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a b s t r a c t 

It is well known that bone has an enormous adaptive capacity to mechanical loadings, and to this extent, 

several in vivo studies on mouse tibia use established cyclic compressive loading protocols to investigate 

the effects of mechanical stimuli. In these experiments, the applied axial load is well controlled but the 

positioning of the hind-limb between the loading endcaps may dramatically affect the strain distribution 

induced on the tibia. In this study, the full field strain distribution induced by a typical in vivo setup on 

mouse tibiae was investigated through a combination of in situ compressive testing, µCT scanning and 

a global digital volume correlation (DVC) approach. The precision of the DVC method and the effect of 

repositioning on the strain distributions were evaluated. Acceptable uncertainties of the DVC approach 

for the analysis of loaded tibiae (411 ± 58µɛ ) were found for nodal spacing of approximately 50 voxels 

(520 µm). When pairs of in situ preloaded and loaded images were registered, low variability of the strain 

distributions within the tibia were seen (range of mean differences in principal strains: 585–1800µɛ ). On 

contrary, larger differences were seen after repositioning (range of mean differences in principal strains: 

250 0–550 0µɛ ). To conclude, these preliminary results on thee specimens showed that the DVC approach 

applied to the mouse tibia can be precise enough to evaluate local strain distributions under loads, and 

that repositioning of the hind-limb within the testing machine can induce large differences in the strain 

distributions that should be accounted for when modelling this system. 

© 2018 The Authors. Published by Elsevier Ltd on behalf of IPEM. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

There is much experimental evidence of bone adapting its mass 

and structure to different loading conditions following mechan- 

otransduction (net bone resorption occurring at low strains and net 

bone formation occurring at high strains or micro-damage theories 

[1–9] ). However, the mechanisms are still unclear, and a compre- 

hensive understanding about how loads impact the bone remod- 

elling process is required in order to improve diagnostic meth- 

ods and treatments for bone pathologies. Mice models are used 

intensively for investigating the impact of mechanical stimuli on 

bone remodelling in the mouse tibia [10–14] by studying bone 

response to physiological ( e.g,. running on treadmill) [15,16] and 

para-physiological [11–13] loading conditions. In the former case 

it is difficult, if not impossible to control the applied load during 

activities. In the latter, a passive axial compression of the mouse 

∗ Corresponding author at: Department of Oncology and Metabolism, Mellanby 

Centre for Bone Research, University of Sheffield, UK. 

E-mail address: mario.giorgi@certara.com (M. Giorgi). 

tibia is applied through the ankle and the knee joints. By using this 

configuration, several studies assessed bone response on mouse 

tibia to well defined cyclic compressive loading in vivo by varying, 

for example, the peak loads, waveforms, frequency and number of 

cycles [6,12,13,17–21] . 

However, these experimental measurements are not trivial for 

mice bones, due to the difficult control of the positioning of the 

hind-limb between the loading endcaps (at the knee and ankle). In 

fact, while in such experiments the applied axial load is well con- 

trolled, the distribution of strains induced on the tibia through the 

joints, depends on the relative position of the bones and may differ 

from one loading session to another, or among animals. Therefore, 

we need to measure more effectively the variability of strain distri- 

bution induced by the loading procedure. Strain gauges [22,23] can 

be used for local measurements of strain, but are disputed for 

several reasons: possible reinforcement effects for small structures 

like the mouse tibia, averaging properties over a large surface, and 

are limited to a few discrete measurements [24,25] . Digital image 

correlation (DIC) techniques have been used to measure strains 

on deforming mice bones [26,27] . However, while DIC can pro- 
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Fig. 1. (A) Custom-made loading device used for in situ scans with zoomed region where the lower limb is placed (red box); (B) example of lower limb used for in situ 

scanning which has been surgically detached from the mouse body; (C) example of the in situ custom-made loading device within the µCT system (red arrow). 

