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Abstract
With a reconstructed and extensively characterized neural
circuit, Caenorhabditis elegans is a fascinating model system
for the study of neural circuits and behavior. Here, we review
the recent progress in the study of locomotion in this animal
from a systems perspective. We discuss how complementary
approaches, from network science, through dynamical sys-
tems to biomechanics are transforming the current under-
standing of this system into a unified whole animal description.
This transformation has been achieved through the integration
of mechanistic studies and decompositional approaches: on
the one hand, mapping the components of the system and
their functions and on the other hand, providing qualitative and
quantitative methods to probe the physical basis of locomotion,
motor behavior, neural dynamics, and structure– function
relation in neural circuits.
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Introduction
Deciphering the neural control of behavior is a systems

challenge that requires integration of structure, func-
tion, and dynamics across scales, from the gene to the
behaving animal. Here, we review recent progress in our
understanding of a subset of behaviors in the model
organism Caenorhabditis elegans, with a focus on progress
and open challenges for systems modeling.

In comparison to humans, the anatomical structure of
nematodes is remarkably simple. C. elegans has a fully
mapped and invariant cell lineage; the adult
Current Opinion in Systems Biology 2019, 13:150–160
hermaphrodite has 959 somatic cells including 95 body
wall muscles and precisely 302 neurons (with a fully
mapped connectome [1e4]). The slender, 1 mm long
animal is lined with muscles that are controlled by a
relatively distributed nervous system.

The compact and small nervous system of nematodes
precludes the complex organization of the human brain, as

well as many neural functions. Nematodes have no visual
or auditory system or any obvious evidence of neuronal
representations of complex spatial or other features, nor do
they possess limbs or any means of complex communica-
tion. Yet, they are fully functioning, free-living animals
that can forage for food, escape predation, and effectively
navigate complex physical terrains and rich chemical en-
vironments. These are the elementary functions of ner-
vous systems that are common to most animals. Not
surprisingly, these tend to be heavily reliant on locomo-
tion. C. elegans and its neural control of locomotion offer us

a window to focus on the principles and mechanisms
behind these essential behaviors.

In the lab, the movement of C. elegans is studied predomi-
nantly on the surface of agar gels. Here, nematodes lie on
one side of their body (either left or right) and undulate in
the dorsoventral plane, propagating waves from head to tail
and pushing against the substrate to generate forward
movement. Occasionally, animals will reverse the direction
of their undulations to move backward. Backward move-
ment is often implicated either in escape or in reor-

ientation.To turn, animals caneither gently steerbybiasing
head and neck undulations, with the body following suit
[5e8], or turn more sharply, by deeply bending the body
into stereotypical omega or delta body shapes [9e11] and
emerging in a neworientation.Deepbends thatmediate an
escape response can generate a near 180� reorientation
[12], whereas other turns, typically observed during area-
restricted search, foraging, and chemotaxis, generate more
broadly distributed reorientations [10,11,13]. Studies in
other physical environments demonstrate the ability of the
animal to robustly adapt itswaveformandkinematics to the

surrounding environment [14e17].
Common topological structures across
nervous systems
The known structure of the C. elegans nervous system
provides an excellent starting point for linking neural
www.sciencedirect.com
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dynamics with behavior. While the size and organization
of vertebrate and nematode nervous systems are vastly
different, some broad principles appear to unify them,
including a hierarchical structure with high clustering
and a small-world organization [18]. Hierarchical struc-
ture refers to a multiscale architecture with nesting of
modular subnetworks, whereas high clustering corre-
sponds to local features, often manifesting in a large

proportion of connected three-node subcircuits [19e
22]. Studies also find similar topological features
connecting low-level (microcircuit) clusters or network
motifs with the modular high-level (brain-wide) archi-
tectures. Specifically, both small-world and rich-club
organization have been identified in the wiring of the
C. elegans nervous system [18,23] and high-level con-
nectivity in the human brain [24].

