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Abstract

The paper is concerned with the scope of semi-intuitionistic set theories that relate
to various foundational stances. It also provides a proof for a second conjecture of
Feferman’s that relates the concepts for which the law of excluded middle obtains to
those that are absolute with regard to the relevant test structures, or more precisely
of ∆1 complexity. The latter is then used to show that a plethora of statements is
indeterminate with respect to various semi-intuitionistic set theories.
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1 Introduction

Brouwer argued that limitation to constructive reasoning is required when dealing with
“unfinished” totalities. As a complement to that, the predicativists such as Poincaré and
Weyl (of Das Kontinuum) accepted the natural numbers as a “finished” or definite total-
ity, but nothing beyond that. In addition, the “semi-intuitionistic” school of descriptive
set theory (DST) of Borel et al. in the 1920s took both the natural numbers and the
real numbers as definite totalities and explored what could be obtained on that basis
alone. A further position (that can perhaps be associated with Zermelo) holds that the
powerset operation produces “finished” totalities but the universe V of all sets is not “fin-
ished” on account of Russell’s paradox. Feferman proposed to discuss these frameworks,
and more broadly questions of definiteness and indeterminacy of meaning, by adopting a
semi-intuitionistic point of view. From a metamathematical perspective, these and other
different levels of indefiniteness/definiteness can be treated in the single framework of

∗To the memory of Sol Feferman, who, with his extraordinarily broad insight and great mind was a
constant source of inspiration to me, ever since my graduate days, and who, with his kindness and unfailing
support has shaped my life’s trajectory in crucial ways.
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semi-intuitionistic theories of sets, whose basic logic is intuitionistic, but for which the
law of excluded middle (LEM) is accepted for bounded formulas. This article presents
semi-intuitionistic set theories and studies the scope of several systems associated with
various foundational positions. As the formal counterpart of definiteness of a statement
or a concept with regard to a theory T we ask whether LEM can be proved in T for it.
The later parts of this paper provide a technical machinery for establishing indefiniteness
of concept and statements.

We give a brief overview of the individual sections of article. Section 2 aims to present
Feferman’s case for semi-intuitionistic set theories as a tool in the philosophy of math-
ematics and relate it to Dummett’s notion of indefinite extensibility in light of recent
work of Øystein Linnebo (notably [47]) and others. Section 3 introduces formal systems
of semi-intuitionistic set theory and connects them to various foundational schools. As
the continuum hypothesis played a major role in shaping Feferman’s semi-intuitionistic
point of view, it will feature in section 4. Sections 5 and 6 contain new results on in-
determinateness for which what I call Feferman’s second conjecture is a crucial tool. In
addition to his conjecture about the indeterminacy of CH relative to semi-intuitionistic set
theory, he stated another conjecture (in [19, 20]) concerning the relationship between two
types of predicates in such set theories, namely that the collection of ∆1 predicates and
the collection of predicates for which the law of excluded middle holds should coincide.
First in section 5 it is shown that ∆1 predicates satisfy LEM. Section 6 establishes the
reverse implication. However, in both cases we require an extra assumption namely that
the theories’ axioms of choice are strengthened to global choice. But this is enough if
one wants to show that a plethora of statements is indeterminate with respect to various
semi-intuitionistic set theories. The last section also presents related results due to Peter
Koellner and Hugh Woodin [42].

2 Semi-intuitionism in the philosophy of mathematics

Solomon Feferman, in recent years, has argued that the Continuum Hypothesis (CH)
might not be a definite mathematical problem (see [19, 21, 22]1).

My reason for that is that the concept of arbitrary set essential to its formu-
lation is vague or underdetermined and there is no way to sharpen it without
violating what it is supposed to be about. ([19, p.1]).

Here CH just serves the role of most emblematic case of a statement that is seen as
referring to an indefinite totality. The problem has deeper implications, though, in that
it concerns the nature of logic germane to reasoning about such domains of objects. The
main question is whether there are principled demarcations on the use of classical logic.
In [19], Feferman proposed a logical framework for what’s definite and for what’s not.

One way of saying of a statement ϕ that it is definite is that it is true or
false; on a deflationary account of truth that’s the same as saying that the Law

1The paper [19] was written for Peter Koellner’s Exploring the frontiers of incompleteness (EFI) Project,
Harvard 2011-2012.
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of Excluded Middle (LEM) holds of ϕ , i.e. one has ϕ ∨ ¬ϕ . Since LEM
is rejected in intuitionistic logic as a basic principle, that suggests the slogan,
“What’s definite is the domain of classical logic, what’s not is that of intuition-
istic logic.” [...] And in the case of set theory, where every set is conceived to
be a definite totality, we would have classical logic for bounded quantification
while intuitionistic logic is to be used for unbounded quantification. ([19, p.
23])

The point of departure of his analysis are two informal notions of definiteness, namely
that of a definite domain2 of objects and that of a definite concept. Definiteness of a
concept P over a domain D can be understood as saying that for every d ∈ D either P (d)
is true or P (d) is false. On a deflationary account of truth, more formal criteria for these
distinctions can be given in logical terms:3

P1. A concept P is definite over a domain D iff the Principle of Bivalence (or the Law
of Excluded Middle, LEM) holds with regard to it, i.e.,

∀~x ∈ D [P (~x ) ∨ ¬P (~x )].

P2. A domain D is definite if and only if quantification over D is a definite logical op-
eration, i.e., whenever R(~x, y) is definite as a concept over D, so are ∀y ∈ D R(y, ~x )
and ∃y ∈ D R(y, ~x ).

Surely, the above description provides just a template for further discussions. Crucially
one needs an account of how quantification over a domain is to be understood.

Feferman’s critique of using classical logic for indefinite domains is reminiscent of
Michael Dummett’s diagnosis of the failure of Frege’s logicist project in the final chapter
of [15], where he singles out the adoption of classical quantification over domains com-
prised of objects falling under an indefinitely extensible concept as the main reason for the
paradoxes.4 A concept is indefinitely extensible just in case, whenever

we can form a definite conception of a totality all of whose members fall under
that concept, we can, by reference to that totality characterize a larger totality
all of whose members fall under it ([16, p. 441].

His contention is that the classical view is illegitimate and that the correct logic for quan-
tification over such a domain must be intuitionistic logic. Dummett’s notion of indefinite
extensibility did not please everybody. Boolos [6, p. 224] and Burgess [7, p. 205] found it
hopelessly obscure and questioned its explanatory value. Recently, however, Dummett’s
analysis has received a careful reconstruction by Øystein Linnebo [47] that also illuminates
some aspects of Feferman’s position. We will turn to it in the next subsection.

2Feferman often uses the term definite totality rather than definite domain.
3Below ∀~x ∈ D stands for ∀x1 ∈ D . . . ∀xn ∈ D where ~x = x1, . . . , xn.
4I couldn’t find a single reference to Dummett in Feferman’s papers on semi-intuitionistic theories. I

conjecture that he was not aware of this connection. Unfortunately, I missed the opportunity to ask him
about it.
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2.1 Dummett on definiteness

Dummett considers two notions of definiteness.

... a definite totality is one quantification over which always yields a statement
determinately true or false. (Dummett, 1991, [15, p. 316])

This notion of definite totality has a lot in common with that of a definite domain in
(P2). The way Dummett understands classical quantification is further illuminated by the
following passage.

We cannot take quantification over the totality of all objects as a sentence-
forming operation which will always generate a sentence with a determinate
truth-value; we cannot, in other words, interpret it classically as infinitary
conjunction or disjunction. (Dummett, 1981, [14, p. 53])

Classical quantification over a domain D can be rendered as

∀x ∈ DP (x) :⇔
∧

c∈D

P (c)

∃x ∈ DP (x) :⇔
∨

c∈D

P (c).

Linnebo and Shapiro call a predicate P over the domain D traversable if such an interpre-
tation is available. To handle quantification over non-traversable domains, a non-instance
based conception of universal quantification is called for. Pictorially the idea behind a
Dummettian definite totality seems to be that a completable search through all its el-
ement is (at least in principle) available. As a result, if for each c ∈ D it can always
be determined whether P holds true of c or not then the statements ∀x ∈ P (x) and
∃x ∈ P (x) have a definite truth value, too.5 Another way of construing definite totali-
ties is in terms of the old Aristotelian distinction between the actual and the potential.
From this viewpoint definite (traversable) totalities are then equated with actual domains
and only quantification over them will follow the rules of classical quantifier logic whereas
reasoning over potential domains will be regimented by intuitionistic logic.

The second notion of definiteness one finds in Dummett’s work applies to concepts.

