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abstract: We explore the evolution of delayed, size-dependent re-

production in the monocarpic perennial Onopordum illyricum, using

a range of mathematical models, parameterized with long-term field

data. Analysis of the long-term data indicated that mortality, flow-

ering, and growth were age and size dependent. Using mixed models,

we estimated the variance about each of these relationships and also

individual-specific effects. For the field populations, recruitment was

the main density-dependent process, although there were weak effects

of local density on growth and mortality. Using parameterized growth

models, which assume plants grow along a deterministic trajectory,

we predict plants should flower at sizes approximately 50% smaller

than observed in the field. We then develop a simple criterion, termed

the “1-yr look-ahead criterion,” based on equating seed production

now with that of next year, allowing for mortality and growth, to

determine at what size a plant should flower. This model allows the

incorporation of variance about the growth function and individual-

specific effects. The model predicts flowering at sizes approximately

double that observed, indicating that variance about the growth curve

selects for larger sizes at flowering. The 1-yr look-ahead approach is

approximate because it ignores growth opportunities more than 1

yr ahead. To assess the accuracy of this approach, we develop a more

complicated dynamic state variable model. Both models give similar

results indicating the utility of the 1-yr look-ahead criterion. To allow

for temporal variation in the model parameters, we used an indi-

vidual-based model with a genetic algorithm. This gave very accurate

prediction of the observed flowering strategies. Sensitivity analysis
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of the model suggested that temporal variation in the parameters of

the growth equation made waiting to flower more risky, so selected

for smaller sizes at flowering. The models clearly indicate the need

to incorporate stochastic variation in life-history analyses.

Keywords: individual-based model, genetic algorithm, dynamic state

variable model, von Bertalanffy equation, delayed reproduction,

monocarpic perennial.

Age at flowering is a critical component of plant fitness,

and indeed, it has been argued that fitness is more sensitive

to changes in this character than any other (Stearns 1992).

As a result of the obvious link with fitness, many theo-

retical studies have explored the evolution of age and size

at maturity (Cole 1954; Charnov and Schaffer 1973; Ca-

swell and Werner 1978; Bell 1980; Young 1981; Klinkhamer

and de Jong 1983; Ziolko and Kozlowski 1983; Kachi and

Hirose 1985; Hirose and Kachi 1986; Roff 1986, 1992; de

Jong et al. 1987; Stearns 1992; Charnov 1993; Kawecki

1993; Charlesworth 1994; Kozlowski and Janczur 1994).

These studies are designed to identify the selection pres-

sures and trade-offs that operate and so make predictions

about the size and age at which organisms should start

reproducing; such predictions can be very accurate (Roff

1984; Mangel 1996).

The main benefits of early reproduction are a reduced

risk of dying before reproduction and shorter generation

time (Cole 1954; Charnov and Schaffer 1973; Roff 1992;

Stearns 1992). Other things being equal, reductions in

mortality always increase fitness, whereas shorter gener-

ation times only increase fitness under certain circum-

stances and, in particular, may have no effect on fitness

in density-regulated populations (Hastings 1978; Bulmer

1985; de Jong et al. 1987; Charnov 1993; Charlesworth

1994). Whether generation time influences fitness depends

on where the density dependence acts in the life cycle,

making the quantification of density-dependent processes

critical when applying life-history theory (Kawecki 1993;

Mylius and Diekmann 1995). The costs of early repro-

duction are reduced fecundity and/or quality of offspring
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(Bell 1980; de Jong et al. 1989; Roff 1992; Stearns 1992).

In addition to the benefits that accrue through growth and

reproduction, delaying reproduction may provide an ad-

vantage via bet hedging. This occurs when members of a

cohort flower in different years, and there is temporal

variation in the quality of the environment for growth and

reproduction (Klinkhamer and de Jong 1983; de Jong et

al. 1989).

Several previous studies have attempted to assess the

selective advantages of delayed reproduction in plants (Ca-

swell and Werner 1978 ; Lacey et al. 1983; Reinartz 1984;

Young 1984, 1990; Kachi and Hirose 1985; Kelly 1985b,

1989b; de Jong et al. 1989). Most of these studies were

designed to show that delayed flowering was adaptive,

whereas the studies of Kachi and Hirose (1985), de Jong

et al. (1989), and Wesselingh et al. (1997) attempted to

predict the optimal size and age at flowering. By maxi-

mizing the intrinsic rate of increase, r, Kachi and Hirose

predicted that Oenothera glazioviana should have a thresh-

old rosette diameter for flowering of about 16 cm, which

is close to the median size at flowering observed in the

field (14 cm). In addition, they found that size-dependent

flowering strategies had higher rates of increase, r, than

age-dependent flowering strategies (Kachi and Hirose

1985). For Cirsium vulgare and Cynoglossum officinale, the

predicted optimal minimum weight for flowering was

about 5 g, whereas in both species most plants flowered

at weights between 1 and 2 g (de Jong et al. 1989). The

discrepancy here, in part, reflects the relatively flat rela-

tionship between fitness and the minimum weight for

flowering, as all minimum flowering weights in the interval

2–10 g had similar fitness; this makes accurate prediction

difficult (Mangel and Clark 1988; de Jong et al. 1989). This

study used the long-term geometric growth rate as a mea-

sure of fitness, which assumes density dependence does

not operate and so penalizes late reproduction through

decreased population growth. The discrepancy between

observed and predicted weights would have been larger

had density-dependent processes been included in the

model (de Jong et al. 1989). A later study predicted the

optimal minimum weight for flowering in C. officinale,

using a range of different models (Wesselingh et al. 1997).

All the models correctly predicted the rank order of flow-

ering sizes in different habitats and gave reasonable quan-

titative prediction of the range of flowering sizes (Wes-

selingh et al. 1997).

In this article, we first describe the size- and age-specific

demography of Onopordum illyricum monitored at two

sites over a 6-yr period. The analysis allows the quanti-

fication of systematic and stochastic variation in demo-

graphic rates with age and size. We then develop a suite

of models that predict the size and age at flowering. Using

the models, we assess how different types of variability

influence the evolution of flowering strategies. The sim-

plest models predict the size and age at flowering, which

maximizes seed production, assuming a constant environ-

ment and a deterministic growth trajectory. We compare

these predictions with more complex models that include

individual-specific heterogeneity in mortality and scatter

about the growth curve. These models are of two sorts:

the first uses a simple 1-yr look-ahead criterion to deter-

mine at what size plants should flower, while the second

is based on a dynamic state variable approach (Mangel

and Clark 1988). In order to explore the effects of temporal

variation in model parameters, we developed individual-

based models, which incorporate a simple, genetic algo-

rithm (Sumida et al. 1990). In these models the surface,

which describes the relationship between the probability

of flowering and plant size and age, was allowed to evolve.

These models have the advantage that one does not have

to assume a particular measure of fitness. The models

indicate both the need to include stochastic variation in

life-history analyses and that different types of variability

can have qualitatively different effects on the direction of

selection. The models also demonstrate that extremely ac-

curate prediction of life-history phenomena is possible,

given detailed demographic data.

The Biology of Onopordum illyricum

Onopordum species are thistles of rough-grazing pasture

distributed largely throughout Mediterranean and semi-

arid areas of Eurasia and North Africa. Onopordum illyr-

icum is the most widespread species throughout the west-

ern Mediterranean region. Like other Onopordum species,

O. illyricum behaves as a biennial or facultative mono-

carpic perennial both within (Briese et al. 1994) and out-

side its native range (Groves et al. 1990; Pettit et al. 1996).

In Mediterranean pastures, largely dominated by winter

annuals, O. illyricum lives for several years, and the above-

ground parts of nonflowering individuals die back during

the summer months. Onopordum illyricum is one of 36

thistle species that has become a serious economic weed

outside its native range (Sheppard 1996), and in eastern

Australia, together with Onopordum acanthium, it infests

more than a million ha (Briese et al. 1990). The life-history

characteristics of O. illyricum are similar to other rosette-

forming pasture plants. Reproduction only occurs by seed,

and the relatively large seeds form a seed bank. Seeds have

an initial short-term innate dormancy, following which

the majority of seeds acquire induced dormancy, rendering

them incapable of immediate germination (Young and

Evans 1972; Cavers et al. 1995). This seed bank may persist

for at least 20 yr (Goss 1924) but more commonly has a

half-life of 2–3 yr (Allan and Holst 1996). Early seed bank

decay appears to be the result of germination or mortality
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Figure 1: Fluctuations in the density of (A) rosettes, (B) recruits, and (C) total rosette area. Solid line, La Crau; dashed line, Viols. In the calculation

of total rosette area, we assumed that plants were rectangular and that there was no overlap of rosettes. This figure is therefore the maximum rosette

area occupied.

from the germinable fraction of the seed bank (Cavers et

al. 1995), which suggests that the seed bank decay rate is

likely to decrease with time (Rees and Long 1993).