In small-world networks, most neurons can be reached
from every other neuron through a small number of

synaptic connections; the short distances or path
lengths between neurons are often mediated through
high-degree hub nodes. Rich-club networks contain hub
nodes that are themselves disproportionately inter-
connected, a topology that may serve to enhance the
robustness and resilience of certain network functions.
In both C. elegans and the human brain, these features of
network topology suggest a great deal of coordination
between specialized subcircuits. As in the human brain
[24], so in C. elegans, the rich club has been linked with
whole brain communication [25]; in C. elegans, however,
the prevalence of locomotion interneurons in the rich
club (Figure 1a) indicates a direct and strong coupling
between sensory information, global brain dynamics, and
motor behavior [25,26]. This is not surprising given the
importance of locomotion for the survival of the animal.

The mapped connectome and ability to target, manip-
ulate and record from identified neurons in C. elegans
have meant that most neuron classes are identified with
specific subcircuits and motor behaviors, including a
number of locomotion interneurons driving forward and
backward locomotion [25,27e30]. These locomotion

interneurons act as on/off switches to gate distinct for-
ward and backward locomotion circuits in the ventral
nerve cord (VNC). Importantly, all but one of the set of
rich-club neurons identified corresponds to locomotion
interneurons, pointing to the essential role of this circuit
for the survival of the animal.
From structure to function
Network theory offers tools for inferring function and
dynamics from topology. However, to learn about
C. elegans dynamics from this advancing mathematical
field, we must tread carefully. For example, it is
tempting to interpret the feed-forward network motif,
so prevalent in the C. elegans sensory system, as a logical
AND gate [19], but there is as yet no experimental
www.sciencedirect.com
demonstration of corresponding dynamics. Similarly, the
short path lengths, coupled with the small number of
hub nodes, are often interpreted as mediating rapid
communication and synchronization among nodes or
brain areas, but a recent simulation study shows that the
governing time scales of dynamics on the C. elegans
connectome are not a straight forward consequence of
either path length or in-degree (i.e. the number of

presynaptic connections) [31]. On the one hand, that
study suggests that the C. elegans circuit is in some sense
optimized for fast, coordinated control but on the other
hand that we still lack the network theoretic tools to pin
down the corresponding structureefunction relation. An
alternative approach is to consider the connectome as a
test bed for evaluating network theoretic tools and the
validity of their assumptions.

Controllability of the C. elegans nervous system is one
example of this alternative approach. Yan et al. [26,32]

use control theory to ask which muscles can be inde-
pendently controlled and which neural nodes and
pathways control specific muscles or specific motor be-
haviors, focusing on the locomotory response of the
animal to gentle touch. Within the framework of
the model assumptions and subject to the limitations of
the available connectome [2,3], the authors find that 89
of the 95 body wall muscles are independently
controllable. Furthermore, elimination of specific classes
of neurons only rarely leads to a reduction in the number
of independently controllable muscles, indicating that

this level of controllability is robust: In this model, only
12 classes of neurons appeared to reduce controllability,
and all but one of these loci of controllability are iden-
tified with the locomotor circuit [23,32].

Naively, the ability to independently control 89 body
wall muscles suggests the potential for rich neuronal
dynamics and a vast space of possible patterns of muscle
activation. In fact, although the worm exhibits a rich
repertoire of motor behaviors, these behaviors appear
highly coordinated and involve smooth propagation of
muscle activation along its slender body. Given the

strong assumptions of the model d linear dynamics
subject to a single governing time scale d the level of
controllability is best interpreted as an upper bound.
The apparent discrepancy with observed low-dimen-
sional behavior points to the importance of additional
factors in determining controllability and calling for
further advances in network control theory to cope with
these more general classes of dynamics [33].