vide spatially richer information compared with strain gauges, it 

is restricted to a portion of the external bone surface, missing the 

potential of exploring the strain distribution within the bone due 

to microstructural heterogeneity [25,28] . Recently, digital volume 

correlation (DVC) applied to µCT images of specimens scanned in 

un-deformed and deformed configurations has been used to es- 

timate the internal displacements and strain distribution of tra- 

becular bone specimens extracted from human or animal tissue 

[29–32] , cortical bone from the mid-diaphysis of mice femora [33] , 

and on whole human [34] or porcine [35] vertebral bodies. For 

every new DVC application, it is fundamental to carefully mea- 

sure the precision of the technique before any direct application 

[36] . This evaluation can be performed either with repeated scan 

measurements in zero-strain condition [37–39] , which account for 

the image noise, or by registering virtually stretched images [33] , 

which probably underestimates the uncertainties due to the ab- 

sence of the image noise [38] . To the best of the authors’ knowl- 

edge, nobody has evaluated the precision of the DVC for bone ap- 

plications under loading, and at the same time accounted for the 

image noise. Moreover, no DVC studies have been reported on the 

estimation of internal strain of the whole mouse tibia under con- 

trolled loads. 

The aim of this study is to investigate the variability in the full 

field strain distribution induced by the same loading conditions of 

in vivo loading experiments of the mouse tibia. In order to achieve 

this goal, in this study, the precision error of a global DVC ap- 

proach for investigation of local strains was initially assessed on 

the whole mouse tibia in preloaded and loaded conditions in situ , 

and then the effect of repositioning on the strain distribution was 

evaluated. In addition, the precision error of this DVC technique 

was also evaluated in zero-strain (unloaded) ex vivo and in vivo 

conditions (see supplementary materials). 

2. Materials and methods 

2.1. Specimens and scanning 

Three mice (C57BL/6J, female, 22-weeks-old) tibiae collected 

from a previous study [40] were scanned in situ (legs isolated and 

placed in a custom made jig). Each tibia was scanned five times 

in preloaded and loaded conditions (see below for details). Each 

specimen was scanned [40] by using an in vivo µCT system (vivaCT 

80, Scanco Medical, Bruettisellen, Switzerland) with the following 

scanning parameters: voltage of 55 keV, intensity of 145 µA, in- 

tegration time of 200 ms, nominal isotropic image voxel size of 

10.4 µm for a total scanning time of approximately 40 minutes per 

scan. Beam hardening artefacts were reduced by applying a third- 

order polynomial correction algorithm provided by the manufac- 

turer based on scans of 1200 mgHA/cm 3 wedge phantom. All pro- 

cedures were approved by the local Research Ethics Committee of 

the University of Sheffield (Sheffield, UK). 

2.1.1. In situ scans 

In order to evaluate the precision and accuracy of the DVC 

under compressive loads, a custom-made loading device that fits 

within the µCT system was designed. The jig was used to ap- 

ply a controlled axial compression load between the knee and 

ankle joints ( Fig. 1 (A) and (C)), reproducing the typical bound- 

ary conditions of in vivo compression experiments of the mouse 

tibia used to study bone remodelling and mechano-regulation [23] . 

Three right lower limbs were detached from three mice surgically 

by dislocating the femur from the pelvis ( Fig. 1 (B)). A 100 N load 

cell (C9C, HBM, United Kingdom; accuracy class 0.2) was used to 

measure the compressive axial load, applied quasi-statically with 

a screw-ball joint. Each specimen was scanned five times: twice 

after the application of a preload (0.5 N; later referred to as 

“Preloaded1” and “Preloaded2”) without repositioning in between 

the scans, twice after the application of a load (13 N, typically used 

for in vivo loading protocols [23] ; later referred to as “Loaded1”

and “Loaded2”) without repositioning between the scans, and once 

in a loaded configuration after repositioning the specimen (13 N; 

later referred to as “Repositioned”) for simulating what would hap- 

pen in vivo between two loading sessions. At least 30 min were 

waited after the application of the load step in order to allow 

for the relaxation of the tissues. These scans were used to eval- 

uate the precision of DVC in constant strain conditions by regis- 

tering the repeated preloaded (RegP: Preloaded1 registered with 

Preloaded2, Table1 ) and repeated loaded (RegL: Loaded1 registered 

with Loaded2, Table1 ) scans. Moreover, to evaluate the variabil- 

ity in the distribution of the strain when the same specimen is 

loaded twice, a preloaded scan was registered with both loaded 

scans before (Reg2: Preloaded2 registered with Loaded2, Table1 ) 

and after (Reg3: Preloaded2 registered with Repositioned, Table1 ) 

repositioning. In order to investigate the strain variability between 

the two loaded conditions (before and after repositioning), the 

same preloaded set of images was used to minimise the effect 
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Table 1. 