Data Collection

Population data on Onopordum illyricum were used from

two sites in southern France to parameterize the models.

One site was a horse- and cattle-grazed pasture near Viols-

en-Laval (Herault) surrounded by typical garrigue vege-

tation, while the other was in less productive, sheep-grazed

semi-arid steppe habitat in the Plaine du Crau (near St

Martin-du-Crau, Bouche-du-Rhone). Both sites contained

a relatively dense population of O. illyricum, and a core

area (40 m) was marked out within each popu-m # 40

lation. Twenty -m quadrats were distributed at ran-1 # 2

dom within each area, and the position and perpendicular

diameters (the longest diameter and its perpendicular di-

ameter in cm) of each plant were recorded on visits in

August, November, March, and May. Sampling at the sites

took place from August 1987 until August 1992, a period

covering the complete life cycle of the first recorded seed-

ling cohort (November 1987).

Between June and August of each year, additional visits

were made to collect and to dissect all capitula produced

by plants within the quadrats. Receptacle surface area was

measured, and all apparently viable seeds were counted

within a few days of collection. Seeds were returned as

soon as possible to the quadrat from which they were

collected. Returned seeds were shaken from a height of

1.5 m across the general quadrat area in an attempt to

simulate natural dispersal. The O. illyricum annual min-

imum seed bank was recorded across each core area from

50 randomly placed 5-cm-diameter # 10-cm-deep soil

cores taken just before seed production in June/July in

each year. Seeds were washed from the soil cores using

sieves, and the extracted seeds were tested for germinability

by placing them in moist Petri dishes and then for viability

by cutting to examine for a healthy endosperm.

Data Analysis

In most of the analyses, we have focused on the period

1988–1991 inclusive; the 1987 data were excluded because

sizes were not recorded and, in the 1992 data, death could

not be differentiated from seasonal disappearance. How-

ever, if the 1987 or 1992 data provided important infor-

mation, they were included in the analysis. This, plus the
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Figure 2: Frequency distributions for maximum rosette area (cm2) at (A) La Crau and (B) Viols for all plants and, for reproductive plants only, at

(C) La Crau and (D) Viols.

fact that some plants were not sized in particular years,

leads to unavoidable differences in the numbers used in

the various analyses.

Selecting a state variable in the construction of the

model depends on several factors, including ease of mea-

surement, biological relevance, and predictive ability. In

this study, we used the maximum rosette area recorded at

the November, March, or May census (most plants had

died back by the August census). Preliminary analysis sug-

gested that this variable was the most accurate predictor

of plant fate (i.e., death or flowering). It was a better

predictor of fate than rosette area at a particular census

because it reduced the effects of differences in seasonal

phenology between years. However, alternative analyses

(not presented) using rosette area at a particular census

gave very similar results. In all analyses, where variables

were log transformed, natural logarithms were used.

We first provide some simple descriptive analyses of the

age and size structure of the populations and how they

change through time. The dependence of the probability

of dying, the probability of flowering, and the probability

of plant size next year on current size and age is then

analyzed. Various density-dependent processes are then

quantified before exploring a range of models designed to

predict when and at what size plants should flower. A list

of the parameters estimated and the variables used in the

subsequent models is given in appendix A.

Changes in Numbers, Recruitment, and

Area through Time

Total rosette population size fluctuated by a factor of !3

(2.7) at both sites in the period 1988–1992 (see fig. 1);

the total area occupied by rosettes fluctuated by a factor

of !1.8 over the same period. Neither the number of ro-

settes nor the total area occupied showed any obvious

trends with time. In 1988, there were 140 and 136 plants

at La Crau and Viols, respectively, while in 1992 there were

155 plants at La Crau and 144 at Viols. The number of

recruits recorded at La Crau fluctuated from a low of 31

in 1991 to a maximum of 208 in 1990 (a 6.7-fold fluc-

tuation), while at Viols the low was 34 in 1992 and the

maximum was 311 in 1989 (a 9.1-fold fluctuation).
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Figure 3: Fitted relationship between the probability of death, plant size,

and age for the average mortality model at La Crau. Parameter estimates:

, , ; at the Viols site, . In addition,m = 1.42 m = 21.08 m = 1.09 m = 2.720 s a 0

we have assumed that the individual-specific intercept term, ui, is equal

to 0. This corresponds to the average of the ui distribution.

Age Structure of the Population

Straightforward calculation of the proportion of individ-

uals in each age class or average age is potentially mis-

leading because individuals could only be aged by follow-

ing them through time. Hence, we allowed for differential

recording by calculating the proportion in each age class

out of the total number of plants where that age class

could have been observed. The resulting distribution was

normalized by dividing each term by the total. With this

procedure, the average age was 1.9 yr at La Crau and 1.93

yr at Viols. A simple alternative to this procedure is to use

only the 1992 data, where ages 1–5 could be observed.

With just the 1992 data, the average age at La Crau was

2.36 yr and at Viols 2.63 yr.

Size Structure of the Population

The frequency distribution of maximum rosette area for

the total population and those plants that flowered is given

in figure 2. In all cases, the distributions were skewed with

a long tail to the right. The average maximum rosette area

for all plants in the La Crau population is 325 cm2; while

for flowering plants it is 1,736 cm2. At Viols, the average

maximum rosette area is 470 cm2 for all plants and 2,208

cm2 for flowering plants. The average size of flowering

plants, log transformed, varied significantly between sites

( , , ).F = 9.1 df = 1, 180 P ! 0.003

Relationships between Mortality, Flowering,

Growth, and Plant Size and Age

Mortality. Numerous studies have shown that plant fate

can be affected by both size and age (Werner 1975; Baskin

and Baskin 1979; van der Meijden and van de Waals-Kooi

1979; Gross 1981; Hirose and Kachi 1982; Gross and Wer-

ner 1983; van Baalen and Prins 1983; Reinartz 1984; Klink-

hamer and de Jong 1987; Lacey 1988; Kachi 1990; Bullock

et al. 1994; Wesselingh et al. 1994; Klinkhamer et al. 1996;

Wesselingh and Klinkhamer 1996). The data collected rep-

resent a longitudinal study where individuals are followed

through time. The statistical analysis of this type of data

has developed rapidly in the past few years (see Diggle et

al. 1996). In the analysis of mortality and flowering, we

used random effects models that allow the regression co-

efficients to vary from one individual to the next. This

variability, estimated by the parameter jd, reflects natural

heterogeneity due to unmeasured factors. Specifically, for

plants, this variability may reflect differences in the local

competitive environment, abiotic conditions, levels of her-

bivore or pathogen attack, or genetic differences between

plants. A brief description of these methods, which are

not widely used in ecology, is given in appendix B.

We explored two types of model: the first allowed yearly

variation in the parameter estimates and is referred to as

the “yearly mortality model,” while the second ignored

yearly variation and is referred to as the “average mortality

model.” Generalized linear models were initially con-

structed, assuming binomial errors and a logit link func-

tion, with a stepwise procedure in S-Plus. This uses an

exact calculation of the Akaike Information Criterion

(AIC) statistic to determine whether terms should be

added or deleted from the model (Becker et al. 1988; Ven-

ables and Ripley 1997). This statistic is defined as

AIC = 22 maximized log likelihood

1 2 number of parameters,

and so penalizes models that either describe the data

poorly or have a large number of parameters. The resulting

models were explored further in SABRE, a package de-

signed for fitting regression models incorporating individ-

ual-specific heterogeneity (Stott et al. 1996). In all analyses,

plant size was log transformed.

In the average mortality model, the main effects of size

( , ), age ( , ), and2 2x = 341.3 P ! 0.0001 x = 25.2 P ! 0.00011 1

site ( , ) were all highly significant.2x = 61.5 P ! 0.00013

There was also evidence of significant individual-specific

heterogeneity ( , , ). None of thej = 0.82 z = 2.2 P ! 0.02d

interaction terms was statistically significant. The proba-

bility of death decreased with plant size but increased with

plant age (fig. 3). However, in a model with only age and
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Figure 4: Fitted mortality curves for first-year plants at (A) La Crau and (B) Viols. The solid line is the average model, the dotted lines the yearly

model. Parameter values are given in table 1; in addition, we have assumed the individual-specific intercept term, ui, is equal to 0.

site as explanatory variables, the chance of a plant dying

decreases with age because larger plants are generally older.