One regime in which a linearity assumption may be
instructive is in the immediate neighborhood of a

bifurcation. Large-scale anatomically grounded compu-
tational models of the human brain best capture
empirical data of spontaneous resting activity when the
system operates at the critical point of an instability
[34]. In such models, intrinsic fluctuations
Current Opinion in Systems Biology 2019, 13:150–160
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Figure 1
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Insights from the C. elegans connectome into locomotion control. (a) The C. elegans rich club features nine classes of neurons (circles) that
are prominent in sensorimotor decisions and motor commands (adapted from Towlson et al. [23]). AIB neurons double as first-layer in-
terneurons, integrating over sensory inputs and as locomotion gates, synapsing onto VNC motoneurons as well as other locomotion in-
terneurons. RIA and RIB are second-layer interneurons combining thermo- and chemo-sensory integration functions with motor control, e.g.
through extensive outputs to head motoneurons. DVA head interneurons are proprioceptive and fine tune forward accelerations and reversals
during locomotion; they also regulate both head and tail touch circuits. Ventral nerve interneurons that gate forward (AVB) and backward (AVA,
AVD, and AVE) locomotion are innervated predominantly by anterior sensory as well as first- and second-layer interneurons. PVC interneurons
integrate mechano- and chemo-sensory inputs in the tail and help gate forward locomotion. Line widths represent the number of chemical
(black) and electrical (red) synapses. All self-connections denote intraclass synapses (between left and right neurons). (b) Simplified loco-
motion motor circuit of the C. elegans VNC, depicted as repeating neuromuscular units, has served as a basis for a number of computational
models. The model circuit depicts mirror images of forward and backward locomotor circuits. Motoneurons of classes VA, VB, VD (DA, DB, DD)
innervate ventral (dorsal) muscles. (c) One of six repeating neural units derived from the connectome (adapted from Haspel and O’Donovan
[67], updated by Gal Haspel, personal communication), including AS class motoneurons in addition to motoneuron classes in Figure 1b.
Neuronal placement is determined by their muscle connectivity, and the repeating structure was obtained by selecting sufficiently strong and
sufficiently repeated connections along the VNC. Gap junctions are purple. Line widths for chemical synapses represent contact strength.
VNC, ventral nerve cord.
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spontaneously trigger waves of activity d dynamical
excursions to one of multiple accessible attractor states
d whose form is largely dictated by the anatomical
connectivity. It is therefore in this rest state that the
anatomical and functional connectivities of the system
can be best explored simultaneously [34]. Whether the
same reasoning applies to C. elegans remains an open
question and could be explored further by explicitly

linearizing the dynamics near a critical point.

Support for the crossing of a bifurcation as the worm
transitions from quiescence to arousal comes from
brain-wide imaging studies of C. elegans [35]. Brain-wide
imaging has now been performed both at rest and in
freely moving animals [36e38], revealing complex
patterns of both spontaneous and evoked activity of
head neurons [36]. Moreover, Nichols et al. [35]
identify global attractor states corresponding to
different motor programs (and a fixed state for quies-

cent behavior), generalizing the concept of gating
different motor behaviors through a single locomotion
interneuron to brain-wide distributed networks, again
supporting a picture of competition between a set of
attractor states.

One might expect the highly recurrent topology of the
circuit to give rise to sustained oscillations under
external stimulation. However, simulations of a virtual
connectome subject to stimulation of one node at a time
[39] yielded stationary network states except under very

strong current input to a small number of neurons.
Importantly, this and follow-up simulation models also
assume linear neurons with a single governing time scale
[39,40]. Any nonlinearities in these models arise due to
the synaptic and gap junctional connectivity. Therefore,
if, as these models suggest, the structure of the
connectome does not lend itself to spontaneous oscil-
lations, this offers a further indication of the importance
of nonlinearities in generating oscillations in C. elegans.
Top-down insight from behavior
The aforementioned connectome-wide simulations
[39,40] suggest that whatever the fine control of the
neural circuit, the number of stable global modes
supported by this circuit is low. A complementary
approach is to consider the postural modes of the animal.
Assessing free behavior is particularly interesting as it is
not limited to stable states. Thus, it may initially seem
surprising that nearly all postures of this nematode on
agar can be well approximated by a very low (four to five)