Summary of all preformed registrations. 

Sample Test Registration Image1 Image2 Repositioning Rigid Reg. NS Output Sample size 

In situ Constant strain Loaded RegP Preloaded1 Preloaded2 No Yes 10–150 Prec. error 3 

Constant strain Loaded RegL Loaded1 Loaded2 No Yes 10–150 Prec. error 3 

Strain distribution Reg1 Preloaded2 Loaded1 No Yes 50 Strain distr. 3 

Strain distribution Reg2 Preloaded2 Loaded2 No Yes 50 Strain distr. 3 

Variability strain distribution Reg3 Preloaded2 Repositioned Yes Yes 50 Strain distr. 3 

of image noise and interpolation. The deformable registration ap- 

proach will account for potential rigid body motion between the 

preloaded condition before and after the repositioning, and the ef- 

fect of repositioning on the strain distribution was computed (see 

Section 2.2 for details). 

2.2. DVC protocol 

After image reconstruction, each pair of images were first, 

rigidly registered using AMIRA software with normalised mutual 

information metric, and then a deformable image registration al- 

gorithm (ShIRT – Sheffield Image Registration toolkit [41–43] was 

used to compute the displacements at the nodes of an isotropic 

grid with selectable nodal spacing (NS) superimposed to the im- 

ages. Since it has been shown that NS affects nonlinearly the DVC 

strain measurement uncertainties for bone tissue [36,44] , in or- 

der to choose the optimal NS, the precision was evaluated for NS 

from 10 to 150 voxels (equivalent to 104 to 1560 µm), in steps 

of 10 voxels. A masked image of the preloaded (Preloaded1) or 

loaded (Loaded1) tibia (without the fibula) was generated by using 

the image processing and segmentation tools available in MATLAB 

(the MathWorks, Inc.) for the tests performed on the preloaded or 

loaded repeated images, respectively. A custom-made MATLAB (the 

MathWorks, Inc.) script was used to eliminate all the points of the 

grid not belonging to the bone. After this filter, all the cells of 

the DVC grid with at least one node within the bone mask were 

kept. All the remaining nodes of the grid were then converted 

into 8-node hexahedron elements with the respective computed 

displacements as kinematic boundary conditions. A finite element 

(FE) software package (ANSYS, Mechanical APDL v.15.0, Ansys, Inc, 

USA) was used to compute in each node of the DVC grid the 

components of the strain tensor, the first (tension, εp 1 ) and third 

(compression, εp 3 ) principal strains, and the average of the ab- 

solute values of the six components of the Cauchy’s infinitesimal 

strain tensor ( εm ), as proposed in the literature [37,39] . The entire 

workflow is shown in Fig. 2 . Table 1 summarises all the registra- 

tions performed on the sample. 

2.3. Comparisons and statistics 

Two different analyses were performed in this study: 

(1) Precision and accuracy of the DVC for the whole mice tibia 

as a function of different NS in preloaded and loaded con- 

ditions for in situ samples. Repeated images from the in situ 

Fig. 2. Schematic representation of the entire workflow used for all the analysis. Two pair of images (un-deformed and deformed) are given as input (blue box) to Amira 

software where the rigid registration is computed (red box). The new resample pair of images are then given as input to ShiRT (green box) as well as a mask of the un- 

deformed image generated by Matlab (purple box). The output from ShiRT as well as the un-deformed mask are given as input to the Voxel Detection Toolkit (VDt). VDt 

remove all the voxels not included in the mask providing the strains information of the region of interest only. 
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Table 2. 