Only after size effects have been removed was there an

increase in the chance of death with age.

In the yearly mortality model, the most important pre-

dictor of mortality was plant size ( , );2x = 387.3 P ! 0.00011

the next most important term was the site by year inter-

action ( , ). The effect of age was also2x = 60.0 P ! 0.00013

highly significant ( , ). None of the2x = 15.2 P ! 0.00011

other interaction terms was statistically significant. The

fitted relationships for the yearly model are given in figure

4. The individual-specific heterogeneity, jd, was highly sig-

nificant ( , , ; for other parameterj = 1.3 z = 3.02 P ! 0.002d

values, see table 1).

To see how the individual-specific heterogeneity trans-

lates into the probability of a plant dying, we computed

the probability of death for plants 1, 2, and 3 SDs from

the average intercept. It is clear from figure 5 that the

estimated levels of individual-specific heterogeneity trans-

late into substantial differences in the risk of death. The

average probability of death, for a given age and size, was

also calculated with

exp(m 1 u 1 m L 1 m a)0 i s a
P(death) = E

1 1 exp(m 1 u 1 m L 1 m a)0 i s a

# f(u )du , (1)i i

where m0, ms, and ma are parameters characterizing size-

and age-independent mortality, size-dependent mortality,

and age-dependent mortality, respectively, where ui is an

individual-specific term and where f(ui) is the probability

density function of ui. This differs from the probability of

death of a plant with the average intercept because the

probability of death is a nonlinear function of ui (Stefanski

and Carroll 1985; Neuhaus et al. 1991).

Flowering. The same methods for analyzing the probability

of mortality were used in the analysis of flowering prob-

ability. Plant size, log transformed, was by far the most

important predictor of flowering ( , ),2x = 201.9 P ! 0.00011

but there were also significant age ( , )2x = 8.1 P ! 0.0051

and year ( , ) effects. There were no sig-2x = 8.4 P ! 0.043

nificant site effects ( , ) or interaction terms.2x = 0.1 P 1 0.11

The main effect of year was only marginally significant

and accounted for 2% of the deviance and so was not used

in any of the subsequent models. The individual-specific

heterogeneity, jf , was not significant ( , ,j = 0.52 z = 0.39f

) and so was dropped from the model. The fittedP 1 0.1

relationship is given in figure 6.

The relationship between maximum rosette area and

fecundity, measured by the area of receptacle matured, is

shown in figure 7. In agreement with numerous other

studies, there is a linear relationship between fecundity

and size on double log axes (Reinartz 1984; de Jong and

Klinkhamer 1986; Klinkhamer and de Jong 1987; Rees and

Crawley 1989). There were no significant site effects, nei-

ther main effect nor interaction terms ( in all cases).P 1 0.1

Growth. Plant growth was analyzed using linear mixed

models in S-Plus (Becker et al. 1988; Venables and Ripley

1997). This approach assumes the vector of observations

on each plant is drawn from a multivariate normal dis-

tribution. The models allow the incorporation of random

individual-specific effects and autocorrelated error terms.

In addition, the variance of the response variable may be

some simple function of the fitted values. In models with

more than one random effect, the estimated individual-
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Figure 5: Probability of mortality for a 2-yr-old individual with the mean

individual-specific intercept (i.e., ; middle dotted line) and for in-u = 0i

dividuals 51, 2, or 3 SD ( ) from the mean (dotted lines about thejd

central line). Solid line, average mortality for a given size and age, cal-

culated by averaging over the distribution of ui (see eq. [1]). Note the

curve for an individual with the average intercept differs from average

mortality, for a given size and age, because the mortality function is

nonlinear. For parameter values for the La Crau population, see table 1.

Table 1: Parameter estimates for the average and yearly mortality models

Site Parameter estimates

Average mortality model:

La Crau logit(P(death)) = 1.42 2 1.08L(t) 1 1.09a

Viols logit(P(death)) = 2.72 2 1.08L(t) 1 1.09a

= 0.82jd

Yearly mortality model:

1988:

La Crau logit(P(death)) = 2.52 2 1.30L(t) 1 1.27a

Viols logit(P(death)) = 3.52 2 1.30L(t) 1 1.27a

1989:

La Crau logit(P(death)) = 3.57 2 1.30 1 1.27aL(t)

Viols logit(P(death)) = 3.19 2 1.30 1 1.27aL(t)

1990:

La Crau logit(P(death)) = .52 2 1.30L(t) 1 1.27a

Viols logit(P(death)) = 3.68 2 1.30L(t) 1 1.27a

1991:

La Crau logit(P(death)) = 2.90 2 1.30L(t) 1 1.27a

Viols logit(P(death)) = 3.49 2 1.30L(t) 1 1.27a

= 1.30jd

Note: In each case L(t) is log size and a is plant age. Logit(P(death)) is ln{P(death)/

[1 2 P(death)]}, and jd is the individual-specific heterogeneity in the intercepts.

specific effects were highly correlated ( ), sug-2r 1 0.99

gesting that only one random effect was required in the

model. In all the models that follow, we incorporate ran-

dom individual-specific effects on the intercept; all other

model terms are treated as fixed effects. As with the analysis

of mortality and flowering, we develop yearly and average

models. Preliminary data analysis suggested a linear re-

lationship between log size next year and log size this year,

with the variance decreasing with increasing plant size (see

fig. 8). We therefore assumed that the variance about the

regression line could be modeled as

2 ˆj = Jexp(2ay), (2)g

where a and J are estimated parameters and is the fittedŷ

value. This function provided a better fit than other func-

tions, such as power functions or power functions with a

constant, using the AIC statistic and diagnostic plots (e.g.

standardized residuals vs. fitted values). The residuals from

the model may be correlated because of the time series

structure of the data. To explore this possibility a model

was fitted assuming the covariance matrix was determined

by a first-order autoregressive process, AR(1). This as-

sumes the elements of the covariance matrix are given by

d i2j dc = kr , (3)i, j

where k and r are estimated parameters and i and j are

two points in time. The inclusion of an AR(1) term did

not enter the model significantly ( , ), so2x = 2.0 P 1 0.11

independent, identically distributed errors were used. Sig-

nificance testing was performed using maximum likeli-

hood estimation but the final model was fitted using re-

stricted maximum likelihood because this reduces the bias
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Figure 6: Fitted relationship between the probability of flowering, plant

size, and age. Note there were no significant site effects on the probability

of flowering. Parameter estimates (intercept), (sizeb = 223.73 b = 2.870 s

slope), (age slope).b = 0.85a

Figure 7: Relationship between rosette area and the area of receptacle

matured. Note there were no significant site effects on the relationship

between rosette area and the area of receptacle matured. The fitted line

is log(receptacle area) = 22.36 1 1.29L, , .2r = 0.57 P ! 0.0001

in the estimation of the variance components (Diggle et

al. 1996; Venables and Ripley 1997).

The average growth model has a significant size by site

interaction ( , ), but age did not enter2x = 7.12 P ! 0.0081

the model significantly ( , ). The fitted linesz = 1.4 P 1 0.08

are shown in figure 8. In contrast the yearly growth model

was much more complicated: there were significant site

by size by year ( , ) and age by size2x = 38.4 P ! 0.00013

( , ) interactions and also a significant2x = 5.9 P ! 0.021

quadratic term in plant size ( , ). The2x = 12.3 P ! 0.0011

fitted relationships for 1991, at each of the sites, are shown

in figure 9, and the parameter estimates are given in table

2. These surfaces show that plants grow more slowly as

they become larger and older.

Detecting Density-Dependent Processes

To test for density-dependent recruitment, we explored

the relationship between this year’s seed production and

the total number of recruits in the following year, using

data from the 20 quadrats at each site (fig. 10). Overall,

there is a significant, positive relationship between seed

production and subsequent recruitment ( ,F = 7.08 df =

, ). However, seed production only accounts1, 129 P ! 0.01

for 4% of the variance in the number of recruits, and

when those plots where no seed was produced were ex-

cluded, the relationship was no longer significant (F =

, , ). A constant total number of re-1.4 df = 1, 67 P 1 0.2

cruits, over such a wide range of seed production, indicates

that the probability that an individual seed recruits de-

creases with total seed production. A relationship of this

form implies that the probability of recruitment, R(S), is

proportional to :1/S

Total recruits = Constant = R(S) ∗ S

⇒ R(S) ∝ 1/S, (4)

where S is the total seed production.

