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Abstract The fluid–structure interaction and aerodynamic shape optimization usually involve the

moving or deforming boundaries, thus the dynamic mesh techniques are the key techniques to cope

with such deformation. A novel dynamic mesh method was developed based on the Delaunay graph

in this paper. According to the Delaunay graph, the mesh points were divided into groups. In each

group, a factor ranging from 0 to 1 was calculated based on the area/volume ratio. By introducing a

proper function for this factor, this method can control the mesh quality with high efficiency. Sev-

eral test cases were compared with other dynamic mesh methods regarding mesh quality and CPU

time, such as radial basis function method and Delaunay graph mapping method.

� 2018 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The dynamic mesh techniques are wieldy used in the fluid–

structure interaction and aerodynamic shape optimization

which involve the moving or deforming boundaries. For these

numerical simulations, two aspects of the dynamic mesh

method are very critical, one is the mesh quality after deform-

ing, and the other is the efficiency. From the viewpoint of the

mesh quality, physical analogy method,1–4 such as the spring

analogy approach5 and elastic analogy,6,7 can well maintain

the mesh quality after the deformation. However, these meth-

ods need to solve certain equations, which normally require

large computational cost. Particularly, for large shape chang-

ing, some of these methods may cause invalid cells, therefore,

Farhat et al.8 introduced the torsional springs to prevent the

mesh from becoming invalid. Recently, some interpolation

methods which can largely preserve the mesh quality near

the boundaries were developed, e.g. Radial Basis Function

(RBF) method9–11 and Inverse Distance Weighting (IDW)

interpolation method.12,13 The RBF method, by using the dis-

placement of the boundary nodes, constructs a matrix to inter-

polate the interior nodes from the original position to the new

position. This method needs to solve two (for 2D) or three (for

3D) nb by nb matrixes, where nb is the total number of bound-

ary nodes. As the mesh size increases, the computational cost

can be significant. To reduce the computational cost, Rendall

and Allen14 proposed an approximate RBF method with the

data reduction algorithms. Though it improves the efficiency,

some surface errors of mismatch may be introduced to the

boundary. Later on, they developed a surface correction step
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to fix the problem.15 The IDW interpolation method, devel-

oped by Witteveen and Bijl,12,13 simply uses the inverse dis-

tance as a weight for the displacement of each boundary to

calculate the new position of the interior nodes. This method

is faster than the original RBF method; however, it still needs

to loop all the boundary nodes for each interior node, resulting

in a large computational cost for large 3D problems. Luke

et al.16 proposed an explicit interpolation method based on

the IDW method, which shows similar mesh quality as the

RBF method, but with a relatively faster speed. Recently,

Zhou and Li17 developed a 2D dynamic mesh method based

on disk relaxation. Later on, they managed to further improve

the method and successfully applied it to the 3D cases.18

For the fluid–structure interaction problem, the mesh needs

to be updated at each time step; while for the aerodynamic

shape optimization, each new configuration needs a renewed

mesh. Hence, due to the frequent use of the dynamic mesh,

the efficiency of the dynamic method becomes very important

for these problems. From the viewpoint of efficiency, the inter-

polation method, such as transfinite interpolation19–21 or

Delaunay Graph Mapping (DGM) method,22 can quickly

deform the mesh. The transfinite interpolation, however, can

only be used on simple structured mesh. The Delaunay Graph

Mapping (DGM) method can handle most of the deformation

with quality mesh,23–25 but it is difficult to deal with the rota-

tion motion. Considering its high efficiency, for large 3D prob-

lems with small deformation, it is a better choice than the RBF

and IDW methods. In general, most of the current methods

either generate high quality mesh with large computational

cost, or generate lower quality mesh with high efficiency.

Recently, a new method successfully combines the RBF and

DGM methods with both advantages,26 which is called the

DGRBF. It is based on the Delaunay graph to divide the mesh

nodes into groups, then uses the RBF method to interpolate

the mesh nodes to its new position. As a result, the large matrix

becomes a series of 3 by 3 (for 2D) or 4 by 4 (for 3D) small

matrixes; therefore the computational cost is substantially

decreased. Later on, the IDW function was implemented into

the DGM method which shows similar mesh quality as the

DGRBF but slightly better efficiency.