Mean and standard deviation of the nodal values of principal tensile ( εp 1 ) and compressive ( εp 3 ) strain for Reg1, Reg2 and Reg3. Mean, standard deviation and range of 

the differences between the nodal values of principal tensile ( εp 1 ) and compressive ( εp 3 ) strain for Reg1 vs. Reg2 (Reg1/Reg2), and for Reg1 vs. Reg3 (Reg1/Reg3). For these 

analyses the DVC cells with the centroid within the whole bone mask were included. Results are reported for each specimen. 

Sample Reg1 Reg2 Reg3 Reg1/Reg2 Range Reg1/Reg3 Range 

Mean for each registration and differences between registrations for Min Principal Strain ( ɛ p 3 ) [µɛ ] 

Specimen1 −13,919 ± 6701 −13,646 ± 6835 −16,971 ± 7616 −273 ± 890 −4179/2074 3052 ± 5526 −9666/17,144 

Specimen2 −10,919 ± 4573 −9824 ± 4588 −8839 ± 4522 −1096 ± 625 −3632/670 −2080 ± 2554 −9537/4725 

Specimen3 −16,882 ± 5673 −16,789 ± 5827 −19,267 ± 7422 −93 ± 875 −1996/2187 2385 ± 6076 −8676/17,246 

Differences in Max Principal Strain ( ɛ p 1 ) [µɛ ] 

Specimen1 9387 ± 5524 9131 ± 5686 13,813 ± 7703 256 ± 742 −2428/4016 −4427 ± 5649 −20,392/8561 

Specimen2 10,195 ± 4164 12,199 ± 4335 10,880 ± 4334 −2004 ± 836 −4946/157 −686 ± 3146 −10,423/8664 

Specimen3 10,286 ± 5891 10,111 ± 6067 14,127 ± 8898 174 ± 722 −1582/2048 −3842 ± 5805 −18,461/8352 

Table 3. 

Mean and standard deviation of the nodal values of principal tensile ( εp 1 ) and compressive ( εp 3 ) strain for Reg1, Reg2 and Reg3. Mean, standard deviation and range of 

the differences between the nodal values of principal tensile ( εp 1) and compressive ( εp 3 ) strain for Reg1 vs. Reg2 (Reg1/Reg2), and for Reg1 vs. Reg3 (Reg1/Reg3). For these 

analyses the DVC cells with the centroid within the top (Proximal), middle (Mid-Shaft) or bottom (Distal) third of the tibia were included. Results are reported for each 

specimen. 

Region Sample Reg1 Reg2 Reg3 Reg1/Reg2 Range Reg1/Reg3 Range 

Mean for each registration and differences between registrations for Min Principal Strain ( ɛ p 3 ) [µɛ ] 

Proximal Specimen1 −18,772 ± 6649 −18,526 ± 6941 −23,207 ± 6844 −247 ± 808 −2723/1219 4434 ± 3822 −8395/13,518 

Proximal Specimen2 −12,268 ± 3423 −11,223 ± 3489 −12,216 ± 3804 −1046 ± 564 −2189/670 −52 ± 1504 −4308/4725 

Proximal Specimen3 −22,380 ± 3437 −22,514 ± 3589 −26,749 ± 3658 133 ± 640 −1150/1598 4369 ± 3187 −3544/9759 

Mid-shaft Specimen1 −14,369 ± 3975 −14,519 ± 3614 −14,253 ± 6642 150 ± 982 −3075/2074 −116 ± 5184 −9666/14,792 

Mid-shaft Specimen2 −8534 ± 4294 −7504 ± 4347 −6283 ± 3749 −1031 ± 571 −2372/172 −2252 ± 2324 −9537/1584 

Mid-shaft Specimen3 −16,825 ± 2970 −17,004 ± 2390 −14,801 ± 7335 178 ± 1057 −1514/2187 −2025 ± 5234 −8676/9177 

Distal Specimen1 −8615 ± 4804 −7893 ± 4634 −13,452 ± 4978 −722 ± 622 −4179/387 4837 ± 5942 −8557/17,144 

Distal Specimen2 −11,954 ± 4935 −10,744 ± 4923 −8018 ± 3800 −1210 ± 717 −3632/ −144 −3937 ± 2093 −9393 ± /1028 

Distal Specimen3 −11,447 ± 4070 −10,848 ± 3943 −16,310 ± 3748 −600 ± 637 −1996/982 4862 ± 6664 −6197/17,246 