dimensional space [11,41]. Furthermore, the dynamics of
these postures can be mapped to a small number of
attractor states, corresponding to distinct classes of motor
behaviors, such as forward movement, backward move-
ment, and turning. Together, these results point to strong
organizing principles of animal behavior: Whereas the
anatomical connectome may point to up to 89 muscles
www.sciencedirect.com
that may be independently controlled, suggesting un-
fathomable complexity, the observed repertoire of
behavior is in fact very limited, occupying specific man-
ifolds within a low-dimensional ‘state space’.

The ability to describe up to 95% of worm postures using
a small number of principle components, dubbed
eigenworms [11,41], has proved to be a powerful tool in

theC. elegans community.Observing behavior through the
lens of eigenmodes has led to the identification of a new
turning behavior dubbed delta turns that occur inde-
pendently of omega turns (stereotypical of the escape
response), suggesting that these distinctmotor programs
are produced by distinct pathways. Eigenworms and
other low-dimensional representations of posture have
been used for genetic fingerprinting of different wild-
type and mutant C. elegans strains [11,42,43]. Another
application has been a powerful visualization tool for
neural recordings [25,38], revealing a tight correspon-

dence between global neural and behavioral states
[25,38]. Finally, Li et al. [44] recently applied a machine
learning approach to synthetic posture and trajectory
generation; a neural network, using a brief seed of pos-
tures as input (in dimensionally reduced form), gener-
ated worm postures that were subsequently used to
generate realistic trajectories in space. Such results lend
further credence to the conjecture that low-dimensional
neural dynamics can account for observed motor behav-
iors. Furthermore, the ability to synthetically phenocopy
trajectories of different mutant strains provides a useful

tool not only for genetic fingerprinting but potentially
also for mechanistic models of neural control.
The locomotor circuit
The small size and relative simplicity of the C. elegans
connectome, together with powerful genetic, molecular,

and optical tools, allow for a detailed analysis of neuronal
connections and functions [1e3,45,46]. The VNC runs
along the body and contains eight classes of motoneu-
rons, each with characteristic anatomy, that drive ventral
and dorsal body wall muscles [27,47]. Early inspection of
the connectivity highlighted key departures from
familiar network motifs in other locomotor circuits [48e
51]: The circuit in the VNC is dominated by excitatory
neurons and gap junctions [52] rather than inhibition,
raising questions about the mechanisms of pattern gen-
eration. In contrast, models of the head circuit [53,54]

and recent experimental reports [55,56] indicate that
the head locomotion circuit is dominated by inhibition.

Systematic neuronal ablations and more recent in vivo
calcium imaging and optogenetic experiments associ-
ated distinct classes of motoneurons with distinct motor
behaviors [12,27,57e60]. Of the eight classes of moto-
neurons in the ventral nerve cord, forward movement
(consisting of dorsoventral activation that flows from
head to tail) requires VB and DB cholinergic excitatory
Current Opinion in Systems Biology 2019, 13:150–160
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motoneurons (B-type for short, Figure 1). The backward
locomotion circuit approximately mirrors the forward
circuit, supporting the flow of activation from tail to
head, via VA and DA (A-type) excitatory motoneurons.
The only g-amino butyric acid (GABA)ergic moto-
neuron classes in the VNC, VD, and DD modulate un-
dulatory locomotion but do not appear essential for
crawling [51,57,60,61]. AS cholinergic motoneurons

contribute to locomotion, but recent experiments sug-
gest that they are not essential for rhythm generation in
either forward or backward movement [60], and VC
cholinergic motoneurons have been implicated primarily
in egg laying [59].