As the RBF and IDW function can improve the mesh qual-

ity of the DGM method, are there any other functions with

simpler form which can further improve both the mesh quality

and efficiency? To achieve this, the functions should meet two

critical conditions, firstly the functions can maintain the mesh

quality near the wall; secondly the form of the function should

be as simple as possible to maintain the high efficiency. In this

paper, a new dynamic mesh method based on the above idea is

developed. This method is based on the Delaunay graph to

divide the mesh nodes into groups, and then it introduces a

damp function for each group to control the mesh deforma-

Fig. 1 Contours of f with different r0s

Table 1 Damp functions.

Parameter Definition

u1 (1 � r)2(r+ 1)

u2 (1 � r)4(4r+ 1)

u3 (1 � r)6(35 r2 + 18 r+ 1)/3

u4 (1 � r)8(32 r3 + 25 r2 + 8 r+ 1)

u5 (1 � r)3(r+ 1)

u6 (1 � r)2

u7 1 � r

Fig. 2 Discontinuity occurs for nodes on the edge of Delaunay

triangle.

Fig. 3 Original mesh of rotating rectangle.
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tion; therefore the overall mesh quality can be effectively con-

trolled and improved. In addition, the damp function only uses

local information; therefore the computational cost is low. Dif-

ferent forms of the functions are compared and discussed. Sev-

eral test cases are compared with the RBF, IDW, DGM and

DGRBF methods, which show higher mesh quality with

higher efficiency.

2. Delaunay graph mapping method with damp function

The general procedure of the Delaunay Graph Mapping with

damp Function (DGMF) method is similar to the original

DGM method. However, being different from the original

one, it utilizes the area ratio to calculate an intermediate vari-

able r rather than the coordinates. By using this variable r, a

damp function which controls the displacement of the interior

nodes is calculated. The procedures are set as follows:

Fig. 4 Comparison of mesh quality with different damp func-

tions and DGM method.

Fig. 5 Mesh quality contour (DGMDF by f1).

Fig. 6 Mesh quality contour (DGM).

Fig. 7 Original mesh of rotating circle.
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(1) Generate the Delaunay graph using all the boundary

nodes of the original mesh.

(2) Find the parent Delaunay element for each mesh node

point so that all the mesh points are grouped by the

Delaunay Graph elements.

(3) Calculate r for each node using the area or volume ratio

of Delaunay elements (triangle for 2D and tetrahedron

for 3D).

(4) Calculate the damp function f ðrÞ for each node.

(5) Calculate the new node position for all the mesh nodes

using the damp function f ðrÞ.

At step (3), an intermediate variable r is calculated by the

area ratio as follows:

r ¼
X

n

i¼1

eir0 ð1Þ
Fig. 8 Comparison of mesh quality for rotating circle.

Fig. 9 Mesh quality contour (90�rotation).
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where ei is the area or volume ratio (detailed definition can be

found in Ref.22), and n = 3 for 2D, n = 4 for 3D. r0 is the user

defined constant for the boundary nodes, for all static bound-

aries r0s � 1, while for all dynamic boundaries r0d ¼ 0: By

changing r0s, the impact region of f rð Þ (the detailed form of

the damp function fðrÞ will be discussed in the next paragraph)

can be adjusted (Fig. 1). In the figures, the outer boundary is

the static boundary, while the inner boundary is the dynamic

boundary. The mesh nodes in the red region which are adja-

cent to the dynamic boundary will move similarly as the

dynamic boundary since f is close to 1, thus the mesh quality

can be maintained in this region. The mesh nodes in the blue

region which is close to the static boundary will almost keep

unchanged, because f is close to 0. From the figures, it is clear

that by changing the value of r0s, the size of the blue and red

region can be adjusted. By increasing r0s, one can compress

the red region and enlarge the blue region.

The damp function used in this paper is in the form of

fiðrÞ ¼
0 r > 1

ui r 6 1

�

ð2Þ

where u is a function ranging from 0 to 1. In order to maintain

high efficiency, computational expensive operations are not

considered, such as exponent calculation used in the IDW

function. Therefore, the simple polynomial is used in this

paper. In Table 1, the functions tested and compared in this

paper are listed. These functions are generally the radial basis

function or modified radial basis function whose value ranges

from 0 to 1; different forms and orders can affect the change of

the deformation of the mesh. The comparison of these func-

tions will be discussed in Section 3.1.