Differences in Max Principal Strain ( ɛ p 1 ) [µɛ ] 

Proximal Specimen1 15,181 ± 4879 15,408 ± 4804 20,575 ± 7816 −227 ± 646 −2428/1826 −5394 ± 5052 −20,392/4468 

Proximal Specimen2 12,092 ± 3965 13,828 ± 4263 12,458 ± 4796 −1737 ± 666 −3285/ −554 −366 ± 3343 −10,423/6361 

Proximal Specimen3 16,712 ± 5385 17,131 ± 5129 22,460 ± 8890 −419 ± 525 −1582/709 −5748 ± 4894 −18,461/1294 

Mid-shaft Specimen1 7568 ± 2660 7251 ± 2302 7329 ± 4207 317 ± 661 −1112/3320 239 ± 3647 −10,866/8561 

Mid-shaft Specimen2 7505 ± 3013 9695 ± 3287 7325 ± 1898 −2190 ± 696 −3887/ −773 179 ± 2357 −4593/5006 

Mid-shaft Specimen3 7354 ± 2200 7012 ± 1865 6079 ± 2847 341 ± 578 −511/1964 1275 ± 2605 −5928/8352 

Distal Specimen1 5411 ± 2832 4734 ± 2526 13,534 ± 3405 676 ± 626 −1206/4016 −8124 ± 4551 −18,0 0 0/3150 

Distal Specimen2 10,988 ± 3999 13,073 ± 4243 12,858 ± 3303 −2085 ± 1035 −4946/157 −1870 ± 3300 −7335/8664 

Distal Specimen3 6782 ± 2930 6188 ± 2607 13,910 ± 4115 594 ± 640 −778/2048 −7128 ± 5475 −18,403/1433 

scans for both preloaded (0.5 N, later referred to as “RegP”, 

Table 1 ) and loaded (13 N, later referred to as “RegL”, Table1 ) 

conditions were registered and the following statistics were 

computed: the standard deviation of the error (SDER, [40] ) 

as the standard deviation of the εm values at each measure- 

ment points; the mean absolute error (MAER, [40] ) as the 

mean of the εm values at each measurement points. SDER 

and MAER were reported as a function of the different NS 

considered. Power laws were fitted between the medians of 

the values for the different samples and the NS. Standard 

deviations are reported in the figures as error bars and coef- 

ficients of determination ( R 2 ) were computed for each power 

law. These analyses estimated the relationship between DVC 

uncertainties and NS in loaded conditions. 

(2) Variability of the strain distribution in the mouse tibia if the 

hind-limb is repositioned in the testing machine imposing 

the same axial load. Preloaded and loaded images (before 

and after repositioning) from the in situ scans were regis- 

tered with a NS equal to 50 voxels. Each tibia was cut be- 

low the growth plate in its proximal part, and below the at- 

tachment point with the fibula in its distal part. For each 

registration εp 1 and εp 3 were computed in each node. To 

evaluate the differences between the considered registra- 

tions (Reg1 between the second preloaded scan and the first 

loaded scan vs. Reg2, between the second preloaded scan 

and the second loaded scan, and vs. Reg3, between the sec- 

ond preloaded scan and the loaded scan after repositioning; 

Table1 ) for each specimen the following parameters were 

computed: 

- mean and standard deviation of the nodal values εp 3 or 

εp 1 for each registration (Reg1, Reg2, Reg3) for the whole 

specimens ( Table2 ); 

- mean, standard deviation and range of the difference be- 

tween the nodal values εp 3 or εp 1 computed for regis- 

tration Reg1 and Reg2 (Reg1/Reg2, Table2 ) or for regis- 

tration Reg1 and Reg3 (Reg1/Reg3, Table2 ), for the whole 

specimen; 

- mean and standard deviation of the nodal values εp 3 

or εp 1 for each registration (Reg1, Reg2, Reg3) for the 

top (Proximal), middle (Mid-Shaft) and bottom (Distal) 

thirds of the specimen according to their axial position 

( Table 3 ); 

- mean, standard deviation and range of the difference be- 

tween the nodal values εp 3 or εp 1 computed for regis- 

tration Reg1 and Reg2 (Reg1/Reg2, Table3 ) or for the reg- 

istration Reg1 and Reg3 (Reg1/Reg3, Table3 ), for the top 

(Proximal), middle (Mid-Shaft) and bottom (Distal) thirds 

of the specimen according to their axial position ( Table3 ). 