With this class assignment in hand, early descriptions of
the VNC sought to view it as a set of repeating subcir-
cuits. As the number of neurons differs from class to
class, a parsimonious simplified structure was proposed,
with a single neuron of each class per repeating unit

[1,27,47] (Figure 1b). Although computational models
using such simplified wiring diagrams have yielded sig-
nificant insights into pattern generation and neuro-
mechanics, [48,50,51,62e66], the reduced complexity
of repeating structures risks the loss of key degrees of
freedom that underpin behaviorally important forms of
neural dynamics, especially if those involve previously
overlooked classes of motoneurons that have a role in
distributed computation. In particular, the apparent
inability of such minimal representations to endoge-
nously generate distributed locomotory patterns moti-

vated a systematic connectomic analysis that accounted
for the varying cardinality of each class [67,68]
(Figure 1c). The resulting set of repeating units also
include a previously uncharacterized motoneuron class
(AS motoneurons), suggesting a role in the control of
locomotion.
Feed-forward and feedback models of
locomotion
The elegant sinuous gait presents three fundamental
questions [65,69]: How are rhythmic oscillations
generated? How are they coordinated across opposite
(dorsal and ventral) muscles? And, how is their propa-
gation coordinated along the animal? Recent experi-
ments provide the first hints that B-type neurons in the
forward locomotor circuit may support distributed os-
cillations along the body [61,64], with possible coupling

to a pacemaker in the head [61,64]; meanwhile, a
number of theoretical studies have asked whether pe-
ripheral control may provide a pathway for pattern
generation [14,40,51,63]. Whether centrally or periph-
erally generated, there is strong experimental evidence
that the entrainment or phase coordination of these
oscillations requires proprioceptive feedback [61,64,70].

As noted previously, connectome-based disembodied
models with linear neurons [39] have struggled to
Current Opinion in Systems Biology 2019, 13:150–160
generate fictive oscillations. In contrast, Olivares et al.
[71] considered bistable neural dynamics in a simplified
connectome [67,68] (Figure 1c). This model exhibits
distributed oscillations that are generated by three
classes of motoneurons [71], including the newly con-
jectured AS motoneurons [67]. Importantly, however,
the oscillatory motifs (obtained in this model through an
evolutionary search algorithm) rely on extensive inhi-

bition. This work reinforces the difficulty of generating
endogenous oscillations without either pacemakers or
sensory feedback. As a follow-up to this modeling study,
direct recordings of AS activity appear to rule out their
role in pattern generation, instead implicating them in
the locomotion interneuron gating circuit and in
modulating the kinematics of undulations [60].

Pattern generation is much more easily achievable in
computational models of proprioceptive control [49e
51,63,72e74]: Local bending of one side of the body

triggers stretch activation of the opposite B-type mo-
toneurons. Either posteriorly facing [75] or anteriorly
facing [64,70] proprioceptive fields can mediate robust
undulations when coupled to a pacemaker in the head.
But, body undulations can be generated in models even
in the absence of head oscillations [51,63]. Bryden and
Cohen [50] demonstrated that adding local to distal
proprioception enhances the robustness of undulations,
and Boyle et al. [51] and Denham et al. [63] showed
that local proprioception is sufficient for crawling on
agar-like substrates, but not for swimming in low vis-

cosity liquids. Together, these models predict that the
spatially extended field manifests behaviorally in more
dilute media. As we see below, in these models, the
frequency and wavelength of undulations are tightly
coupled through the proprioceptive integration of the
body posture which, in turn, depends on the time taken
by the biomechanical body to bend in its physical
environment.