A concept is definite provided that it has a definite criterion of application - it
is determinate what has to hold good of an object for it to fall under the concept
- and a definite criterion of identity - it is determinate what is to count as one
and the same object. (Dummett, 1991, [15, p. 314])

One interpretation of the above is that a definite concept P should satisfy bivalence,
i.e., P (c) ∨ ¬P (c) for all objects c (to which P can be meaningfully applied). Thus a
Dummettian definite concept would be a intensionally definite concept in the sense of
Linnebo [47]. Looking for further clues, one finds the following passage:

5Of course, if we restrict the possibilities to humanly or physically possible searches we will be restricted
to some form of ultra-finitism. By contrast, if we allow for supertasks to be completable then we will get
a hierarchy of foundational schools.
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We know well enough what is needed for something to be recognized as a set or
as an ordinal number, and when an entity given in a certain way is the same
set or ordinal number as one given in some another. (p. 315).

Thus Dummett appears to view the concepts of set and ordinal as definite. Together
with bivalence for definite concepts this entails classical quantification over sets and thus
Dummett seems to endorse something very close to Feferman’s preferred framework for
discussing questions of definiteness, i.e., semi-intuitionistic set theory.

There is a further notion that plays a crucial role in Dummett’s philosophy of math-
ematics. He is famous for singling out intuitionistic logic on meaning-theoretic grounds.
In addition to his more familiar argument based on the learnability and intersubjective
functioning of language, he put forward another one particularly germane to mathematics.
It is based on the notion of indefinite extensibility.

A concept is indefinitely extensible if, for any definite characterization of it,
there is a natural extension of this characterization, which yields a more inclu-
sive concept; this extension will be made according to some general principle
for generating such extensions, and, typically, the extended characterization
will be formulated by reference to the previous, unextended, characterization.
(Dummett, 1963, [13, pp. 195–196])

Here Dummett is referring to Russell’s famous analysis to the effect that paradoxes

result from the fact that [. . .] there are what we may call self-reproductive pro-
cesses and classes. That is, there are some properties such that, given any
class of terms all having such a property, we can always define a new term
also having the property in question. Hence we can never collect all of the
terms having the said property into a whole; because, whenever we hope we
have them all, the collection which we have immediately proceeds to generate a
new term also having the said property. (Russell, 1906, [70])

Linnebo’s analysis connects the Dummettian notion of extension with classical quantifi-
cation.

A concept has an extension (that is, ED [“ED” stands for “extensionally defi-
nite”.]) just in case quantification over its instances can be interpreted classi-
cally. [47, p. 11]

On this interpretation a concept possesses an extension in Dummett’s sense exactly when
the collection of objects that fall under it form a definite totality in Feferman’s sense.
Linnebo also stresses another feature of extensions.

It follows that the extension is modally rigid: it has the same members in all
the circumstances in which it exists at all. It is this rigidity that enables us to
compare extensions across different circumstances. [47, p. 7-8]
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There is an interesting connection to Feferman’s arguments in [23], where he employs
Kripke models to take into account differences as to the definiteness of concepts and
domains with the result that definiteness is also explained as rigidness across contexts.6

In sections 5 and 6 we will throw a third notion into the mix: this is the familiar
logical notion of absoluteness of concepts. Results from this section will show that provable
definiteness and provable absoluteness are closely linked for semi-intuitionistic set theories.
Interestingly, definiteness has been construed as determinateness of sense in a paper by
Chris Scambler [71] and the latter notion has been linked to absoluteness between certain
test structures, which he takes to be the transitive models of ZFC.7

2.2 The actual and the potential

Another way of discerning the correct logic governing collections of objects is informed by
an old Aristotelian distinction. Often the line of demarcation between platonic realism
on the one hand and constructivism, nominalism and fictionalism on the other hand is
described as follows: Platonic realism holds that set theory (ZFC) has cut the nature of
the mind independent mathematical world at the joints whereas constructivists and nom-
inalists view these pretensions as an elaborately disguised game of make-believe, insisting
that objects of mathematical thought exist only as mental or intersubjectively shared sym-
bolic constructions. The boundary remains contested. An important move to potentially
more neutral and fruitful grounds, that also renders the boundary more permeable, is the
distinction between actualism and potentialism. It plays a central role in [48, 47] and has
also been independently employed by Peter Koellner. This is a rough distinction with a
long history that can be traced back to Aristotle if not further.8 One way of formally
delineating this intuitively appealing opposition is by employing intuitionistic logic for
domains for which one is a potentialist whilst earmarking classical logic for domains for
which one is an actualist.

To summarize, the purpose of this section was to show that semi-intuitionism in math-
ematics arises naturally from philosophical reflections about the existence of mathematical
objects, the extension of mathematical concepts, and the meaning of mathematical state-
ments.

6It should perhaps be stressed that these ideas aren’t entirely new. The idea of using modality to
interpret mathematical existence occurs in Parsons writings (e.g. [56]) much earlier.

7The referee of this paper queried whether I was gesturing at the claim: “If an informal concept is
given several independent analyses and these different analyses are subsequently shown to be equivalent
(as in the case of computability and predicativity) this is evidence that the concept is a robust one.” I
think this is a very good point, although I hesitate to articulate it in such a strong form as I think that
more technical work is required to get a more thorough understanding of the connections.

8Recall that Aristotle, along with just about every major mathematician and philosopher before the
nineteenth century, rejected the very notion of the actual infinite. They argue that the only sensible notion
is that of potential infinity (at least for scientific or otherwise non-theological purposes).
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3 Semi-intuitionistic set theory

The framework that Feferman proposed for the study of structural conceptions that are
considered to be lacking some aspect of definiteness is semi-intuitionistic set theory. The
first crucial step is to view the set-theoretic universe as an unfinished domain in which a
subcollection is a definite totality if and only if it forms a set. Furthermore, the predicates
of elementhood and equality are taken to be definite. As a result, classical reasoning is
available for bounded set-theoretic formulas.

We will first present the system SCS of semi-constructive set theory. This will be
followed by a discussion of the rationale for choosing these particular axioms.

Definition 3.1 SCS is formulated in the usual language of set theory containing ∈ as
the only non-logical symbol besides =. Formulas are built from atomic formulas a ∈ b
and a = b by use of propositional connectives and quantifiers ∀x, ∃x. Quantifiers of the
forms ∀x ∈ a, ∃x ∈ a are called bounded. Bounded or ∆0-formulas are those wherein
all quantifiers are bounded. SCS is based on intuitionistic logic. Basic axioms are the
restricted Law of Excluded Middle:

(∆0-LEM) ϕ ∨ ¬ϕ, for all ∆0-formulae ϕ,

and Extensionality, Pair, and Union in their usual form. SCS also has an axiom asserting
the existence of an infinite set, though in the specific version that there is a smallest set
containing the empty set 0 which is closed under the successor operation, x′ = x ∪ {x}),
i.e.,
Infinity Axiom

∃x ∀u [u ∈ x↔ (u = 0 ∨ ∃v ∈ xu = v′)].

Further axioms are the following.
Bounded Separation

∃x ∀u [u ∈ x↔ (u ∈ a ∧ ϕ(u))]

for all bounded formulas ϕ(u).

Set Induction
∀x [(∀y ∈ x θ(y)) → θ(x)] → ∀x θ(x)

for all formulas θ(x).

(BOS) (Bounded Omniscience Scheme)

(BOS) ∀x ∈ a [ϕ(x) ∨ ¬ϕ(x)] → [∀x ∈ aϕ(x) ∨ ∃x ∈ a¬ϕ(x)]

for all formulas ϕ(x).

(ACSet) ∀x ∈ a ∃y ψ(x, y) → ∃f [Fun(f) ∧ dom(f) = a ∧ ∀x ∈ aψ(x, f(x))]

for all formulas ψ(x, y), where Fun(f) expresses in the usual set-theoretic form that f is
a function, and dom(f) = a expresses that the domain of f is the set a.

7



Markov’s Principle in the form

(MP) ¬¬∃xϕ→ ∃xϕ

for all ∆0-formulas ϕ.

Note that SCS is an extension of the intuitionistic cousin of classical Kripke-Platek set
theory, KP. The latter is an important theory that accommodates a great deal of set
theory. Its transitive models, called admissible sets, have been a major source of interplay
between model theory, recursion theory and set theory (cf. [3]).

Definition 3.2 Intuitionistic Kripke-Platek set theory, IKP lacks the axioms (∆0−LEM),
(BOS), (ACSet), and (MP) from SCS but has Bounded Collection

∀x ∈ a ∃y ψ(x, y) → ∃z ∀x ∈ a ∃y ∈ z ψ(x, y)

for all bounded formulas ψ(x, y).