The presence of a seed bank could potentially obscure

any relationship between seed production and recruit-

ment. However, in Onopordum, the seed bank is small:

over the 4 yr when it was measured at both sites, the

maximum density was 190 seeds m22. It is unlikely that

the seed bank would mask any relationship between seed

production and recruitment, especially as yearly seed out-

put can be an order of magnitude greater than the seed

bank. This uncoupling of recruitment from seed produc-

tion over such a wide range of seed outputs is an extreme

form of density dependence, which is strongly stabilizing.

This is probably the result of establishment being limited

by the number of suitable microsites. It should be noted

that both sites are extremely rocky with thin soils, and

recruitment is almost certainly impossible over a high pro-

portion of the area.

The possibility that growth or mortality were dependent

on a plant’s local competitive environment was explored

by estimating the strength of competition an individual

experiences and by regressing its size or the probability of

mortality against this (Weiner 1982; Pacala and Silander

1987). The strength of competition was estimated by sum-

ming the maximum rosette area of all plants rooted within
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Figure 8: Relationship between rosette area at time t and rosette area at time . A, La Crau site, fitted relationship ist 1 1 L(t 1 1) = 3.05 1

. B, Viols site, fitted relationship is . The variance about the regression line is modeled as 20.6L(t) L(t 1 1) = 3.83 1 0.52L(t) j = 45.7 exp [2g

, where is the fitted value. The individual-specific heterogeneity in the intercept, , was estimated at 0.00002. The dotted line2ˆ ˆ0.67L(t 1 1)] L(t 1 1) jI

is the 1 : 1 line above which plants increase in size, below which they decrease.

a specified radius around a focal individual. This provides

an estimate of the strength of intraspecific competition,

but as the vegetative cover at the sites is very sparse, this

is likely to be the most important form of competition.

Five radii were used in the analysis, namely 10, 20, 30, 40,

and 50 cm.

Both growth and mortality were influenced by the local

competitive environment (see “Mortality” and “Growth”

for descriptions of the statistical methods used). Although

in both cases measures of the local competitive environ-

ment entered the models significantly ( ), the ex-P ! 0.001

tra explanatory power of these terms was never 11.5%.

This suggests that, over and above the effects of age and

size, competition, as measured by the surface area of plants

within a certain radius, had little influence on plant growth

and mortality. In summary, the main density-dependent

process is recruitment, which is almost certainly microsite

limited, but there is evidence of weak competition between

established plants.

Modeling

We now present a range of models of increasing com-

plexity. The first type of model uses a simple, deterministic

growth curve to predict the age and size at flowering. These

models ignore all forms of heterogeneity and provide the

baseline against which the various refinements, presented

later, will be assessed. We then incorporate increasing bio-

logical realism by allowing stochastic variation between

individuals and in the model parameters.

An Analytical Age-Based Model for Evolutionarily Stable

Age and Size at Reproduction

The first model uses a simple age-based function to de-

scribe growth in Onopordum. The use of growth models

to predict the evolutionarily stable size and age at repro-

duction has an extensive pedigree in the animal literature

(Roff 1984, 1986; Stearns 1992; Charnov 1993; Mangel

1996). Specifically, we assume that log size, L(t), at time

t can be described by a three-parameter von Bertalanffy

equation:

L(t) = L {1 2 exp[2k(t 2 t )]}, (5)
` 0

where is the maximum possible size, k is a rate param-L
`

eter, and t0 is the hypothetical (negative) age at which size

would be 0. The probability an individual survives to time

t is a simple exponential function of the form

pexp(2mt), (6)

where p is the pulse mortality at the beginning of life and

m the instantaneous mortality rate. Finally, we assume that

the seed production of an individual of size L(t) is given

by

seeds = exp[A 1 BL(t)]. (7)

Combining these formulas, we can obtain an expression

for the net reproductive rate, R0, the expected number of

offspring produced per individual over their lifespan:
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Figure 9: Fitted relationships for the yearly growth model in 1991 at (A) the La Crau site and (B) the Viols site. Parameter values are given in

table 2.

R = pexp(2mt)0

# exp [A 1 B(L {1 2 exp[2k(t 2 t )]})]. (8)
` 0

The net reproductive rate consists of two components: the

first is the probability that an individual survives to age t,

and the second is the seed production of a plant of size

L(t). We can calculate the evolutionarily stable strategy

(ESS) flowering time, , by solving , which givest̃ ­R /­t = 00

ln (BkL /m)
`

t̃ = 1 t . (9)0
k

Evolutionary stability occurs if evaluated at is2 2 ˜­ R /­t t0

!0, which is always true in this case. In calculating the

ESS in this way, we are assuming that density dependence

acts at the seedling stage (Charnov 1993; Kawecki 1993),

which is reasonable for Onopordum. Substituting equation

(9) into the growth equation (eq. [5]) gives the ESS rosette

size for flowering, ,L̃

m
L̃ = L 2 . (10)

`

Bk

This model can be applied to the Onopordum data by

estimating the parameters of the growth, survival, and fe-

cundity equations. The von Bertalanffy growth curves were

difficult to fit to the data because covariance between the

parameters leads to unstable parameter estimates (Ross

1990). Because of this problem, no standard errors could

be calculated, and regression diagnostics were used in

model selection. The three-parameter von Bertalanffy

equation fitted to the combined La Crau and Viols data,

assuming common and terms but with k varyingL t
` 0

between the sites, provided a good description of the data

(see fig. 11). The probability of an individual surviving to

age t was estimated using the age-structured data, cor-

recting for the number of individuals flowering. A bino-

mial regression was used to fit the exponential model (eq.

[6]); there were no significant site effects for either pa-

rameter (p or m, in both cases). The fitted modelP 1 0.05

was

P(survival to age t) = 0.61exp(20.5t). (11)

The relationship between fecundity and size is given in

figure 7.

Substituting the parameter estimates into equation (10),

we predict that the average size at flowering should be

≈800 cm2 at La Crau and ≈900 cm2 at Viols. In both cases,

the percentage prediction error is 150%; the plants actually

flowered at sizes approximately double the model predic-

tions. However, plant growth occurs in yearly steps, and

so, if these values are interpreted as switch values, below

which plants grow and above which they flower, then the

observed size at flowering would be larger than the model

predictions. Using equation (5), this suggests that plants

should flower at ≈1,000 cm2 at both sites. Again, the model

predictions are substantially smaller than the values ob-

served in the field. Clearly, this simple model does not

accurately predict the patterns of flowering observed in

Onopordum.

One-Year Look-Ahead Criteria for Flowering and

Dynamic State Variable Models

The simple model described above ignores yearly variation

in model parameters and individual-specific heterogeneity

in mortality rates and assumes growth follows a simple
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Figure 10: Relationship between this year’s seed production and sub-

sequent recruitment. Circles, the La Crau site; diamonds, Viols.

Table 2: Estimated parameters for the yearly growth model

Year and site Estimated parameters

1988:

La Crau L(t 1 1) = .38 1 1.19L(t) 1 .48a 2 .026L(t)2
2 .084L(t)a

Viols L(t 1 1) = 3.65 1 .69L(t) 1 .48a 2 .026L(t)2
2 .084L(t)a

1989:

La Crau L(t 1 1) = 1.82 1 .97L(t) 1 .48a 2 .026L(t)2
2 .084L(t)a

Viols L(t 1 1) = 2.91 1 .94L(t) 1 .48a 2 .026L(t)2
2 .084L(t)a

1990:

La Crau L(t 1 1) = 2.37 1 .94L(t) 1 .48a 2 .026L(t)2
2 .084L(t)a

Viols L(t 1 1) = .80 1 1.14L(t) 1 .48a 2 .026L(t)2
2 .084L(t)a

1991:

La Crau L(t 1 1) = .39 1 1.23L(t) 1 .48a 2 .026L(t)2
2 .084L(t)a

Viols L(t 1 1) = 2.86 1 .86L(t) 1 .48a 2 .026L(t)2
2 .084L(t)a

= 38.5 exp(2.692 ˆj L(t 1 1))g

= .0442jI

Note: is log rosette area, is the fitted value, a is plant age in years, is the2ˆL(t) L(t 1 1) jg

variance about the regression line, and is the individual-specific heterogeneity in the2jI

intercept.

deterministic trajectory. We now relax the last two as-

sumptions by allowing variation around the growth curve

and individual-specific heterogeneity in mortality rates. We

use a simple criterion that leads to a switching value :Ls

plants with are predicted to reproduce in year t,L(t) 1 Ls

whereas those with are predicted to continue toL(t) ! Ls

grow. We compare reproduction given the current size,

, with the expected reproduction in the next year, tak-L(t)

ing growth and survival into account. The switch value

will be the size that makes these equal. The switching size

satisfies

exp(A 1 BL ) = f(«)g(u )s(a 1 b L 1 «, u ) (12)s E E i g g s i

# exp [A 1 B(a 1 b L 1 «)]du d«,g g s i

where « describes the deviations from the growth curve,

is an individual-specific mortality term, f(«) and g(ui)ui

denote the Gaussian probability density functions for «

and ui, respectively, ag and bg are the intercept and slope

of the average growth curve (fig. 8), and s(a 1 b L 1g g s

is the logistic survival function, given by«, u )i

s(a 1 b L 1 «, u ) = (13)g g s i

exp[m 1 u 1 m (a 1 b L 1 «) 1 m a]0 i s g g s a
1 2 .