Interestingly, proprioceptively driven models have long
required strong nonlinearities in B-type excitatory mo-
toneurons [49e51,64,65,76]. Bryden and Cohen [50]

required strongly nonlinear stretch receptor conduc-
tances in their model of B-type motoneurons, effectively
yielding on-off (resting and upstate) membrane poten-
tials. Following this work, direct electrophysiological
recordings gave the first direct evidence of bistable
motoneurons in C. elegans (the RMD neurons in the
head) [28], inspiring Boyle et al. [51] to consider bist-
ability in B-type motoneurons in their model. More
recently, electrophysiological recordings provided direct
evidence for bistability in both A- and B-type moto-
neurons [77]. The argument for bistability in B-type

motoneurons is strengthened by intuition from engi-
neering principles: First, the hysteresis inherent in the
proposed switching mechanism provides robustness to
fluctuations; second, the distinct on/off states allow for
efficient alternating action of opposing muscles [51,65].
www.sciencedirect.com
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A further prediction that arose from the model of Boyle
et al. [51] is a resetting mechanism that coordinates
robust antiphase activation of dorsal and ventral
muscles. Whereas the conventional intuition is that D-
type inhibitory motoneurons suppress muscles of the
noncontracting side, this model suggests an additional
rhythm generating role for D-type neurons through the
inhibition of excitatory motoneurons on the ventral side

(Figure 1b). This requirement arises directly from the
bistability condition in B-type neurons: Without ventral
inhibition, the bistable switch could lead to pairs of
ventral and dorsal motoneurons being on (or off) at the
same time, thus disrupting or even freezing the undu-
latory wave. Inhibition on one side of the body suffices
to avoid such a failure, by imposing dorsoventral coor-
dination. Importantly, the ability to discern this
neuronal reset depends on the biomechanics of the
locomotion: The model predicts that the contribution of
neural inhibition would be masked on agar but has

growing importance for rapid, swimming undulations in
less viscous fluids.

How do forward and backward locomotion patterns
differ? Backward locomotion is a rarer transient behavior,
lasting at most a few undulations [10]. A combination of
studies including optogenetic, electrophysiological, and
calcium imaging techniques ascribe this effect to an
imbalance in the locomotion interneuron circuit
[55,60,78,79]. Haspel and O’Donovan [67,68] give the
first hint of subtle but systematic asymmetries between

the forward and backward microcircuits of the VNC.
Recent experiments point to slow pacemaking A-type
motoneurons in the backward circuit [80]. The picture
that emerges assigns three roles to A-type neurons: in
gating [64,78,79], in endogenous pattern generation
[80], and in mediating proprioceptive feedback [80].

How does the head control and modulate undulations
along the body? While neuromechanical models of the
body appear fully capable of realistic undulations
[51,63], the circuit that orchestrates, modulates, and
switches between different motor programs resides in

the head [25,35,36,46]. During forward locomotion, the
body clearly follows the head, and biased head oscilla-
tions that track sensory inputs can thus steer the loco-
motion [7,8,72]. Omega turns are similarly initiated in
the head [11,12] but require the body to actively follow,
for example, in one model, through a traveling wave of
suppressed proprioception [74]. In a separate neuro-
mechanical model, a worm lacking a VNC circuit can
still follow the head on agar, although severely uncoor-
dinated [73]; this model relies on proprioceptively
driven oscillations generated by SMD and RMD head

motoneurons. Understanding the interface between
head and body circuits is complicated by the possibility
of mismatched frequencies and phases between head
and body oscillations [36,61]. Proprioceptive mecha-
nisms are a strong candidate for coordinating the head
www.sciencedirect.com
and the body. Dorsal SMD (SMDD) neurons (impli-
cated in steering) have now been experimentally
demonstrated to be proprioceptive [8]. Spatially
extended neural processes (posteriorly facing in SMD
and anteriorly facing in the anterior-most VB motoneu-
rons) may inform the proprioceptive range and mecha-
nisms of such coordination [1,4].
Biomechanical and neuronal substrates of
gait adaptation
When C. elegans is placed in a low viscosity liquid, its
elegant, slow and sinuous crawling gait is replaced by
rapid, long wavelength, and high amplitude undulations,

dubbed swimming [14,81]. Berri et al. [14] showed that
swimming and crawling constitute a single biomechan-
ical gait that is smoothly modulated as a function of the
resistivity of the environment [15,62,65,82,83]. Boyle
et al. [51] demonstrated that this form of gait modula-
tion is a natural outcome of proprioceptively controlled
locomotion: A single fixed-parameter and ‘headless’
model worm can produce both swimming and crawling,
as well as undulations in intermediate Newtonian, linear
viscoelastic and obstacle-rich environments. This form
of gait modulation can be summarized by a smooth

relationship between kinematic parameters: The faster
the undulations, the longer the wavelength and ampli-
tude of undulations along the body.