Note that Bounded Collection is a consequence of (ACSet) in SCS, so in this way IKP is
a subtheory of SCS.

The study of subsystems of ZF formulated in intuitionistic logic with Bounded Sepa-
ration goes back a long way. They were first proposed by Pozsgay [58, 59] and then inves-
tigated more systematically by Tharp [74], Friedman [26] and Wolf [78]. These systems
are actually semi-intuitionistic as they contain the law of excluded middle for bounded
formulas.

Remark 3.3 (i) SCS proves the full replacement schema of ZF. Moreover, SCS
proves Strong Collection, i.e. all formulas

∀x ∈ a ∃y ϕ(x, y) → ∃z [∀x ∈ a ∃y ∈ z ϕ(x, y) ∧ ∀y ∈ z ∃x ∈ aϕ(x, y)]

where ϕ(x, y) is an arbitrary formula.

Strong collection is an axiom schema of Constructive Zermelo-Fraenkel set theory,
CZF (cf. [1, 2]) and also of Tharp’s set theory [74].

(ii) SCS is a subtheory of Tharp’s quasi-intuitionistic set theory of [74], for if ∀x ∈
a ∃y ϕ(x, y) holds, then there is a set d such that ∀x ∈ a ∃z ∈ d ∃y[z = 〈x, y〉 ∧ϕ(x, y)]
and ∀z ∈ d ∃x ∈ a ∃y[z = 〈x, y〉 ∧ ϕ(x, y)] by axiom 10 of [74] (which is the same as
Strong Collection), and, by axiom 6 of that system, d is the surjective image of an
ordinal, i.e., there is an ordinal α and a function g with domain α and range d. Note
that d is a set of ordered pairs. Now define a function f with domain a by letting
f(x) be the second projection of g(ξ) where ξ is the least ordinal < α such that the
first projection of g(ξ) equals x.

(iv) For the sake of its justification, it is perhaps useful to view the axiom schema (ACSet)
as composed of two parts, namely
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1. Strong Collection and the

2. Axiom of Choice, AC,

∀x[x 6= ∅ → ∃y ∈ xx ∩ y = ∅].

Strong Collection has a constructive justification via the interpretation in Martin-
Löf type theory.9 AC on the other hand is of a local nature and maybe justified on
semi-constructive grounds, allowing classical reasoning with choice for fully formed
(determinate) parts of the universe (a position taken for instance by Bill Tait).
On the other hand, one might raise reasonable objections against adopting AC for
completed totalities. In set theory, one is also looking at large cardinal notions
that are incompatible with AC and the axiom of determinacy is often discussed in
contexts where R is not well-orderable. If AC were that easily justifiable, then the
existence of such cardinals as well as the axiom of determinacy could be almost ruled
out by “logic”.

The axioms (∆0−LEM) and (BOS) of SCS are actually redundant.

Proposition 3.4 IKP+ (ACSet) proves (∆0−LEM) and (BOS).

Proof: See [65, Proposition 2.3], where Diaconescu’s [12] construction is used. ⊓⊔

3.1 Justifying the axioms of SCS

SCS furnishes a template for discussing questions of definiteness of concepts and state-
ments. Formally a concept C(~x) (expressible in the language of set theory) is said to be
definite with respect to SCS if

SCS ⊢ ∀~x [C(~x) ∨ ¬C(~x)]

and a set-theoretic statement θ is definite with respect to SCS if

SCS ⊢ θ ∨ ¬θ .

What seems to underly many conceptions of the set-theoretic universe that regard it as
an indefinite totality is a generative approach to its ontology. Sets are generated or arise
in stages by various operations applied to sets from earlier stages. This view is clearly
present in Russell and Dummett but also part of the orthodox justification of the axioms
of ZFC by means of the the cumulative hierarchy of sets. There are also tendencies to
avoid the language of action by using modal terminology, stressing the potential nature
of the universe. Such explanations “replace the language of time and activity with the
more bloodless language of potentiality and actuality” (Parsons 1977, [56, p. 355]). Thus
the asymmetrical temporal relation of creation between a set and its elements gives rise
to relations of necessity and potentiality in that the existence of a set necessarily depends

9One of the best accounts of the constructivity of Strong Collection can be found in [54, p. 351].
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on the existence of its elements whereas its own existence is only contingent or potential
relative to them. Feferman in [23, p. 16] argues that semi-intuitionism is the logic of
partially open-ended structures.10 He uses Kripke models as a motivating idea, where
the elements of its non-empty partially ordered set (K,≤) represent stages of knowledge.
More precisely, a Kripke model is a quadruple (K,≤, D, v) where D is a function that
assigns to each α ∈ K a non-empty set D(α) such that D(α) ⊆ D(β) whenever α ≤ β,
and v is a function onto {0, 1} at each α ∈ K such that

α ≤ β ∧ ~d ∈ D(α) ∧ v(α,R(~d)) = 1 ⇒ v(β,R(~d)) = 1 (1)

holds for each r-ary relation symbol R, where ~d ∈ D(α) stands for d1, . . . , dr ∈ D(α).
Here v(α,R(~d)) = 1 means that R(~d) has been recognized as true at level α. The domain
D(α) has been surveyed at stage α. Thus (1) expresses that an atomic statement, once
recognized as true, stays true. The domains D(α) may increase forever as α increases.
They may also bifurcate as (K,≤) need not be a total ordering so that one cannot speak
of a final domain.11

Next, in light of some of the foregoing explanations of the ontology of V , we attempt
to provide intuitive reasons for adopting the axioms of SCS. We will be brief, though.
As a result of taking sets to be the definite subdomains of V and endorsing ∈ and = as
definite concepts, the governing logic of ∆0-formulas is classical logic, whence ∆0−LEM
holds true. Since ∆0-formulas do not change their meaning according to the conception
that V is a Kripke-model whose domains are equated with the sets, Bounded Separation
is also justified. Pair and Union refer to basic constructions on sets while Extensionality
reflects the fact that in mathematics we like to work with extensional objects, and more
to the point, it is part of what we ‘mean’ by a set. The Infinity Axiom should perhaps
be accepted on grounds that it axiomatizes the most elementary inductively generated set
which is widely accepted in Martin-Löf type theory and other constructive frameworks.
Clearly one has the option of eschewing this axiom. Calling this axiomatic system SCS−,
we will investigate the scope of SCS− in subsection 3.2.1. The Set Induction axiom reflects
the generative nature of V as being built in stages. ACSet is perhaps the most daring axiom
scheme of SCS. As indicated before, it can be separated into two parts, namely Strong
Collection and AC. One could justify AC by saying that the generation of sets in stages
puts a well-ordering on the universe V . This would actually endorse the stronger global
axiom of choice, which we will consider later. One could raise the objection that this
would render the universe perhaps too “L-like”. We already raised this point in Remark
3.3(iv). The layering of the universe in stages is not necessarily sufficient to secure AC as
is obvious in the case of the usual von Neumann hierarchy.

Turning to Strong Collection, we have to justify

∀x ∈ a ∃y ϕ(x, y) → ∃z [∀x ∈ a ∃y ∈ z ϕ(x, y) ∧ ∀y ∈ z ∃x ∈ aϕ(x, y)]

for an arbitrary formula ϕ(x, y). Here a word of explanation is needed as to why we
impose a restriction on the formula in Bounded Separation but not on this axiom. One

10Parsons [56] also uses these structures.
11Again, the same or similar observations were made by Parsons [56].
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important difference is its hypothetical logical nature. Here one works on the assumption
that ∀x ∈ a ∃y ϕ(x, y) is true in V . The concept corresponding to ϕ(x, y) may contain
arbitrarily many unbounded quantifiers referring to an “unfinished” universe. An instance-
based account of truth is not available for such a formula, so the recognition of its validity
must have come about in an entirely different way. Its truth must be based on facts that
only refer to a definite part of V in combination with other universal truth which, echoing
Weyl [77, p. 54], must be of a generic form that is based on the fact that it “lies in the
essence” of the concept set. As a result, the insight that the antecedent is true must stem
from a procedure that produces for every x ∈ a a set y standing in the relation ϕ(x, y),
however wildly complicated that relation may be.12

It remains to argue for Markov’s principle. So assume that ¬¬∃xϕ(x) is true where
ϕ(x) is ∆0. If ¬¬∃xϕ(x) is true its truth must be based on facts that only refer to a definite
part B of V combined with generic knowledge about the collection of all sets. We know
that the assumption of the non-existence of a set x with ϕ(x) leads to a contradiction.
But the only fact about V that could yield a contradiction from ¬∃xϕ(x) would be a set u
such that ϕ(u) holds. If we can systematically search through V as more and more parts
become actual, such a search, set by set, will eventually be successful since the predicate
ϕ(x) is checkable (on account of being determinately true or false for every set x) and we
have a guarantee stemming from the truth of ¬∃xϕ(x) that we will eventually hit upon a
set b such that ϕ(b) holds. Note that this argument in favor of (MP) seems to depend on
an assumption of ‘searchability’ or ‘surveyability’ of sets and therefore appears to require
a global well-ordering or at least a global choice principle. Since the global axiom of choice
is less familiar and will play an important role in sections 5 and 6, we introduce it at this
point.

