tend to occur in more strongly subsiding

Figure 12. Zonally averaged (a) ω700 and (b)M over monthly means (line) with 1σ standard deviation (shading). Subsidence is defined as positive ω700 (see dashed
zero-line for reference).
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environments than closed MCC clouds. This may be connected to the dynamics of MCAO events and will be
investigated in the future using Lagrangian trajectories.

Our results have interesting implications for cloud feedbacks. Much of the research on cloud feedbacks and
improvingmodel predictions uses fractional cloud cover as a way of quantifying cloud radiative influence. It is
highly probable that cloud cover will change with global warming. Metrics like estimated inversion strength
(EIS) (Wood & Bretherton, 2006) and sea surface temperature (SST) predict low-cloud cover in observations of
the current climate and in GCM-simulated present and future climates (Clement et al., 2009; Myers & Norris,
2015, 2016; Norris et al., 2016; Qu et al., 2014, 2015; Seethala et al., 2015). The magnitude of change in low-
cloud cover is still uncertain in GCMs (Qu et al., 2014, 2015). However, they all indicate that cloud cover will
reduce with global warming thus constituting a positive feedback. Kolstad and Bracegirdle (2008) found that
MCAO’s in the Northern Hemisphere are predicted to weaken in strength with global warming, although their
frequency stays the same. A weakening would yield a reduction in the magnitude of M in the NH and, pro-
vided one can extend these results, in the SH. If we assume that MCAOs are affected in both hemispheres
and that our closed and open MCC cloud relations with M (Figure 9) are invariant in a warmed climate, this
would suggest that in the future there may be less open MCC cloud and more closed MCC cloud in the mid-
dle and high latitudes. If we further assume that the cloud fraction-albedo relations (Figure 4) are invariant in
a warmed climate, this transition between low-cloud states (i.e., more open tomore closedMCC clouds occur-
ring) suggests that we would have a shift from lower albedo clouds to higher albedo clouds. This would con-
stitute a negative cloud feedback and would be important given the coverage and frequency of these MCC
clouds. A decrease in cloud cover and an increase in closedMCC cloud occurrence frequency are not mutually
exclusive as we have shown that closed MCC clouds exist for a range of cloud fractions. In this instance, we
could have more closed MCC clouds (with higher albedo) but lower cloud fraction (consistent with model
predictions). The feedback from a shift in MCC type driven by MCAO weakening would change the degree
of positive feedback expected from a decrease in cloud cover.

In discussing our theory for a MCC Cloud Feedback, it is important to recognize the limitation of not know-
ing the invariance of open and closed MCC cloud relationships under climate change. We expect some
robustness of the fMCC-M (Figure 9) and CF-albedo (Figure 4) curves since we have included many different
climatological states in our analysis. The clouds sampled in our study have occurred over a broad range of
CF, meteorological regime, and SST. However, this is not to say that the curves will not change as they
may not be completely invariant to all manifestations of climate change. For example, changes in atmo-
spheric emissivity may affect both the fMCC-M and CF-albedo curves found for open and closed MCC
clouds in the present climate. Increased downwelling longwave (LW) with increased CO2 will act to sup-
press LW cloud top cooling, an important element for sustaining closed MCC clouds (Shao & Randall,
1996). One would expect that reduced cooling would be a less conducive environment for closed MCC
clouds, manifesting as a lower frequency of closed MCC clouds and/or higher frequency of transition state
clouds. Along with affecting the fMCC-M relations (Figure 9), the cloud fraction of closed MCC clouds could
be adversely affected from suppression of cloud top cooling which would additionally alter the CF-albedo
curves (Figure 4). It is unclear at this point how important LW cloud top cooling is to either of these rela-
tionships, but this example serves to demonstrate a potential lack of invariance that will introduce a struc-
tural uncertainty into our analysis. This is an issue that many other analyses have encountered when using
present day observations of clouds to understand their future behavior under climate change (McCoy
et al., 2017; Myers & Norris, 2015, 2016; Qu et al., 2015). Following the methodology of these earlier works,
appropriate usage of interannual observations and GCM behaviors can be used to quantify the MCC Cloud
Feedback, caused by a transition between low-cloud states, and reduce its structural uncertainties. As MCC
clouds can significantly impact the climate system, understanding their behavior under global warming
will be very worthwhile.
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