Key to understanding the interplay between the neural
dynamics and biomechanics underpinning this modula-
tion are the material properties of the body. In the case
of the worm, dissecting the relative roles of essential
contributing factors has relied extensively on biome-
chanical models, often iterating closely with experi-
ment. Contributing factors include internal pressure
and bulk elasticity [84], elasticity of the cuticle and

muscles [15,85e89], internal viscosity of the body
[85,87,88], and the activity-dependent regulation of
muscle tone [90]. Some models (with various levels of
abstraction) have also used the worm as a platform to
characterize liquid flow and viscoelastic properties of
Newtonian and complex fluids [14,82,91e93]. The
aforementioned approaches to characterizing material
and fluid properties require only a model of the body and
surrounding environment (without neural control) to
solve the equations of motion. For example, by period-
ically forcing the mechanical model with different

waveforms and simulating the dynamics in different
fluid environments, it can be shown that the modulation
of waveform as a function of fluid viscoelasticity pro-
vides important kinematic advantages (minimizing
power and enhancing locomotion speed) [89].

An important test of biomechanical models lies in their
capacity to advance our understanding through the
integration of neural control and biomechanics in a
single, whole animal model. At the software level, this
Current Opinion in Systems Biology 2019, 13:150–160
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calls for flexible interfaces between neural, muscular,
and mechanical components of the model to support
plug-and-play experimentation with different forms of
neural control [63]. Furthermore, as the number of
control parameters grows in a model, computational ef-
ficiency becomes of paramount importance. Several of
the models mentioned previously have the capacity to
support a variety of simulation experiments, including

extensive parameter sweeps, leading to fundamental
insights into this system. For example, Denham et al.
[63] revisited the constraints on material properties in a
model of proprioceptively driven control (akin to
Ref. [51]) integrated into a viscoelastic shell model
[89]. The model demonstrates how body elasticity and
external drag reduce to a single universal parameter that
describes the kinematics of the motion in Newtonian
media and to two parameters in the case of linear
viscoelastic media. Furthermore, the model predicts
that only a limited range of effective body elasticity can

support the full range of observed gait modulation.
Importantly, the capacity of this neuromechanical model
to address gait modulation benefits from the exact
mathematical formulation of the model [89], departing
from previous formulations that linearize the equations
around a point in parameter space.

Integrated neuromechanical models also provide a
framework to test hypotheses about neural control and
to identify candidate targets of internal modulation. For
example, fish can independently alter activation fre-

quency and duty cycle of centrally generated rhythms,
but only some neural pathways of such modulations have
been identified. C. elegans too can modulate its locomo-
tion speed and some kinematic parameters. Denham
et al. [63] asked what gait modulation would look like
under proprioceptive control, focusing on the three
natural targets of modulation: a change in elasticity due
to the modulation of muscle tone, the activation
threshold of B-type motoneurons, and the spatial range
of the proprioceptive field. Targeting locomotion in-
terneurons AVB (or AVA) or the AVB-B (or AVA-A) gap
junctions in the forward (or backward) circuit directly

maps to a modulation of threshold in this model.
Following the aforementioned reasoning, the internal
modulation of mechanical properties such as body
elasticity mirrors that of environmentally (or externally)
imposed gait modulation, yielding a positive frequencye
wavelength correlation. In contrast, internal modulation
of neural parameters gives rise to the opposite relation:
The higher the frequency, the lower the wavelength of
undulations. This signature of internal gait modulation
in the form of an inverse wavelengthefrequency relation
is specific to proprioceptive pathways of control and is