The change of the boundary can be mainly classified into

three categories, i.e., rigid body translation, rigid body rota-

tion and shape deformation. Let the displacement of transla-

tion be t, the Eulerian angle be h, and the displacement of

shape deformation be d, then the displacement of the interior

nodes can be calculated as follows:

sx ¼ ftx þ fdx þ x� xcð Þcos hfð Þ þ y� ycð Þsin hfð Þ þ xc ð3Þ

sy ¼ fty þ fdy þ y� ycð Þcos hfð Þ � x� xcð Þsin hfð Þ þ yc ð4Þ

where x and y are the original coordinates, and xc andyc are

coordinates of the center.

For the 3D problem, let h ¼ ða; b; cÞ be the Eulerian angle,

the total displacement of the interior nodes is in the form of

s ¼ f

tx

ty

tz

2

6

4

3

7

5
þ f

dx

dy

dz

2

6

4

3

7

5
þ

cosðfcÞ sinðfcÞ 0

�sinðfcÞ cosðfcÞ 0

0 0 1

2

6

4

3

7

5
:

1 0 0

0 cos fbð Þ sin fbð Þ

0 � sin fbð Þ cos fbð Þ

2

6

4

3

7

5

cos fað Þ sin fað Þ 0

� sin fað Þ cos fað Þ 0

0 0 1

2

6

4

3

7

5
x0 � x0

ð5Þ

where x0 is the original coordinates. Let q(fh) be the quater-

nion, and Eq. (5) can be rewritten as

Fig. 10 Original mesh of twisted bar.

Fig. 11 Deformation of the bar as A increases.

Fig. 12 Comparison of mesh quality for twisted bar.

Delaunay graph-based moving mesh method with damping functions 2097



Fig. 13 Mesh quality contour (A = 16).
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s ¼ f

tx

ty

tz

2

6

4

3

7

5
þ f

dx

dy

dz

2

6

4

3

7

5
� qx0q

�1 � x0 ð6Þ

Normally for the numerical problems involving rigid body

motion, the translation and rotation of the moving boundary

are known. For deformation, if the moving boundary can be

expressed as a known function, d can be directly computed;

if not, d can be calculated in the following way.

d ¼

Pnd
i¼1eidi
Pnd

i¼1ei
ð7Þ

where di the deformation displacement of the dynamic bound-

ary nodes in a Delaunay triangle/tetrahedron, and nd the num-

ber of the dynamic boundary nodes in the Delaunay triangle/

tetrahedron.

Due to the interpolation based on different triangles/tetra-

hedrons, discontinuity may occur for the DGRBF method. As

shown in Fig. 2, Node n is on the sharing edge of the Delaunay

triangle 4ABC and 4ACD. Obviously its displacement can be

computed by using either triangle. However, for shape defor-

mation, the results can be inconsistent when different triangles

are used. For the unstructured meshes, the nodes appearing on

an edge of the Delaunay triangle maybe rare; however, for the

structured meshes it happens from time to time. For the

DGMF method, the discontinuity problem aforementioned is

resolved. Taking Node n in Fig. 2 as an example and presum-

ing that Nodes B, C and D are dynamic boundary nodes, since

Node n is on Edge AC, eb and ed are equal to 0; thus, for either

Delaunay triangle, the displacement for the shape deformation

computed from Eqs. (3), (4) and (7) are the same dn ¼ fdc.

3. Results and discussion

3.1. Rotating rectangle

One of the major disadvantages of the original Delaunay map-

ping method is its difficulty in handling large rotational prob-

lems. Hence, as the first test case, the capability for dealing

with the large rotational problem was tested. The original

mesh is shown in Fig. 3.

The rectangle in the middle rotated around its center from

10� to 90�. Therefore, the interior nodes of the mesh can be

computed as

sx ¼ x� xcð Þcos hfð Þ þ y� ycð Þsin hfð Þ þ xc

sy ¼ y� ycð Þcos hfð Þ � x� xcð Þsin hfð Þ þ yc

It should be noted that all the meshes were deformed

directly from the original mesh without any intermediate steps

in this paper. Therefore, only one Delaunay graph was needed.