1 1 exp[m 1 u 1 m (a 1 b L 1 «) 1 m a]0 i s g g s a

The logistic survival term, ), assumes thats(a 1 b L 1 «, ug g s i

growth occurs before mortality in agreement with the sea-

sonal patterns of growth and mortality in Onopordum. The

term on the left-hand side of equation (12) represents

current reproduction, and the term on the right-hand side

represents expected future reproduction, taking growth

and survival into account. The integrals were solved nu-

merically using the methods described in Crouch and Spie-

gelman (1990).

Using the parameter estimates from the average mor-

tality and growth models (fig. 8 and table 1), we can cal-

culate the switch values, Ls, defined by equation (12). Mor-

tality is age and size dependent, so one switch value, ,Ls

is obtained for each age class (see fig. 12). We then used

forward iteration to calculate the average sizes and ages

of plants that flower according to these rules (Mangel and

Clark 1988). To perform forward iteration, we first gen-

erate a recruit from the observed size distribution and then
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Figure 11: Fitted von Bertalanffy growth curves for (A) the La Crau site and (B) Viols. The vertical bars are a single standard error. Parameter

estimates: = 7.18 and = 0.31, while, at La Crau k = 0.74 and at Viols k = 0.98 ( , ).2L t n = 665 r = 0.61
` 0

use a binomial random variable to determine whether the

plant dies, the probability of death being given by the

estimated relationship. Those individuals that survive then

grow according to the average growth model, with each

individual receiving a random growth increment from the

estimated distribution of residuals about the fitted line.

Individuals smaller than then repeat the cycle of mor-Ls

tality and growth, whereas those that are larger flower. At

La Crau, the predicted average size at flowering was ≈3,400

cm2, and the predicted average age at flowering was 4.7

yr, while at Viols the predicted average size and age at

flowering were ≈3,800 cm2 and 4.4 yr, respectively. At both

sites, the model size predictions are nearly two times the

observed values. The observed average ages to flowering

were 3.55 and 2.7 yr, at La Crau and Viols, respectively.

Again, the model predictions are substantially larger than

the observed values.

The 1-yr look ahead is “myopic” in the sense that it

ignores all growth opportunities except for those in the

following year. For example, in small plants, the expected

seed production from waiting 2 yr may be greater than

that from waiting 1 yr because of the stochastic variation

in growth. So for a given plant size, the optimal decision

based on the 1-yr look ahead might be to flower, whereas,

with a 2-yr look ahead, the optimal decision might be to

wait. We therefore require a technique that allows growth

opportunities several years ahead to influence the optimal

flowering strategy. Dynamic state variable models, also

known as “dynamic programming,” allow this type of cal-

culation to be easily performed (Bellman 1957; Mangel

and Clark 1988; Mangel and Ludwig 1992). In appendix

C, we describe a dynamic state variable, DSV, model, which

allows the calculation of switch values, , allowing forLs

growth opportunities several years ahead. The predicted

switch values are shown in figure 12. Because the plants

are short-lived and the variance in growth decreases with

plant size, the predicted DSV solutions are well approxi-

mated by the 1-yr look-ahead model. The predicted av-

erage sizes and ages at flowering, obtained by forward

iteration, are ≈3,500 cm2 and 4.8 yr at La Crau and ≈3,800

cm2 and 4.4 yr at Viols. Again, model predictions are sub-

stantially larger than the observed values.

In these calculations, we have assumed that plants have

no information on their ui values. In contrast, if plants

have perfect information on ui, then we would expect the

optimal flowering strategy to vary from plant to plant

depending on each individual’s risk of mortality. To ex-

plore the effects of this, we calculated the DSV solutions

for individuals at La Crau that are 52 SDs from the mean

of ui. These plants have average sizes at flowering of ≈3,800

and ≈3,200 cm2, whereas plants with no information on

ui flower at ≈3,500 cm2. As approximately 95% of indi-

viduals lie between these values, it would be difficult to

detect these effects from field data. In agreement with this,

the estimated individual-specific heterogeneity in inter-

cepts for flowering, jf , was not significantly different from

0.

We learn two things from these models: first, scatter

about the growth curve selects for larger sizes at flowering

and, second, other factors, such as temporal variation in

growth and mortality, are likely to be important in de-

termining the optimal flowering strategy. Analytical results
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Figure 12: Predicted switch values from the 1-yr look-ahead (dotted line) and the dynamic state variable (solid line) models at (A) La Crau and

(B) Viols.

confirming the first conclusion are presented in Rees et

al. (2000).

Individual-Based Models and Genetic Algorithms

In this section, we develop individual-based models that

allow the evolution of flowering strategies to be explored

in complex models incorporating both individual-specific

and temporal variation in demographic parameters. An

outline of the model is provided in appendix D. In the

model, each plant is characterized by its size, age, and

individual-specific growth and mortality parameters. The

model includes demographic stochasticity and temporal

variation in demographic parameters. Density dependence

is incorporated at the recruitment stage by making the

number of recruits independent of total seed production.

This implies that the probability of an individual seed

becoming a recruit is inversely proportional to total seed

production.

The simulation model provides an excellent description

of the field system, not only in terms of the average pop-

ulation sizes but also the size and age structure of the

populations (table 3). The main discrepancy is that the

average ages at flowering are larger in the model than in

the field. However, in the field data, the age at flowering

is consistently underestimated because of the inevitable

bias toward plants that flower young: late-flowering plants

have a high probability of flowering after the end of the

study. In agreement with the data, however, the models

predict that plants should flower later at La Crau than at

Viols. Because the same data are used to parameterize and

to test the models, the agreement between model predic-

tions and the data only demonstrates that the models are

a valid description of the system.

We used the simulator to explore the evolution of age-

and size-dependent flowering strategies. We did this by

introducing a simple genetic algorithm into the model

(Sumida et al. 1990). As before, individuals are charac-

terized by size, age, and individual-specific mortality and

growth parameters, but each plant also has a flowering

strategy. Seeds inherit their parent’s flowering strategy plus

a small random deviation. In all simulations, we assumed

that the offspring strategies were uniformly distributed

about the parental strategy. As in the previous models, the

number of recruits next year is independent of the seed

production this year, but the flowering strategy of each

recruit is determined by a fair lottery among seeds. Because

the number of recruits each plant produces is determined

by a lottery, individual seed production and recruitment

are perfectly correlated within a year. In this way, the flow-

ering strategies of the recruits reflect the relative repro-

ductive success of the different flowering strategies in the

population.

We explored the evolution of flowering strategies by

allowing each of the three aspects of the flowering strategy

(the intercept, b0, slope of the relationship with size, bs,

and slope of the relationship with age, ba) to evolve in-

dependently, with the other two treated as fixed. Starting

with the estimated values and allowing each parameter to

evolve, we obtained the results given in table 4. In all cases,

the agreement between the theoretical predictions and the

estimated parameters was excellent; in addition, the esti-

mated sizes at flowering were extremely close to the data.

This agreement may reflect weak selection, and so, by
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Table 3: Simulation model predictions and field data from La Crau and Viols

La Crau Viols

Data Model Data Model

Average number of plants 176 182 240 285

Average size (cm2) 325 306 470 474

(282, 369) ) (417, 522) )

Average age (yr) 1.90–2.36 1.9 1.93–2.63 1.8

Average age at flowering (yr) 3.55 4.1 2.7 3.5

(3.0, 4.1) ) (2.6, 2.9) )

Average size at flowering (cm2) 1,736 1,755 2,208 2,235

(1,549, 1,922) ) (2,005, 2,410) )

Note: The figures in parentheses are the 95% confidence intervals.