Definition 3.5 If we add the Axiom of Global Choice, ACglobal, to a set theory T , we
mean by T +ACglobal an extension of T where the language contains a new binary relation
symbol R and the axiom schemes of T are extended to this richer language and the following
axioms pertaining to R are added:

(i) ∀x∀y∀z[R(x, y) ∧ R(x, z) → y = z] (2)

(ii) ∀x[x 6= ∅ → ∃y ∈ xR(x, y)]. (3)

Remark 3.6 (i) It is well-known that ZF + ACglobal is a conservative extension of
ZFC, i.e., both prove the same theorems of the language of ZF.

(ii) For the set theories T of relevance to this paper, T + ACglobal can obviously be
viewed as a subtheory of T + V = L, where V = L signifies the Constructibility
Axiom (saying that every set is constructible). Under V = L one has a ∆1-definable
well-ordering of the universe. It is interesting to note, though, that there are theories
T such that T+V = L is proof-theoretically much stronger than T while T+ACglobal

retains the same strength as T . For an example see Corollary 3.20 and Theorem
3.21.

12It’s perhaps worth noting the connection of this interpretation with realizability interpretations of
intuitionistic theories which we will see later.
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(iii) On a personal note, let me add that I have discussed with Solomon Feferman the
possibility of incorporating ACglobal as a basic axiom in SCS. One of the reasons I
put forward was that it lends more credence to (MP), or differently put that (MP)
appears to presuppose ACglobal. He was quite sympathetic toward that view.

(iv) Adding ACglobal to SCS does not increase the latter’s proof-theoretic strength.
Moreover, SCS+ACglobal is conservative over SCS for Π2-theorems of the language
of SCS (see Theorem 5.3(ii)).

(v) As SCS and its extensions are used to establish independence and indefiniteness
results, a further argument in favor of ACglobal is that these results still hold if
one adds ACglobal to the pertaining theories, thus yielding stronger consequences.
One aspect of the idealization is to give the strongest negative results, to show that
certain kinds of problems are indefinite even in the presence of ACglobal.

3.2 Relating SCS to various foundational schools

The introduction to this paper referred to different foundational schools that are reluctant
to countenance the full use of the infinite, chiefly associated with the names of Brouwer,
Poincaré, Weyl, Borel and Zermelo. Here we will attempt to associate them with formal
semi-intuitionistic set theories. Historical accuracy will not be a major concern.

3.2.1 The finitistic flavor

If we view the naturals as an unfinished totality then we have to jettison the Infinity
Axiom. Let SCS− be SCS bereft of Infinity. Via the usual treatment of the natural
numbers as ordinals (below ω if ω exists) we get an embedding of intuitionistic arithmetic,
Heyting arithmetic HA, in SCS−.

Theorem 3.7 (i) Via the standard translation, HA is a subsystem of SCS−.

(ii) There are statements of arithmetic that are not provable in HA but whose set-
theoretic translation is provable in SCS−.

(iii) SCS− has the same proof-theoretic strength as HA and PA. The three systems
prove the same Π0

2-statements.

(iv) The theory resulting from SCS− by adding classical logic possesses the same strength
as SCS−. It proofs the same arithmetical theorems as PA.

Proof: (i) is straightforward. For (ii) note that HA does not prove Markov’s principle.
(iii): Note that the hereditarily finite sets form a model of SCS−. It is well-known that
the latter sets can be modeled in PA. It is also known that HA and PA prove the same
Π0

2-statements of arithmetic. Thus all three theories coincide at the Π0
2 level.

As to (iv), note that the the usual interpretation of set theory without Infinity in PA
via the model of hereditarily finite sets validates all axioms of SCS− and classical logic.

⊓⊔
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3.2.2 The predicative flavor

SCS can be viewed as a predicative system as it only takes the infinite set of naturals
for granted but does not give countenance to the Powerset Axiom. The strength of SCS,
though, lies beyond Γ0. In famous work of Feferman and Schütte, the latter was identified
as the first ordinal that can not be reached by systems that are predicative in the sense
of autonomous progressions of theories. Feferman [18, Theorem 6] shows the following.

Theorem 3.8 SCS = IKP+(∆0−LEM)+(MP)+(BOS)+(ACSet) has the same proof-
theoretic strength as KP (and therefore the same as IKP). Thus the proof-theoretic
ordinal of SCS is the famous Bachmann-Howard ordinal.

Proof: The proof of [18, Theorem 6] uses a functional interpretation. The same result
can be obtained via a realizability interpretation using codes for Σ1 partial recursive set
functions as realizers along the lines of Tharp’s 1971 article [74]. ⊓⊔

As far as proof-theoretic strength is concerned, the foregoing Theorem shows that (∆0−LEM)
and (MP) do not contribute to it. The same holds for AC. Moreover, the ∆0-Collection
entailed in (ACSet) suffices; and even that could be replaced by ∆0-Replacement.

Let’s see what happens to SCS if one adds classical logic to it.

Proposition 3.9 The strength of SCS augmented by classical logic, SCSc, is the same
as that of formal second order arithmetic with the axiom of choice.

Proof: Note that in the presence of classical logic, (ACSet) implies that for every formula
φ(x), the class {x ∈ N | φ(x)} is a set just in the same way as Replacement entails full
separation in classical set theory. Thus second order arithmetic plus AC can be seen to be
contained in SCSc. Conversely, in second order arithmetic countable sets can be modeled
via well-founded trees. The latter interpretation validates all the axioms of SCSc when
working in second order arithmetic with AC. It is also known that the latter theory is Π1

4

conservative over second order arithmetic (without AC). ⊓⊔

3.2.3 The semi-intuitionistic descriptive set theory flavor

According to some classical Descriptive Set Theorists, the set R of real numbers is a
definite totality but not the supposed totality of arbitrary subsets of R. Here one takes
the real numbers to form a definite totality and explores what can be obtained on that
basis alone. A formal framework in which such a viewpoint can be explored is

SCS+ := SCS+ R is a set.

Since SCS+ has classical logic for ∆0-formulas it is not necessary to pay much attention
to how the reals are actually formalized as is so often the case in intuitionistic contexts.
Thus, any of the following equivalent statements could be used to formalize the existence
of R as a set:

• The collection of all functions from N to N, NN, is a set.
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• The collection of all subsets of N is a set.

Proposition 3.10 (i) The proof-theoretic strength of SCS+ resides strictly between full
classical second order arithmetic and Zermelo set theory. More precisely, the proof-
theoretic strength of SCS+ is greater than that of second order arithmetic but weaker
than that of third order arithmetic augmented by AC.

(ii) The strength of the classical version of SCS+ is that of third order arithmetic plus
AC.

(iii) All theorems of classical second order arithmetic with the axiom of choice are theo-
rems of SCS+.

Proof: See [65]. ⊓⊔

Definiteness with regard to SCS+ can be extended a bit above the level of second order
arithmetic. An important example is that of projective determinacy, PD, asserting that
all projective games are determined (see e.g. [39]).

Theorem 3.11 SCS+ ⊢ PD ∨ ¬PD.

Proof: [65, Theorem 7.2]. ⊓⊔

An important test case for definiteness is also provided by the continuum hypothesis, CH.
CH is the statement that every infinite set of reals is either in one-one correspondence
with N or with R. More formally, this can be expressed as follows:

∀x ⊆ R [x 6= ∅ → (∃f f : ω ։ x ∨ ∃f f : x։ R)]

where f : y ։ z signifies that f is a surjective function with domain y and co-domain z.