The r0s = 1 was used for all the test cases in this paper; one can

restrain the impact region by increasing this value. The effect

of different damp functions is compared in Fig. 4, regarding

the averaged mesh quality and minimal mesh quality. In this

figure, the result of the DGM method is also included. The

size-skew metric Ft was used in this paper which assesses the

skewness and the size of the mesh.27 The essential properties

of the size-skew metric are

Ft = 1 element has equal angles and the same size as the

initial element.

Ft = 0 element is degenerated.

The damp function f2, f3 and f4 show better averaged mesh

quality but worse minimal mesh quality, while f5 and f6 show

worse averaged mesh quality with better minimal mesh quality.

Function f1 is in the middle place among the all. The high-

order functions (f2, f3 and f4) slowly decay in the near bound-

ary region, whereby the mesh quality in this region is well pre-

served; out of this region, they quickly decrease, resulting in a

sudden transition whereby low-quality cells may be generated

in this region, which cause a low minimal mesh quality. In con-

trast, the lower order functions (f4 and f5) decrease in a rela-

tively even way, hence the transition is quite smooth,

resulting in a high minimal mesh quality. However, the mesh

quality in the near boundary region is not as good as the high

order functions. It is found in this figure that function f1 shows

moderate averaged mesh quality and minimal mesh quality,

and the mesh quality near the boundary can be largely main-

tained. Therefore in this paper, this function was used as the

damp function for the rest of the test cases. The deformed

meshes are shown in Figs. 5 and 6. The new method well pre-

serves the mesh quality near the moving boundary; while the

DGM method does not.

3.2. Rotating circle

To further test the capability of the new method in handling

rotation motion, a rotating circle mesh (in Fig. 7) was tested.

The radius of the circle is 1 unit and the outer boundary is a

square with a 10-unit-side. The mesh quality is compared in

Fig. 8. In this case, the DGMF method is compared with both

the DGM and RBF methods. The DGMF method shows the

best mesh quality among the three. As shown in Fig. 9, the

DGMF method well reserves the mesh quality for 90� rotation,

whereby the mesh quality contour further verifies that the

DGMF method can well handle the rotation motion. The

DGM method, as mentioned earlier, was difficult to handle

the rotation problem, therefore for 90� rotation it failed to gen-

erate a valid mesh. Based on the displacement of the boundary

nodes, the RBF method interpolates the displacement of inte-

rior nodes. However, for this case, it does not well preserve the

mesh quality near the boundary. From the two test cases, it is

found that this new method can well deform the mesh for rigid

body rotation problems.

3.3. Twisted bar with rotation

Normally, the DGM method is able to generate the high qual-

ity mesh for surface deformation problems such as twisted sur-

face. In this case, the capability in shape deformation problem

was tested along with the rotation motion. A bar with 10 unit

Table 2 Comparison of mesh quality for twisted bar with

rotation.

Mesh quality Averaged Minimal

RBF 0.747 0.014

DGM 0.793 0.019

DGRBF 0.862 0.296

DGMF1 0.873 0.496

DGMF2 0.880 0.530

Delaunay graph-based moving mesh method with damping functions 2099



Fig. 14 Mesh quality contour of twisted bar with rotation.
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long and 1 unit thick was first twisted and then rotated. The

original mesh is shown in Fig. 10. The shape deformation is

based on the bump function, which is

y1 ¼
Aexp �1

1� x
4ð Þ

2

� �

þ y �4 6 x 6 4

y else

8

<

:

x1 ¼ x

The bar was bended to form a horseshoe shape, and as the

parameter A increases the deformation becomes more severe in

Fig. 11. The displacement of the interior node for shape defor-

mation can be computed as

sx ¼ fAexp
�1

1� x
4

� �2

 !

or by Eq. (7). Based on the differences between the calculations

of the shape deformation displacement, the former one is

called DGMF1, and the latter one which uses Eq. (7) is called

DGMF2. The overall mesh qualities of the resultant meshes by

different methods are illustrated in Figs. 12 and 13, the mesh

quality contours are compared for A= 16 case. As the A

increases, both the averaged quality and minimal mesh quality

decrease for all the methods. Especially the minimal mesh

quality quickly descends to 0 for the RBF and DGRBF meth-

ods, i.e., the meshes become invalid for A= 32 case. The two

DGMF methods and the DGM method show similar high

averaged mesh quality and minimal mesh quality, for large

deformation (A= 32), all three methods can still generate

valid mesh with proper averaged mesh quality.