Table 4: Predicted and estimated parameters for the

flowering strategy at each of the two sites

Site

Parameter

Average

size

at

flowering

(cm2)b0 bs ba

La Crau 224.05 ) ) 1,818

Viols 223.73 ) ) 2,200

La Crau ) 2.84 ) 1,765

Viols ) 2.90 ) 2,170

La Crau ) ) .85 1,749

Viols ) ) .92 2,193

Estimated value 223.73 2.87 .85 )

Note: Each parameter is allowed to evolve assuming the others

are fixed. The final column gives the average size at flowering

predicted by the model.

starting with the estimated parameter values, the models

never evolve to strategies of higher fitness simply because

this takes a long time. We explored this possibility by using

a wide range of starting values and looking for conver-

gence. For the La Crau site, typical model trajectories are

shown in figure 13. In each case, we see convergence to

the estimated parameter values.

The complex model seems to capture correctly the se-

lective forces acting on the flowering strategy of Onopor-

dum. What happens when all three parameters are allowed

to evolve? Before looking at the outcome of the model, it

is important to understand the statistical properties of the

parameters that define the probability of flowering surface.

The matrix of correlation coefficients for the parameter

estimates is

b b0 s

b 20.96 ,s

b 20.30 0.04a

demonstrating that b0 and bs are highly negatively cor-

related. Therefore, as the intercept b0 increases, the size

slope, bs, can be decreased with little change in the fit of

the model. For example, if we fix the intercept at 215,

the estimated value of bs changes to 1.7, and the percentage

of the deviance explained changes by only 3% (from 60%

to 57%). This means that we would expect a range of

negatively correlated parameter values to give approxi-

mately equal fitness because they all describe essentially

the same surface. When the fitness of different flowering

strategies is approximately equal, evolution is extremely

slow.

When all three of the parameters, which define the flow-

ering surface, were allowed to evolve, the predicted average

sizes at reproduction were 1,924 and 2,394 cm2 at La Crau

and Viols, respectively, slightly larger than observed in the

field. However, the predicted parameter values are con-

siderably larger than those estimated from the field (see

table 5). Despite the large differences between the pre-

dicted parameters and the estimated ones, the flowering

strategies were similar (see fig. 14). The predicted rela-

tionship at both sites approaches a step function, which

results in the expected average size at flowering being larger

than measured in the field.

Sensitivity Analysis

To explore how the model predictions were influenced by

the different types of variability, we performed a sensitivity

analysis. This is divided into two sections: the first deals

with temporal variation in model parameters, the second

with other forms of variability.

Temporal Variation. Four different environmental scenar-

ios were used to explore the effects of temporal variation

in growth and mortality. Specifically, we evaluated the ef-

fects of temporal variation in growth and mortality by

comparing the predictions obtained using the average and

yearly models in the simulation; the results are given in

table 5. Clearly, temporal variation in mortality has little
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Figure 13: Evolutionary trajectories for (A) the intercept, b0; (B) the slope of the size relationship, bs; and (C) the slope of the age relationship,

ba. In each case, the horizontal line is the estimated parameter value. Other parameter values are for the La Crau site.

effect on the predicted average size and age at flowering.

In contrast, temporal variation in growth selects for re-

duced size and age at flowering. The predicted sizes at

flowering in these models are slightly larger than those

observed in the field.

The assumption of constant yearly recruitment had little

effect on the expected average sizes at flowering. In models

with yearly variation in growth and mortality, but constant

recruitment, the predicted sizes at flowering were 1,968

and 2,343 cm2 at the La Crau and Viols sites, respectively.

Both values were extremely close to those obtained with

yearly variation in recruitment.

Why is temporal variation in growth so important? The

answer to this question is shown in figure 15, which il-

lustrates the expected growth curves of plants of different

ages in the yearly growth model and the average growth

model. The expected growth curves are calculated by con-

ditioning on plant size in the previous year:

E[L(t 1 1)FL(t)] = E[a 1 b L(t) 1 b ag g a

2
1 b L(t) 1 b L(t)a 1 «]g2 ga

¯= a 1 b L(t) 1 b a (14)g g a

2
1 b L(t) 1 b L(t)a,g2 ga

where ag, bg, ba, , and are estimated regression pa-b bg2 ga

rameters, and the terms with overbars are averaged quan-

tities. In calculating this expectation, we have used the

facts that and , providing XE[«] = 0 E[XY ] = E[X]E[Y ]

and Y are independent. From the figure, it is clear that

the expected sizes of plants the following year becomes

smaller as plants grow older. Therefore, the expected payoff

from delaying reproduction decreases as plants get older,

and this selects for smaller sizes at flowering. In contrast,

the average model predicts larger asymptotic sizes than the

yearly model, and the expected reduction in plant size for
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Figure 14: Empirical and predicted flowering strategies for 2-yr-old

plants at La Crau and Viols. The predicted flowering strategies are from

a model with temporal variation in growth, mortality, and recruitment.

See text for details and table 5 for parameter values.

Table 5: Effects of temporal variation in growth and mortality on the predicted

flowering strategy, and average size and age at flowering

Site Growth Mortality b0 bs ba

Average

size at

flowering

Average

age at

flowering

La Crau C C 260.8 6.5 2.7 2,716 4.6

Viols C C 262.4 6.6 2.9 3,312 3.5

La Crau C R 252.7 5.9 1.7 2,764 4.7

Viols C R 266.7 7.6 1.7 3,625 4.4

La Crau R C 248.7 6.0 1.4 1,978 3.9

Viols R C 248.1 5.9 1.9 2,345 3.1

La Crau R R 254.8 6.4 2.4 1,924 4.1

Viols R R 292.2 10.3 5.5 2,394 3.5

Note: C = average model with no yearly variation, R = yearly model with temporal variation.

larger plants that do not flower is smaller. Does the average

of the yearly growth model, equation (14), correctly cap-

ture the selective forces operating, or are the fluctuations

in ag and bg important? We explored this by using equation

(14) in the simulation model. The predicted average sizes

at flowering, using the yearly mortality model and with

recruitment varying from year to year, were 2,300 and

2,600 cm2 at La Crau and Viols, respectively. The changes

in the average sizes at flowering assuming different forms

of temporal variation in growth may be summarized as

follows:

La Crau 1,924 (R) r 2,300 (R) r 2,764 (C)

Viols 2,394 (R) r 2,600 (R) r 3,625 (C),

where (R) is the predicted average size at flowering in an

environment with yearly variation in growth, the value(R)

using equation (14) for growth, and (C) the value assum-

ing no yearly variation in growth. In all cases, we used the

yearly mortality model and allowed variation in the num-

ber of recruits from year to year. At La Crau, 45% of the

effect of temporal variation in growth is a result of age

dependence and curvature of the growth surface (i.e., eq.

[14]). In contrast, at Viols, 83% of the effect of temporal

variation in growth parameters is a direct result of param-

eter fluctuation from year to year, and only 13% can be

attributed to age-dependent and curvature effects.

Other Forms of Variability. Assuming no variation about

the growth curve ( ) resulted in expected sizes at2j = 0g

flowering of 1,050 and 1,500 cm2 at the La Crau and Viols

sites, respectively. Clearly, variation about the growth curve

selects for larger sizes at flowering, as found in the 1-yr

look-ahead and dynamic state variable models. How does

individual-specific heterogeneity in growth and mortality

affect the flowering strategy? For growth, this is easily as-

sessed by setting the individual-specific heterogeneity in

the intercepts to 0 ( ). In models with yearly variation2j = 0I

in growth, mortality, and recruitment but no individual-

specific heterogeneity in the intercepts of the growth equa-

tion, the predicted sizes at flowering, were 2,036 and 2,409

cm2 at the La Crau and Viols sites, respectively. Both values

were extremely close to those obtained assuming individ-

ual-specific heterogeneity in the growth equation inter-

cepts (table 5).

To explore the effects of individual-specific heteroge-

neity in the intercepts of the mortality model is more

complicated because the average mortality function, for a

given size and age, does not equal the mortality function

of an individual with the average intercept (i.e., ; seeu = 0i

fig. 5). To overcome this problem we evaluated the integral

in equation (1) over a wide range of ages and sizes and

fitted a logistic function to the resulting probability sur-

face. This surface defines the average mortality function

for a given age and size. We then set jd equal to 0 and

used the average mortality function in the simulation. The
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Figure 15: Average growth curves for the average and yearly models at (A) La Crau and (B) Viols; c = average model, and numerals indicate plant

age. For reference, the one-to-one line, , is shown. The asymptotic size, at a given age, occurs where this line crosses the growth line.y = x

predicted average sizes at flowering were 1,890 and 2,253

cm2 at La Crau and Viols, respectively. Both values are

very similar to those obtained in models incorporating

individual-specific heterogeneity in the intercepts of the

mortality model (see table 5). Clearly the model predic-

tions are insensitive to the estimated levels of individual-

specific variability.