3.2.4 The Zermelo or height potentialism flavor

This version approves of the powerset operation as a definite operation. The class P(x)
of all subsets of a set x is thus considered to be a definite totality, i.e., P(x) is a set.
However, V is still not a definite totality as the line of ordinals stretches into the potential,
although each chunk Vα of the von Neumann hierarchy is actual for an actual ordinal α
as the powerset operation can be iterated along α. From this point of view of height
potentialism, not all of the axioms of ZFC seem to be justifiable. It is, e.g., unclear that
Replacement applied to formulas with arbitrary alternations of quantifiers make sense on
the height potentialist conception, hence the closer affinity of this conception to Zermelo
set theory. One could perhaps call this Power Predicative Set Theory. Formally we take
this to be the theory

SCS(P) := SCS+ Powerset Axiom.

This theory lends itself to a snappy description in terms of the actualism versus potential-
ism view. In it the powerset P(x) springs from x as a fully-formed set. The canonical view
of V is that it arises by iterating the powerset operation along the ordinal spine and the
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step from Vα to Vα+1 is maximal and allows for no further width extension in the sense
that no new subsets of Vα arise at stages β > α + 1. Thus one could summarize this by
saying that adherents of SCS(P) are width actualists but height potentialists.

It is easy to see that the classical version of SCS(P) is a familiar theory.

Proposition 3.12 SCS(P) plus classical logic is the same as ZFC.

Proof: This is clearly the case since classically replacement yields full separation and this
theory has the powerset axiom. ⊓⊔

In order to find a classical theory of the same strength as SCS(P) we have to look at less
familiar places. Power Kripke-Platek set theory is obtained from KP by also viewing the
creation of the powerset of any set as a basic operation performed on sets. In the classical
context, subsystems of ZF with Bounded Separation and Power Set have been studied
by Thiele [75], Friedman [27] and more recently in great depth by Mathias [51]. They
also occur naturally in power recursion theory, investigated by Moschovakis [52] and Moss
[53], where one studies a notion of computability on the universe of sets which regards the
power set operation as an initial function. Semi-intuitionistic set theories with Bounded
Separation but containing the Power Set axiom were proposed by Pozsgay [58, 59] and then
studied more systematically by Tharp [74], Friedman [26] and Wolf [78]. Such theories
are naturally related to systems derived from topos-theoretic notions and to type theories
(e.g., see [66]). Mac Lane has singled out and championed a particular fragment of ZF,
especially in his book Form and Function [49]. Mac Lane Set Theory, christened MAC
in [51], comprises the axioms of Extensionality, Null Set, Pairing, Union, Infinity, Power
Set, Bounded Separation, Foundation, and Choice.

To state the axioms of KP(P) it is convenient to introduce another type of bounded
quantifiers.

Definition 3.13 We use subset bounded quantifiers ∃x ⊆ y . . . and ∀x ⊆ y . . . as
abbreviations for ∃x(x ⊆ y ∧ . . .) and ∀x(x ⊆ y → . . .), respectively.

The ∆P
0 -formulas are the smallest class of formulas containing the atomic formulas

closed under ∧,∨,→,¬ and the quantifiers

∀x ∈ a, ∃x ∈ a, ∀x ⊆ a, ∃x ⊆ a.

A formula is in ΣP if belongs to the smallest collection of formulae which contains the
∆P

0 -formulas and is closed under ∧,∨ and the quantifiers ∀x ∈ a, ∃x ∈ a, ∀x ⊆ a and
∃x. A formula is ΠP if belongs to the smallest collection of formulas which contains the
∆P

0 -formulas and is closed under ∧,∨, the quantifiers ∀x ∈ a, ∃x ∈ a, ∀x ⊆ a and ∀x.

Definition 3.14 KP(P) has the same language as ZF. Its axioms are the following:
Extensionality, Pairing, Union, Infinity, Powerset, ∆P

0 -Separation, ∆
P
0 -Collection and Set

Induction (or Class Foundation).13

The transitive models of KP(P) have been termed power admissible sets in [27].
13The system KP(P) in the present paper is not quite the same as the theory KPP in Mathias’ paper

[51, 6.10]. The difference between KP(P) and KPP is that in the latter system set induction only holds
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Remark 3.15 Alternatively, KP(P) can be obtained from KP by adding a function
symbol PC for the powerset function as a primitive symbol to the language and the axiom

∀y [y ∈ PC(x) ↔ y ⊆ x]

and extending the schemes of ∆0 Separation and Collection to the ∆0-formulas of this
new language.

Lemma 3.16 KP(P) is not the same theory as KP + Pow. Indeed, KP + Pow is a
much weaker theory than KP(P) in which one cannot prove the existence of Vω+ω.

Proof: See [67, Lemma 2.4]. ⊓⊔

[67] featured an ordinal analysis of KP(P). As it turns out the technique can be
augmented to also yield an ordinal analysis of KP(P) + ACglobal. A refinement of [67,
Theorem 8.1] then yields partial conservativity of KP(P) +ACglobal over KP(P) + AC.

Theorem 3.17 Let A be a ΣP sentence of the language of set theory without R. If
KP(P) +ACglobal ⊢ A then KP(P) + AC ⊢ A.

Proof: [68, Theorem 3.3]. ⊓⊔

The latter result has been improved in [10].

Theorem 3.18 Let B be ΠP
2 -sentence of the language without the predicate R. If KP(P)+

ACglobal ⊢ B, then KP(P) + AC ⊢ B.

Proof: [10, Theorem 9.1]. ⊓⊔

Finally we would like to calibrate the proof-theoretic strength of KP(P) in ordinal terms.

Theorem 3.19 If KP(P) + ACglobal ⊢ θ, where θ is a ΣP-sentence not containing
R, then one can explicitly find an ordinal (notation) τ less than the Bachmann-Howard
ordinal ψΩ(εΩ+1) such that

KP+AC+ the von Neumann hierarchy (Vα)α≤τ exists ⊢ θ.

Proof: This is a consequence of [68, Theorem 3.3] and Theorem 3.17. ⊓⊔

Corollary 3.20 KP(P) + ACglobal and KP(P) have the same proof-theoretic strength.
They prove the same Π1

4-sentences of second order arithmetic.

An important fact to be mentioned is that ACglobal behaves very differently from the
hypothesis V = L in the context of KP(P). Whereas the former does not add any
proof-theoretic strength the latter raises it considerably.

for ΣP
1 -formulas, or what amounts to the same, ΠP

1 foundation (A 6= ∅ → ∃x ∈ A x∩A = ∅ for ΠP
1 classes

A).
Friedman [27] includes only Set Foundation in his formulation of a formal system PAdms appropriate

to the concept of recursion in the power set operation P.
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Theorem 3.21 (Mathias, 2001) KP(P) + V = L is much stronger than KP(P).

Proof: [51, Theorem 9]. ⊓⊔

Finally we would like to connect SCS(P) and KP(P).

Theorem 3.22 SCS(P)+ACglobal and KP(P)+ACglobal prove the same ΠP
2 sentences.

Thus, in view of Theorem 3.19, it follows that SCS(P) is much weaker than ZF.

Proof: SCS(P)+ACglobal has a realizability interpretation inKP(P)+ACglobal via codes
for ΣP definable partial functions. Moreover, this interpretation preserves the validity of
ΠP

2 sentences. Conversely, for each ΠP
2 theorem of KP(P) +ACglobal one can carry out

the ordinal analysis of [68] within the theory SCS(P)+ACglobal in the relativized fashion
of [10]. ⊓⊔

4 Digression: The continuum problem and indeterminacy

Cantor sought to determine the size of the continuum among the infinite cardinals. The
continuum hypothesis, CH, asserts that there are no cardinalities strictly between the
cardinality of the natural numbers and that of the reals. On Hilbert’s famous list of 23
mathematical problems, the continuum problem occupies place number 1. Hilbert, in his
paper Über das Unendliche, [37], from 1925, sketched a ‘proof’ of CH. Instead of R, he
considers the set NN of all functions from N to N. Hilbert’s proof hinges on a remarkable
and crucial assumption.

Wenn wir die Menge dieser Funktionen im Sinne des Kontinuumproblems ord-
nen wollen, so bedarf es dazu der Bezugnahme auf die Erzeugung der einzel-
nen Funktionen. [37, p. 181]14

Thus [37] can be seen as the birth place of an idea giving rise to Gödel’s constructible
hierarchy, L, which indeed validates CH.