The bar was twisted and then rotated by 45�. The deformed

mesh was still based on the original mesh, particularly for the

DGM, DGRBF, DGMF1 and DGMF2 methods, and the

Delaunay graph was the same as the previous twisted case.

The overall mesh quality and mesh quality contours are

demonstrated in Table 2 and Fig. 14 respectively. Both the

RBF and DGM methods fail to preserve the mesh quality near

the two ends of the bar. Otherwise, the DGRBF and

DGMF1&2 methods well reserve the mesh quality, and show

the best averaged and minimal mesh quality among the all.

From all the 2D cases, it can be concluded that the DGMF

method can well handle the rotation problems, and for the

shape deformation, it shows similar quality mesh as the

DGM and DGRBF methods do.

3.4. 3D test cases

An unstructured mesh with 257909 nodes and 1507462 tetrahe-

drons based on a wing-body configuration was tested by the

proposed DGMF1 method. The initial and deformed configu-

rations are shown in Fig. 15, in which the wing was folded by

30�. The deformation is

z1 ¼

z0 þ 300sin30� y < �500

z0 � y0 þ 200ð Þsin30� �500 6 y 6 �200

z0 else

8

>

<

>

:

Therefore the displacement of the interior nodes is

sz ¼

300sin30�f y < �500

� y0 þ 200ð Þsin30�f �500 6 y 6 �200

0 else

8

>

<

>

:

The total CPU time for the DGM method is 0.356 s, while

for the DGMF1 method, it is 0.356 s, too. The DGMF1

method shows the same efficiency as the DGM method. Fur-

ther efficiency comparison will be discussed later. Fig. 16

shows the mesh quality contour, where the mesh near the

deformed wing is well preserved, and most of the meshes show

very good mesh quality.
Fig. 15 Wing-body configurations.

Fig. 16 Mesh quality contour for deformed wing.
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The efficiency of the method was also evaluated by different

sizes of the meshes. In Table 3 the CPU time calculated by dif-

ferent methods are compared. All the performances are mea-

sured on a single core 2.7 GHz Inteli7 processor. In the

comparison four different methods are used, namely the

DGM, DGMF, DGRBF and IDW. The RBF method is too

time-consuming, so it is not included in this comparison, and

the detailed information can be found in Ref.26. The DGM,

DGMF and DGRBF methods show quite similar efficiency,

which are significantly better than the IDW method. The

DGM and DGMF methods are slightly better than the

DGRBF method. The CPU time of the three Delaunay

graph-based methods increases almost linearly as the total

nodes of the mesh increase; while for the IDW method, it

increases as the product of increase in the total nodes and total

boundary nodes. The required CPU time for the Delaunay

graph-based methods can be roughly divided into three parts.

The first part is the generation of the Delaunay graph, of which

the cost is normally Nbplog(Nbp), where Nbp refers to the num-

ber of boundary points. The second part is the identification

process which is NsNvp where Ns is the number of searches

(according to the numerical test, the Ns is normally less than

10 for 3D)26 and vp stands for volume points. The computa-

tional costs of these two parts are exactly the same for all

the Delaunay graph-based methods. The third part is the map-

ping process in which the cost is Nvp for all the Delaunay

graph-based methods. The cost of the IDW method, however,

is NbpNvp. From the perspective of computational complexity,

it is clear that the costs of the Delaunay graph-based methods

are similar but much lower than that of the IDW method.

Thus it can be concluded that the Delaunay graph-based meth-

ods are much more efficient than the IDW method.

4. Conclusions

A novel dynamic method based on the Delaunay graph was

developed. This method can deform the mesh with both high

quality andhigh efficiency, especially for large rotationproblem.

A range of large deformation and rotation test cases shows that

thismethod can preserve themesh quality near the boundary for

both structured and unstructured mesh. This method inherits

the advantages of the efficiency of the Delaunay graph method

while addressing its robustness problem for large rotation. From

the large 3D test cases, the required CPU time using this method

increases almost linearly as the total node number increases,

indicating its suitability for extremely large mesh computations.
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