Discussion

The individual-based simulation models for Onopordum

illustrate that complex age- and size-structured models can

be constructed using easily obtained field data. These mod-

els provide a surprisingly good description of average pop-

ulation size and population size and age structure. For

parameter estimation, it is important to quantify the sys-

tematic changes in demographic parameters with size and

age and the variance about the estimated curve. The var-

iance about the growth curve, , has a dramatic effect on2jg

the size structure of the population, particularly the size

structure of those plants that flower. The reason for this

is straightforward: those plants that have large positive

residuals become very large and so will be almost certain

to flower. In contrast, those plants that have large negative

residuals become small and are very unlikely to flower.

There is therefore a fundamental asymmetry in the way

this variance term influences the size of plants that flower.

Temporal variation in the growth parameters is also im-

portant and, in contrast to , selects for smaller sizes at2jg

flowering because delaying reproduction becomes more

risky.

Ignoring the variance about the growth curve leads to

inaccuracies in the ecological models, and this has inevi-

table effects on the evolutionary predictions from these

models. The simple analytical models, based on maxi-

mizing , give answers close to those obtained from theR 0

genetic algorithm and DSV models when there is no var-

iance about the growth line. A more detailed description

of the relationships between the models is given in Rees

et al. (2000). However, when there is substantial variance

about the growth curve, the approaches diverge consid-

erably. The presence of substantial variance about the

growth curve means that size and age are no longer tightly

coupled. This, combined with the fact that in most plants

fecundity is determined by size not age, means that size

is a better cue for reproduction than age. In agreement

with this expectation, flowering in many monocarpic spe-

cies is strongly related to size but only weakly related to

age (Werner 1975; Baskin and Baskin 1979; van der Me-

ijden and van de Waals-Kooi 1979; Gross 1981; Hirose

and Kachi 1982; Klemow and Raynal 1985; de Jong et al.

1986; Lacey 1986a, 1986b; Bullock et al. 1994; Klinkhamer

et al. 1996; Wesselingh and Klinkhamer 1996). However,

strict biennials do occur, and these species seem to have

age-dependent flowering (Kelly 1985a). In the strict bi-

ennial Gentianella amarella, all surviving plants flowered

in their second year, with the result that many plants flow-

ered while very small and so failed to set seed (Kelly 1989a,

1989b). In other species with age-dependent flowering,

such as bamboos, delays in reproduction have been linked

with mast seeding and predator satiation (Janzen 1976).

However, several variance terms had little impact on the

model predictions: these were temporal variation in the

number of recruits, temporal variation in mortality pa-
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rameters, and individual-specific heterogeneity in growth

and mortality intercepts ( and ). Temporal variation2 2j jI d

in mortality has a similar effect to variation in the number

of recruits from year to year because mortality acts pri-

marily on small, new recruits (see fig. 4). Both types of

variability can generate a bet-hedging component to fit-

ness, although the effects found here, and in other studies

(de Jong et al. 1989), were small. This is because in species

with size-dependent flowering strategies where there is

substantial variance about the growth curve, , the timing2jg

of flowering within a cohort is spread over several years.

For example, in Onopordum individuals flowered at all ages

between 2 and 5 yr.

The estimated individual-specific heterogeneity in the

intercepts of the growth curve, , was extremely small,2jI

and so it is perhaps not surprising that it had little effect

on the model predictions. However, there was substantial

individual-specific heterogeneity about the mortality

curve, , and this had little effect on the model predictions.jd

To see why this is, note that most plants flower at about

2,000 cm2 (fig. 2), which on a log scale corresponds to

≈7.5. At large sizes two factors become important: first,

the individual-specific heterogeneity in the intercepts of

the mortality curve translates into small changes in the

probability of death and, second, the logistic mortality

curve is approximately linear (see fig. 5). With approxi-

mate linearity and small changes in the probability of death

between individuals, the effects of individual-specific het-

erogeneity in the intercepts of the mortality curve are

small.

Several features of the biology were not included in the

models, most notably genetic structure and consideration

of fitness through male function. In Cynoglossum officinale,

small plants allocate relatively more to male function (pol-

len) than large plants (Klinkhamer and de Jong 1993).

This could have important implications for the flowering

strategy, as the fitness of small plants could be greater than

predicted from a consideration of seed set alone. This

would lead to smaller predicted sizes at flowering. How-

ever, given the accuracy of the model predictions, the effect

of ignoring male function appears to be minimal.

The genetic basis of size-dependent regulation of flow-

ering has been explored in two species: Senecio jacobaea

and C. officinale (Wesselingh and de Jong 1995; Wesselingh

and Klinkhamer 1996). In both species artificial selection

experiments demonstrate that substantial genetic variance

exists in natural population for the threshold size for flow-

ering. For example, in Cynoglossum, the parental genera-

tion had highly variable threshold sizes for flowering

(2.6–13.4 g). After a single generation of selection for low

threshold sizes, all plants flowered at !3.2 g, whereas in

the high selection line no plants flowered !3.6 g. In studies

of the geographical variation in threshold sizes for flow-

ering, extremely steep relationships between the proba-

bility of flowering and plant size have been found in Cy-

noglossum populations, particularly those from botanical

gardens (Wesselingh et al. 1993). This could be the result

of truncation selection: all plants that fail to flower in their

second year die because of cultivation or genetic drift

caused by small population sizes (Wesselingh et al. 1993).

These results suggest that in Cynoglossum genetic con-

straints do not prevent the plant from achieving a step

function relationship between the probability of flowering

and plant size.

The most accurate predictions come from models where

the shape of the flowering surface is constrained along two

of the three axes (table 4). Allowing all parameters to

evolve results in a step function relationship between the

probability of flowering and plant size (fig. 14). There are

several possible reasons why the observed relationship

might be shallower than that predicted by the models. The

simplest explanation is that flowering decisions are made

several months before plants actually flower (Werner 1975;

Baskin and Baskin 1979; de Jong et al. 1986; Klinkhamer

et al. 1987). If growth in the interval between the decision

and flowering varies between individuals, then a range of

sizes at flowering would be observed. This between-plant

variation in size at flowering would occur even if all plants

had exactly the same switch value for flowering. The sec-

ond possible explanation is that plants respond to spatial

variation in mortality or growing conditions, and the

spread of flowering sizes then represents an adaptive re-

sponse to this spatial variation. This explanation seems

unlikely, as there was no significant individual-specific het-

erogeneity in intercepts for flowering ( ). A third pos-j = 0f

sible explanation is that flowering strategies vary from year

to year and that, by pooling across years, we generate

variability in the flowering relationship. This explanation

also seems unlikely given that year effects only accounted

for 2% of the deviance in the probability of flowering. It

is possible that genetic constraints result in a graded re-

lationship between plant size and the probability of flow-

ering. We have no information on the genetic basis of

flowering in Onopordum, but other studies, discussed

above, suggest that plants can achieve step function re-

lationships between the probability of flowering and plant

size. The final explanation is that, when all three param-

eters are allowed to evolve, the rate of evolution becomes

very slow and that the flowering patterns we see in the

field represent a snapshot of an ongoing evolutionary

process.

Given the importance of temporal variation in growth

parameters, how can accurate predictions be made from

such a short run of census data? It is possible, but unlikely,

that the temporal variation observed is representative of

the long-term environment in which the plants evolved.
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A more likely explanation is that the flowering decisions

depend on the growing conditions in a particular year. In

agreement with this, there was a significant, although

small, year effect on the probability of flowering. With

longer runs of data, it should be possible to look for yearly

variation in the flowering strategy and relate this to the

growing conditions. Using a 20-yr data set on Carlina

vulgaris, we are currently exploring this possibility.

The von Bertalanffy model produces simple analytical

results, which correctly predict the direction of selection

in the more complex models. However, the predictions of

the von Bertalanffy model need to be interpreted with care.

For example, when moving from unproductive to pro-

ductive habitats, we would expect both and k to in-L
`

crease, and so the ESS flowering size, given by equation

(10), should increase. In Onopordum (fig. 2) and Carlina

vulgaris (Klinkhamer et al. 1996), the average size at flow-

ering is indeed larger in habitats that are more productive.