Gödel [29] and Cohen [9], via L and forcing, respectively, provided results to the effect
that ZFC does not determine CH. One could be forgiven for thinking that these negative
results would completely discourage set theorists from talking about the truth of CH as
such discussions seemingly belong to a former unenlightened age. But this is far from
true. In particular Hugh Woodin’s publications (cf. [79, 80, 81, 82]) and Peter Koellner’s
Exploring the Frontiers of Incompleteness project have injected new life into this debate
(for more details also see [40]). Before looking at the different shades of more recent
discussions of the nature of CH, let’s briefly hark back to a more innocent state of mind
for which Joel Hamkins’ “Dream solution template” (cf. [36, p. 430]) provides a nice, if
somewhat guileless, backcloth. The dream solution template for determining truth of a
statement Θ (e.g. Θ = CH) in the universe of sets, V , proceeds as follows:

14The emphasis is mine. In the English translation from [76, p. 385]: “If we want to order the set of

these functions in the way required by the problem of the continuum, we must consider how an individual

function is generated.”
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• Step 1. Produce a set-theoretic assertion Φ expressing a natural and “intuitively
true” set-theoretic principle.

• Step 2. Prove that Φ determines Θ. That is, prove

Φ ⇒ Θ

or prove that
Φ ⇒ ¬Θ.

At times, Gödel may have fostered hopes akin to to the dream solution template in what
has been called the intrinsic program for extending ZFC. Chiefly the aim is to augment
ZFC via new axioms embodying strong reflection principles. In 1964 Gödel wrote that:

“axioms of set theory [ZFC] by no means form a system closed in itself, but,
quite on the contrary, the very concept of set on which they are based sug-
gests their extension by new axioms which assert the existence of still further
iterations of the operation “set of”.” [31, p. 260]

He mentions as examples the axioms asserting the existence of inaccessible and Mahlo
cardinals and maintains that

“[t]hese axioms show clearly, not only that the axiomatic system of set theory
as used today is incomplete, but also that it can be supplemented without arbi-
trariness by new axioms which only unfold the content of the concept of set as
explained above” [31, p. 260–261].

Gödel later refers to such axioms as having an “intrinsic necessary” status. He knew,
of course, that “small” large cardinals such as inaccessible and Mahlo cardinals have no
bearing on CH. It is not clear to this writer whether Gödel, at any time, thought that
the existence of specific intrinsically justified large cardinals could settle the status of CH.
Late in his life, Gödel wrote an unpublished note [34], wherein he attempted to determine
the truth of CH from a “highly plausible axiom about orders of growth”, referring to a
principle about the scale of the orders of growth of the functions ω → ω that Emil Borel
had considered as self-evident. This seems to indicate that Gödel, at least sometimes,
thought that an intrinsic solution to the CH question might be possible.15 Be this as it
may, a serious obstacle for any intrinsic program aimed at settling CH emerged from the
following results.

Theorem 4.1 (Cohen 1963 [9]; Levy and Solovay 1967 [45]) CH is consistent with and
independent of all “small” and “large” cardinal axioms that have been considered to date,
provided they are consistent with ZF.

15The referee of this paper, however, thinks that the ‘dream solution’ is a dream that no one has had,
and that Gödel knew that this was just a pipe dream.
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Proof: Via Cohen’s method of forcing. ⊓⊔

Thus it became apparent that large cardinals could not be used to decide the truth value
of CH. Another route to settling CH, also pursued by Gödel, is the so-called extrinsic
program, where new set-theoretic principles, rather than through considerations of intrinsic
necessity, acquire their status as axioms, as it were, a posteriori through their emanating
fruitfulness.

“[E]ven disregarding the intrinsic necessity of some new axiom, and even in
case it has no intrinsic necessity at all, a probable decision about its truth is
possible also in another way, namely, inductively by studying its success” [. . .]

There might exist axioms so abundant in their verifiable consequences, shed-
ding so much light upon a whole discipline [. . .] that quite irrespective of their
intrinsic necessity they would have to be assumed in the same sense as any
well-established physical theory.” (Gödel 1947 [30] and 1964 [31])

These days one can roughly allocate the responses to Cantor’s continuum problem to three
camps:

• A universe view (e.g. Hugh Woodin and Tony Martin think of V as a definite
totality): CH has a truth value in the universe V .

• A multiverse view (e.g. Hamkins): There are many universes that set theorists study.
They all exist. CH has different truth values in different universes.

• An intrinsic indefiniteness view (e.g. Feferman): CH is not a definite mathematical
problem.

Woodin’s universe view is in keeping with Gödel’s extrinsic program. In [79] from 1999
his aim was the identification of a “canonical” model in which CH is false. In the second
revised edition from 2010, however, the direction of finding an answer to the CH problem
appears to have reversed, favoring another canonical model as these quotes from [82, p. 19]
indicate: “Ultimately of far more significance for this book is that recent results concerning
the inner model program undermine the philosophical framework for this entire work.” “I
think the evidence now favors CH.” “The picture that is emerging now [...] is as follows.
The solution to the inner model problem for one supercompact cardinal yields the ultimate
enlargement of L. This enlargement of L is compatible with all stronger large cardinal
axioms and strong forms of covering hold relative to this inner model.”

A semi-intuitionistic set theory that is germane to discussing CH is SCS+. At the end
of [19], in order to support his claim of the indefiniteness of the CH problem, Feferman
surmises the following.

Conjecture 4.2 (Feferman) SCS+ does not prove CH ∨ ¬CH.

The conjecture is now a theorem.16

16For comments by Feferman on this result also see [24].
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Theorem 4.3 (Rathjen, [65]) SCS+ does not prove CH ∨ ¬CH.

It is interesting that this result still holds in the presence of PD.

Theorem 4.4 Assuming ZFC+ PD in the background,

SCS+ + PD 0 CH ∨ ¬CH .

Proof: [65, Theorem 7.2]. ⊓⊔

The above indeterminateness results also hold if one adds ACglobal to SCS+ since the
realizability interpretations used in [65] also validate ACglobal.

5 Feferman’s second conjecture: Part 1

We will now address a second conjecture of Solomon Feferman stated in [19, 20] concerning
the relationship between the provable ∆1 predicates and those predicates for which the
law of excluded middle can be proved. In this section we show that ∆1 predicates satisfy
LEM.

Definition 5.1 For a predicate given by a formula A(x) with at most x free we say that
A(x) is ∆1 with respect to a theory T ⊇ SCS if there exist a Σ1-formula B(x) and a
Π1-formula C(x) such that

T ⊢ ∀x [A(x) ↔ B(x) ↔ C(x)].

A(x) is said to satisfy the law of excluded middle, LEM , with respect to T if

T ⊢ ∀x [A(x) ∨ ¬A(x)].

In constructive mathematics, the latter property is also know as decidability (with respect
to T ).

We need a preliminary result about realizing SCS in Kripke-Platek set theory with
global choice. Kripke-Platek set theory, KP, is assumed to include the axiom of Infinity.
Recall from Definition 3.5 that by KP with global choice, i.e., KP +ACglobal, we mean
an extension of KP where the language contains a new binary relation symbol R, the
axiom schemes of ∆0-Separation and ∆0-Collection are formulated for ∆0-formulas of the
extended language, and the following axioms pertaining to R are added:

(i) ∀x∀y∀z[R(x, y) ∧ R(x, z) → y = z]

(ii) ∀x[x 6= ∅ → ∃y ∈ xR(x, y)].

Theorem 5.2 SCS+ACglobal has a realizability interpretation in KP+ACglobal, where
the realizers are codes for partial Σ1-definable (in parameters) functions. To be precise,
here Σ1-definability refers to the extended language with R.
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Theorem 5.3 (i) KP+ACglobal and SCS+ACglobal prove the same Π2-sentences of
the language with just ∈.

(ii) SCS+ACglobal and SCS prove the same Π2-sentences of the language with just ∈.

Proof: (i) If A is a Π2 sentence and SCS +ACglobal ⊢ A, then A is realizable in KP +
ACglobal, but this entails that A is provable in KP+ACglobal.

For the converse direction, to show that if KP+ACglobal ⊢ A then SCS ⊢ A, one can
use a relativized ordinal analysis of KP+ACglobal. The details are presented in [10].

(ii) The relativized ordinal analysis of KP+ACglobal can be already be carried out in
SCS, yielding that every Π2-theorem of KP+ACglobal is provable in SCS. ⊓⊔

Theorem 5.4 Suppose

SCS+ACglobal ⊢ ∀~x [∃yA(~x, y) ↔ ∀zB(~x, z)] (4)

where A and B are ∆0. Then

SCS+ACglobal ⊢ ∀~x [∃yA(~x, y) ∨ ¬∃yA(~x, y)].

Proof: By Theorem 5.2, the statement ∀~x [∃yA(~x, y) ↔ ∀zB(~x, z)] is provably realizable
in KP + ACglobal. But then it’s actually provable in KP + ACglobal as this flavor of
realizability happens to coincide with truth for Σ1 as well as Π1 statements.