therefore unlikely to be obtained by a modulation of a
central pattern generator. The result therefore lends
itself to a number of direct experimental predictions
that may shed light on the respective roles of central and
Current Opinion in Systems Biology 2019, 13:150–160
peripheral control in C. elegans locomotion in the forward
and backward circuits and may help identify neural
pathways and targets for their modulation. For example,
if A-type (backward locomotion) but not B-type (for-
ward locomotion) neurons act as pacemakers, the mod-
ulation of their respective circuits should yield distinct
kinematic signatures.
Discussion and future outlook
Animal locomotion is a fascinating playground for
exploring the interplay among the genetic, molecular,
and biophysical contributions in neurobiology; the
structure, function, and dynamics of neural circuits;
and the biomechanics of motor behavior. The relative
simplicity of C. elegans has allowed for an unprece-
dented level of characterization and an ever-growing
experimental toolkit; together, these have facilitated
interdisciplinary discourse, leading to significant ad-
vances in our understanding of the locomotion
system and a window into understanding the ‘state of

mind’ of the worm and organization of its nervous
system more generally. This review has highlighted the
contributions of theory and data-driven models. A
recurring thread in this review has been to highlight
how different formulations of the problem can serve,
not always to generate testable predictions but rather
to allow for the testing and, in some cases,
falsification of model assumptions.

The neurodynamics of the C. elegans head circuit maps
onto locomotor states and is well described by compe-
tition and transitions among a small number of attrac-

tors. Transitions among motor programs are clearly
evident in the switching of locomotion interneuron
states that drive the motor circuits along the body. The
most prevalent motor behaviord forward locomotiond
is well described by a single biomechanical gait that
adapts smoothly and continuously to the external
physical environment. Internal regulation of muscle
tone and modulation of the neural circuit allow for an
impressive range and specificity of kinematic control
across a range of motor programs. There is now
compelling evidence for proprioceptive control of the A-
and B-type excitatory motoneurons of the VNC,

although specific stretch receptor proteins are yet to be
identified and characterized. Recent experiments are
also beginning to unravel the possible roles of distrib-
uted pattern generation along the body. The interplay
between central and peripheral control is therefore an
exciting topic of ongoing and future investigation.
Unlike the VNC, the head circuit appears to be domi-
nated by inhibition, and the connectome suggests a
number of candidate circuits for central pattern gener-
ation. As data accumulate, models are beginning to
address the sensorimotor control of oscillations in the

head, the role of proprioception, and the coordination
between the head and the body.
www.sciencedirect.com
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This review has focused on the connectome, neural
dynamics, and behavioral aspects of locomotion,
excluding the large body of research on the genetic
specification of behavior [94], neurophysiology, and
biophysical properties of neurons and muscles
[52,78,79] and exciting advances in our understanding
of extrasynaptic communication networks [95], with
their contributions to remodeling of neurons and neural

circuits.

Rapidly growing computational power, tools, and re-
sources are facilitating a step change in the generation
and analysis of big data, including static networks,
behavioral, and brain-wide imaging data, or high-
throughput simulation. Simulation frameworks such as
Openworm [96e98] and Si elegans [99,100] are pushing
the computational limits. Aimed principally at
emulating the biological system, these frameworks are
designed to provide unprecedented anatomical and

molecular level detail of the biophysics and mechanics
and are already leading to simulations of sensorimotor
behavior in embodied, situated, and freely behaving
model worms [100]. The plurality of modeling frame-
works and data will allow a variety of modeling ques-
tions to be addressed, benefiting from validation across
different platforms. Future progress is therefore
increasingly relying on plug-and-play software envi-
ronments, in which anatomically or biophysically
detailed model components d and data d can be
seamlessly switched on or off or interchanged with

simpler, theory- or hypothesis-driven models.
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