However, in these species the flowering strategy (relation-

ship between the probability of flowering and plant size;

see fig. 6) does not vary between productive and unpro-

ductive habitats. Differences in size at flowering are the

result of variation in growth rates and not changes in

flowering strategy as predicted by the model. Clearly, great

care is needed when testing general theoretical models and

alternative models must be explored (Charlesworth 1994).
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APPENDIX A

Table A1: Main parameters and variables used in the statistical and mathematical models

Symbol Meaning

L(t) Log rosette area in year t

m0 Intercept of logistic mortality equation

ms Size-dependent slope of logistic mortality equation

ma Age-dependent slope of logistic mortality equation

ui Individual-specific heterogeneity term in logistic mortality equation
2jd Variance of ui, individual-specific heterogeneity in mortality

g(ui) Probability density function of ui (Gaussian)

b0 Intercept of logistic flowering equation

bs Size-dependent slope of logistic flowering equation

ba Age-dependent slope of logistic flowering equation
2jf Variance in individual-specific heterogeneity in flowering

ag Intercept of growth model

bg Size-dependent slope of growth model

b0 Slope term of growth model, the subscripts indicating age- or size-dependence

« Residual about growth curve

f(«) Probability density function of « (Gaussian)
2jg Variance of residuals about growth curve
2jI Variance representing individual specific heterogeneity in growth

L
`

Asymptotic size in von Bertalanffy equation

k Rate parameter in von Bertalanffy equation

t0 Hypothetical age at which size would be 0 in von Bertalanffy equation

p, m Parameters of exponential mortality model

A, B Intercept and slope of fecundity equation

, ˜t̃ L ESS age and size at flowering from von Bertalanffy equation

Ls Switch-value for flowering
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APPENDIX B

Logistic-Normal Statistical Models

Here we briefly describe the logistic-normal models used in the analysis of the probability of flowering and mortality.

Assume we have m plants each observed on ni occasions, the subscript denoting the ith plant. Then, for a standard

logistic regression, the probability of flowering is

exp(b 1 b x )0 1 ij
p (b , b , x ) = , (B1)ij 0 1 ij

1 1 exp(b 1 b x )0 1 ij

where the b’s are estimated parameters and xij is an explanatory variable for the ith plant at the j th time. Here, for

simplicity, we have assumed that there is only one explanatory variable but that the ideas extend naturally to multiple

explanatory variables and interactions. For the standard logistic regression, the likelihood of the data is then

m ni

y 12yij ijL(b; y) = PP p (b , b , x ) [1 2 p (b , b , x )] , (B2)ij 0 1 ij ij 0 1 ij
i j

where y is the vector of observed values of yij (see Cox and Snell 1989). Now we assume there are random effects that

influence each plant. If we had long runs of data on each plant, these could be estimated and their variation studied.

However, we only have a small number of observations on each plant and so must use information across plants to

make inferences about individual-specific heterogeneity. Specifically, we will assume that each plant has its own regression

intercept of the form and that the ui values are drawn from a distribution that describes individual-specificb 1 u0 i

heterogeneity. We can then write

exp(b 1 u 1 b x )0 i 1 ij
p (b , b , u , x ) = , (B3)ij 0 1 i ij

1 1 exp(b 1 u 1 b x )0 i 1 ij

which is the individual-specific probability of flowering. To complete the model specification, we need to assume a

parametric model for ui; specifically, we assume that ui follows a Gaussian distribution with 0 mean and standard

deviation j. The likelihood then becomes

m ni

y 12yij ijL(b , b , j; y) = P f(u )P p (b , b , u , x ) [1 2 p (b , b , u , x )] du , (B4)0 1 E i ij 0 1 i ij ij 0 1 i ij i
i j

where f(ui) is the Gaussian probability density function. Numerical methods can then be used to maximize this and

so obtain parameter estimates. In this way, we may obtain useful information on individual-specific heterogeneity in

the probability of flowering. This is quantified by the estimated standard deviation of the distribution of ui. The

computer package SABRE provides routines for fitting this type of model (Stott et al. 1996). The effects of misspecifying

the mixture distribution (i.e., f(ui)) are discussed in Neuhaus et al. (1992). These authors show that, when the mixture

distribution is misspecified, estimates of model parameters, including the effects of covariates, are typically asymptotically

biased, that is, inconsistent. However, the magnitude of the bias is generally small, and so valid estimates of covariate

effects can be obtained when the mixture distribution is misspecified. This is important as there are often problems

identifying the exact form of the mixing distribution (Hougaard 1984).
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APPENDIX C

Dynamic State Variable Models

We now briefly describe a dynamic state variable model (DSV; Mangel and Clark 1988; Mangel and Ludwig 1992) to

determine the switching value. To do this, let

F(L, t) = the expected fitness of a plant of log area, L, at age t. (C1)

We assume there is a time T at which the plant must reproduce, so that

F(L, T) = exp(A 1 BL). (C2)

The terminal time T can be interpreted alternatively as the time of reproductive senescence or the time at which

successional changes make reproduction mandatory. Most of our results will deal with , in which case the switchingtT

values are independent of T (i.e., stationary, sensu Mangel and Clark 1988).

For times before T, F(L, t) is determined by comparison of current reproduction with the expected value of future

reproduction, taking growth and survival into account. The fitness value (measured in terms of expected reproduction)

Vnow(L, t) of reproducing at age t for a plant of size L is

V (L, t) = seed production of a plant of size Lnow

= exp (A 1 BL). (C3)

The fitness value of continuing to grow is

V (L, t) = average fitness of a plant that grows and survives (C4)grow

= f(«)g(u )s(a 1 b L 1 «, u )F(a 1 b L 1 «, t 1 1)du d«,E E i g g i g g i

where is the logistic survival function. Note that this differs from equation (12) in that we calculates(a 1 b L 1 «, u )g g i

the expectation of , which depends on the relative fitness gains from immediate reproduction or reproductionF(L, t 1 1)

at some time in the future. In light of the definition of , we have the dynamic iteration equationF(L, t)

F(L, t) = max{V (L, t), V (L, t)}. (C5)now grow

This equation is solved backward in time, and the switching value Ls is the value at which . NoteV (L , t) = V (L , t)now s grow s

that if , then the switching value predicted by using equations (C3), (C4), and (C5) must equal the valuet = T 2 1

obtained using the 1-yr look ahead (eq. [12]). The approaches are equal in this case because there is only one opportunity

for growth at time .T 2 1

APPENDIX D

Individual-Based Simulation Models

Here we briefly outline the construction of the individual-based simulation model. In the simulator, each plant is

characterized by its size, age, and individual-specific growth and mortality parameters. Plants behave according to the

statistical rules described in the main body of the article. Note that size in the model is a continuous variable; we do

not divide the population into categories. Events in the simulation model occur in the following order: First, year type

is selected, which determines the number of recruits and the yearly parameters for the growth and mortality functions.

Second, individuals die with a probability depending on their size, age, and individual-specific intercept. Third, plants

that did not die then flower with a probability depending on their size and age. Fourth, those plants that neither died
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nor flowered grow according to the growth equation. Finally, recruits are added to the system. Each of these steps is

stochastic, so, if a particular plant has a 0.3 probability of death, then a uniform random number is generated and,

if this is !0.3, the plant is killed; otherwise it survives. In a similar way, we determine whether or not a plant reproduces.

When applying the growth equation, we included the residual variation from the regression equation by adding random

normal deviates with 0 mean and standard deviation set by the data. Individual-specific effects were incorporated by

assigning each recruit a standard normal deviate with standard deviation set by the data. In this way, two plants of

the same size could grow by different amounts just as in the real data. We did not include any effects of the local

competitive environment on mortality or growth for two reasons: first, this would require a much more complicated

model with explicit space, and in order to construct this we would need information on seed dispersal and the

distribution of germination microsites, and second, these forms of density dependence only slightly increased the

explanatory power of the regression models, whereas the uncoupling of recruitment from seed production is a very

strong form of density dependence.

The number of recruits added to the system was drawn from the observed distribution of recruits, at each site, over

the period 1989–1991. Consecutive values were selected independently, and all observed values are assumed equally

likely. In this way, the number of recruits varied from year to year and was independent of seed production. The

initial sizes of the recruits were determined by the distribution of sizes observed in each of the populations.

In all simulations, we used the random number routines given in Press et al. (1990). Most numerical results presented

are averages of the last 2,000 years of a 10,000-yr simulation. However, when all three parameters that define the

flowering surface were allowed to evolve, the simulations converged much slower, and so the results presented are

averages of the last 2,000 years of a 200,000-yr simulation.
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