Now, in the classical theory KP+ACglobal, (4) can be rendered in prenex normal form
giving

KP+ACglobal ⊢ ∀~x ∀y∀z∃u∃v[(A(~x, y) → B(~x, z)) ∧ (B(~x, u) → A(~x, v))].

Since the latter statement is Π2, Theorem 5.3 yields

SCS ⊢ ∀~x ∀y∀z∃u∃v[(A(~x, y) → B(~x, z)) ∧ (B(~x, u) → A(~x, v))].

Now, arguing in SCS +ACglobal take arbitrary sets ~x, y, z. By the foregoing statement,
we can pick u, v such that

A(~x, y) → B(~x, z) and B(~x, u) → A(~x, v).

If ¬B(~x, u) holds then ¬∀zB(~x, z) and hence ¬∃pA(~x, p) by (4). If B(~x, u) holds then
A(~x, v), thus ∃pA(~x, p). As excluded middle obtains for the ∆0 statement B(~x, u) we are
done. ⊓⊔

5.1 Counterexample

One might think that there is a more general result to the effect that a theory with
decidable atomic formulae and Collection has the property that ∆1 predicates provably
satisfy excluded middle. We show that this is not generally the case. This also provides
a counterexample to Proposition 3 in [46]. Note that HA proves a version of ACglobal

where R is the predecessor relation on N.
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Proposition 5.5 There is an extension T of HA such that there is a formula A that is
∆1 relative to T but T does not prove A ∨ ¬A.

Proof: By [28, Theorem 3.14] we can pick Π1 statements A = ∀xA0(x) and B = ∀y B0(y)
of the language of PA with A0(x) and B0(y) ∆0 such that

PA+A 0 B and PA+B 0 A

and, moreover, ¬A as well as ¬B imply ¬Con(PA), i.e. the arithmetized inconsistency
of PA, and therefore do not hold in the standard model. As a result, the theories T1 :=
PA+A+ ∃y ¬B0(y) and T2 := PA+B + ∃x¬A0(x) are (classically) consistent and thus
have non-standard models A |= T1 and B |= T2, respectively. We would now like to study
the following Kripke model K with three nodes.

A B

տ ր
N

where N signifies the standard model of number theory and the arrows indicate the canon-
ical embeddings of N into the respective non-standard model.

We claim that K is a Kripke model of HA. This is obvious for the basic axioms of
HA pertaining to 0,+1,+, ·, where +1 denotes the successor function x 7→ x + 1. All
instances of the induction scheme hold at the end nodes of K by virtue of being models of
PA. So it remains to check that they hold at the bottom node. Let a, b, 0 be the nodes of
K associated with A,B,N, respectively. Suppose

0 
 F (0) ∧ ∀u (F (u) → F (u+ 1)) (5)

By monotonicity of Kripke-forcing the latter entails for σ ∈ {a, b} that σ 
 F (0) ∧
∀u (F (u) → F (u + 1)), and thus σ 
 ∀uF (u) since σ is an end node and the pertaining
structures A and B are models of PA. By meta-induction on n ∈ N it follows from (5)
that 0 
 F (n) holds for all n ∈ N. Thus 0 
 ∀xF (x).

We set
T := HA+A↔ ∃y ¬B0(y).

We claim that 0 
 A ↔ ∃y ¬B0(y). Note first that (i) 0 1 A, (ii) 0 1 ∃y ¬B0(y), (iii)
a 
 A ∧ ∃y ¬B0(y), and (iv) b 
 ¬A ∧ ¬∃y ¬B0(y) hold. (i) follows since B |= ¬A and
A is a universal statement. (ii) follows since 0 
 ∃y ¬B0(y) implies that there is a proof
of an inconsistency of PA in the standard model (which we don’t believe). (iii) and (iv)
follow by choice of A and B, respectively. (i)–(iv) yield the claim.

In the theory T , A is trivially provably ∆1. We want to show that T does not prove
(intuitionistically) A ∨ ¬A. If T were to prove A ∨ ¬A, then, since K is a Kripke model
of T , 0 
 A ∨ ¬A, and thus 0 
 A or 0 
 ¬A. The former is is ruled out by (i) and the
latter is ruled out since a 
 A. ⊓⊔
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6 Feferman’s second conjecture: Part 2

This section deals with the reverse direction of Feferman’s second conjecture. We want
to show that provable LEM predicates are provably ∆1. Together with the previous
section one obtains a a plethora of statements that are indeterminate with respect to
semi-intuitionistic set theories.

Assume that SCS ⊢ ∀x [A(x) ∨ ¬A(x)]. We want to show that the predicate A(x) is
provably ∆1 in SCS. In a first step we show that A(x) is provably ∆1 in the extension of
SCS with global choice. The main technical tool is a realizability with truth interpretation
of SCS in SCS+ACglobal along the lines of [64, Definition 3.1]. However, this is actually
a much simpler context than the one in [64] as it can be done without sets of witnesses.
The notion of E-recursive function from [64, 2.9] has to be augmented, though, to take
care of R. So in addition there is a clause

[r](x) ≃ z iff R(x, z).

We call them the E′-recursive functions. We adopt the conventions and notations from
[64, §3]. We write 0e and 1e rather than (e)0 and (e)1, respectively, and instead of
[ a ](b) ≃ c we shall write a • b ≃ c.

Definition 6.1 Bounded quantifiers will be treated as quantifiers in their own right, i.e.,
bounded and unbounded quantifiers are treated as syntactically different kinds of quanti-
fiers.

We define a relation a 
wt B between sets and set-theoretic formulae. a • f 
wt B will
be an abbreviation for ∃x[a • f ≃ x ∧ x 
wt B].

a 
wt A iff A holds true, whenever A is an atomic formula

a 
wt A ∧B iff 0a 
wt A ∧ 1a 
wt B

a 
wt A ∨B iff [0a = 0 ∧ 1a 
wt A] ∨ [0a = 1 ∧ 1a 
wt B]

a 
wt ¬A iff ¬A ∧ ∀c ¬c 
wt A

a 
wt A→ B iff (A→ B) ∧ ∀c [c 
wt A → a • c 
wt B]

a 
wt (∀x ∈ b) A iff (∀c ∈ b) a • c 
wt A[x/c]

a 
wt (∃x ∈ b) A iff 0a ∈ b ∧ 1a 
wt A[x/0a]

a 
wt ∀xA iff ∀c a • c 
wt A[x/c]

a 
wt ∃xA iff 1a 
wt A[x/0a]


wt B iff ∃a a 
wt B.

Corollary 6.2 SCS+ACglobal ⊢ (
wt B → B).

Proof: This is immediate by induction on the complexity of B. ⊓⊔

Theorem 6.3 Let D(u1, . . . , ur) be a formula of L∈ all of whose free variables are among
u1, . . . , ur. If

SCS ⊢ D(u1, . . . , ur),

23



then one can effectively construct an index of an E′-recursive function g such that

SCS+ACglobal ⊢ ∀a1, . . . , ar g(a1, . . . , ar) 
wt D(a1, . . . , ar) .

Proof: The proof is similar to that in [64]. ⊓⊔

One can strengthen this as follows.

Theorem 6.4 Let D(u1, . . . , ur) be a formula of L∈(R) all of whose free variables are
among u1, . . . , ur. If

SCS+ACglobal ⊢ D(u1, . . . , ur),

then one can effectively construct an index of an E′-recursive function g such that

SCS+ACglobal ⊢ ∀a1, . . . , ar g(a1, . . . , ar) 
wt D(a1, . . . , ar) .

Proof: The proof is basically the same. ⊓⊔

Theorem 6.5 Suppose SCS ⊢ ∀x [A(x) ∨ ¬A(x)]. Then there exist a Σ1-formula B(x)
and a Π1-formula C(x) in the language of SCS+ACglobal, L∈(R), such that

SCS+ACglobal ⊢ ∀x [A(x) ↔ B(x) ↔ C(x)].

Proof: Using the Realizability Theorem 6.3, SCS ⊢ ∀x [A(x) ∨ ¬A(x)] implies that we
can construct an index of an E′-recursive function g such that

SCS+ACglobal ⊢ ∀x g(x) 
wt [A(x) ∨ ¬A(x)].

Unraveling this yields that, provably in SCS+ACglobal, we have

∀x [(0g(x) = 0 ∧ 1g(x) 
wt A(x)) ∨ (0g(x) = 1 ∧ 1g(x) 
wt ¬A(x))].

In view of Corollary 6.2 we thus have

SCS+ACglobal ⊢ ∀x [A(x) ↔ 0g(x) = 0]

furnishing the desired Σ1 characterization 0g(x) = 0 of A(x) in the language with the
predicate R. For the Π1 characterization, note that because of the (provable) totality of g,
0g(x) = 0 is equivalent to the statement C(x) expressing that every halting computation
σ of g(x) yields an output z with 0z = 0. Note that the predicate “σ encodes a halting
computation of g(x)” is ∆0. ⊓⊔

The previous result can also be slightly strengthened.

Theorem 6.6 Suppose SCS + ACglobal ⊢ ∀x [A(x) ∨ ¬A(x)]. Then there exist a Σ1-
formula B(x) and a Π1-formula C(x) in the language of SCS + ACglobal, L∈(R), such
that

SCS+ACglobal ⊢ ∀x [A(x) ↔ B(x) ↔ C(x)].
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Remark 6.7 One would like to get rid of global choice in the interpreting theory in
Theorem 6.5, i.e., weaken global choice to just choice. One idea is to use class forcing (as
in the case of ZFC) to find an interpretation of SCS + ACglobal in SCS that preserves
the formulas of L∈. In the case of ZFC the class of forcing conditions consists of local
choice functions h, i.e., functions such that for all x in the domain of h, h(x) ∈ x if x 6= ∅
and h(x) = ∅ if x = ∅. While forcing can be defined in SCS, the problem we encountered
is that SCS seems to be too weak to be able to show that every theorem of SCS is forced,
the particular culprit being Collection.

Theorem 6.8 There are simplified realizability interpretations of SCS in L(b,≺) and
admissible sets of the form Lκ(b,≺), where b is a transitive set, ≺ is well-ordering on
b, and κ > ω. Note that such structures have a ∆1-definable global well-ordering in
parameters b and ≺.

Let D(u1, . . . , ur) be a formula of L∈(R) all of whose free variables are among u1, . . . , ur.
If

SCS+ACglobal ⊢ D(u1, . . . , ur),

then one can effectively construct an index of a partial Σ1 function g such that

Lκ(b,≺) |= ∀a1, . . . , ar g(a1, . . . , ar, b,≺) 
wt D(a1, . . . , ar)

and
L(b,≺) |= ∀a1, . . . , ar g(a1, . . . , ar, b,≺) 
wt D(a1, . . . , ar),

where R(y, x) is interpreted to mean that x is the least element of y with respect to the
global well-ordering if y 6= ∅ and x = ∅ otherwise.

Theorem 6.9 Suppose A is a Π2 statement of L∈(R) that holds in L(b,≺), where b is a
transitive set and ≺ is well-ordering on b. If SCS+ACglobal ⊢ A ∨ ¬A, then

Lκ(b,≺) |= A

holds for all admissible sets Lκ(b,≺) with κ > ω.

Proof: By Theorem 6.6, there exists a Π1-sentence C such that

SCS+ACglobal ⊢ A↔ C. (6)

Now since A is true in L(b,≺) there exists a realizer in L(b,≺) for this statement on
account of being of Π2-form. Thus, by Theorem 6.8, there exists a realizer in L(b,≺) for
C, entailing that C is true in L(b,≺). Therefore we have Lκ(b,≺) |= C since C is Π1.
From this we can deduce that C is realized in Lκ(b,≺) and so A is realized in Lκ(b,≺)
which implies that A holds in Lκ(b,≺). ⊓⊔

Corollary 6.10 We say that a statement D is indeterminate relative to SCS+ACglobal

if SCS+ACglobal 0 D ∨ ¬D.
One can now take, e.g., any of the statements that are equivalent to ATR0 over ACA0

(cf. [72, Chap. V]) and conclude that they are indeterminate relative to SCS+ACglobal

as they are of Π2 form, hold in L but fail to hold in Lωck

1

. Here are two examples.

25



1. Comparability of well-orderings on subsets of ω.

2. ∆0-determinacy.

One can also apply the foregoing machinery to show indeterminateness with regard to
SCS +ACglobal of the statement “Every real is constructible” since there are admissible
sets of the form Lκ(x), where x is a constructible real but x fails to be constructible in
Lκ(x): Working in L add a new real x to Lκ via forcing. The result can also be shown by
the techniques of [65] as observed by Koellner and Woodin, [42], [41].

Theorem 6.11 Let NCR be the statement “There is a non-constructible real”. Then

SCS+ACglobal 0 NCR ∨ ¬NCR.

We will now look at extensions of Theorem 6.5 to the stronger theories SCS++ACglobal

and SCS(P) +ACglobal.
To be precise, below we shall assume that the language of SCS+ has a constant R and

SCS+ has an axiom that asserts that R is the set of reals. In the same vein as Theorem
5.3 one has partial conservativity when one adds ACglobal.

Theorem 6.12 SCS+ + ACglobal is conservative over SCS+ for Π2-sentences of the
language of SCS+ (which may contain the constant R).

The analogue of Theorem 6.6 also holds for SCS+ +ACglobal.

Theorem 6.13 Suppose SCS+ +ACglobal ⊢ ∀x [A(x) ∨ ¬A(x)]. Then there exist a Σ1-
formula B(x, y) and a Π1-formula C(x, y) in the language L∈(R), such that

SCS+ +ACglobal ⊢ ∀x [A(x) ↔ B(x,R) ↔ C(x,R)].

Proof: One has to retrace the steps leading to Theorem 6.5 with SCS+ + ACglobal in
SCS+ACglobal’s stead. So we have to prove the pertaining versions of Theorems 5.2, 5.3,
5.4, 6.3, 6.4. ⊓⊔

The foregoing Theorem can be utilized in establishing indeterminateness results for
SCS+ +ACglobal. However, we will exhibit one such result that follows from rather deep
set-theoretic results and the methods of [65].

Theorem 6.14 (Koellner, Woodin [42], [41]) Let DWOR be the statement “there is a
well-ordering of R in L(R)”. Assume Con(ZFC+“There are ω-many Woodin cardinals”).
Then

SCS+ +ACglobal 0 DWOR ∨ ¬DWOR.

Thus from the point of view of SCS+ +ACglobal, DWOR is indefinite. The importance of
this result lies in the fact that SCS+ +ACglobal is not in alignment with the community
of modern descriptive set theorists who consider ¬DWOR to be true.

Finally, let’s consider the much stronger theory SCS(P).
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Theorem 6.15 Suppose SCS(P) + ACglobal ⊢ ∀x [A(x) ∨ ¬A(x)]. Then there exist a
ΣP
1 -formula B(x) and a ΠP

1 -formula C(x) such that

SCS(P) +ACglobal ⊢ ∀x [A(x) ↔ B(x) ↔ C(x)].

Proof: Again, one has to retrace the steps leading to Theorem 6.5 with SCS(P)+ACglobal

in SCS+ACglobal’s stead. So we have to prove the pertaining versions of Theorems 5.2,
5.3, 5.4, 6.3, 6.4. ⊓⊔

We will finish this section by exhibiting a statement that is indefinite from the point
of view of SCS(P) +ACglobal. Let V = L be the statement that every set lies in Gödel’s
constructible hierarchy.

Theorem 6.16 Assume Con(ZF). Then SCS(P) +ACglobal 0 V = L ∨ V 6= L.

Proof: From Con(ZF) we get Con(ZF + V = L). So without loss of generality we may
assume ZF + V = L. Aiming at a contradiction, suppose SCS(P) + ACglobal ⊢ V =
L ∨ V 6= L. By Theorem 6.15 there is a ΠP

1 statement C such that SCS(P)+ACglobal ⊢
V = L↔ C. Since the universe is a model of V = L and all axioms of SCS(P) are true in
V , we conclude that V |= C. Invoking Theorem 3.22, we conclude thatKP(P)+ACglobal ⊢
C → V = L. In particular we have

KP(P) +ACglobal ⊢ C → ∀x ∈ R∃α x ∈ Lα

and hence
KP(P) +ACglobal ⊢ ∃β [C → ∀x ∈ R x ∈ Lβ ].

The latter statement is ΣP
1 . Thus it follows from [68, Theorem 3.2] and [68, Theorem 3.3]

that
Vτ |= ∃β [C → ∀x ∈ R x ∈ Lβ ]

where τ denotes the countable Bachmann-Howard ordinal. Since C is true in V and of
ΠP

1 form it follows that Vτ |= C. Thus

Vτ |= ∃β ∀x ∈ R x ∈ Lβ .

But this is impossible as R is not countable. ⊓⊔
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Logic 1879-1931, (Harvard University Press, Cambridge Mass., 1967) (reprinted
1970).
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