In order to avoid peaks of differences outside the bone region 

for this analysis, the cells of the DVC grid with centroid within the 

bone mask were included. These measurements of strain distribu- 

tion on the mouse tibiae estimated the effect of repositioning in 

vivo if the leg is loaded with the same axial compressive load. 
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Fig. 3. Median of the standard deviation of the error (SDER) and of the mean absolute error (MAER) for in situ preloaded (black, N = 3) and in situ loaded (green, N = 3) 

conditions. Data are reported for the different tested nodal spacing (NS). Error bars represent standard deviations. 

3. Results 

3.1. DVC precision and accuracy for loaded condition for in situ 

analyses 

The results show, as expected, a strong power relationship 

between both MAER and SDER with respect to the NS (MAER: 

R 2 = 0.943 for “in situ preloaded” and R 2 = 0.971 for “in 

situ loaded” images, respectively; SDER: R 2 = 0.934 for “in situ 

preloaded” and R 2 = 0.971 for “in situ loaded” images, respectively) 

with lower SDER for higher NS ( Fig. 3 ). The DVC applied to in situ 

scans showed a SDER for preloaded and loaded conditions equal to 

2249 ± 344µɛ and 2144 ± 82µɛ respectively, for NS of 10 voxels, 

to 440 ± 105µɛ and 411 ± 58µɛ for NS equal to 50 voxels, and of 

156 ± 90µɛ and 147 ± 81µɛ for NS equal to 150 voxels ( Fig. 3 ). 

For NS equal to 50 voxels homogeneous patterns of the error were 

found as reported for other bone structures [41,45] . 

3.2. Strain distribution before and after repositioning 

Results from the strain distribution within the tibia measured 

twice with DVC on the whole leg loaded at the same level, without 

repositioning showed similar, but not identical strain distributions 

for all three specimens analysed ( Figs. 4 and 5 ). Before reposition- 

ing, the ranges of the mean differences for first and third principal 

strains for the three specimens were −2004 to 256µɛ and −1096 to 

−93µɛ , respectively ( Table 2 ). Larger differences in strain distribu- 

tions were found after repositioning, with ranges of the mean dif- 

ferences for first and third principal strains for the three specimens 

of −4427 to −686µɛ and −2080 to 3052µɛ , respectively ( Table 2 ). 

In addition, frequency plots for all registrations (before reposition- 

ing: Reg1, Reg2; after repositioning: Reg3) show, for specimen 1 

and 3, a shift of the first and third principal strains after reposi- 

tioning ( Fig. 6 ). 

The strain distribution for each registration and the differences 

in strain distributions before and after repositioning showed to be 

different from the different analysed sub-regions ( Table3 ). In par- 

ticular, for all specimens during the first and second loading (Reg1 

and Reg2, before repositioning) the principal strains were higher in 

the most proximal part of the tibia compared to those in the mid- 

shaft and in the distal part. Differences between the strain distri- 

butions before repositioning (Reg1/Reg2) were similar for the three 

regions. Conversely, differences between the strain distributions af- 

ter repositioning (Reg1/Reg3) were different for the sub-regions, 
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Fig. 4. Variability of the first principal strain ( εp 1 ) distribution within the tibia measured with DVC on whole leg loaded at the same compressive axial load level (13 N) 

without (Reg1: Preloaded2 vs. Loaded1; Reg2: Preloaded2 vs. Loaded2) and after repositioning (Reg3: Preloaded2 vs. Repositioned) for three different specimens. Results, 

obtained with a NS equal to 50 voxels, are shown for the 3D volume (left, for this visualization the DVC cells with at least one node within the bone mask were included), 

and for a longitudinal section (right, the strain distributions obtained from the registrations were overlapped with a mask of the longitudinal section of the same tibia. These 

analyses were conducted for a sub-sample of the tibiae (80% of the tibia calculated from just below the proximal growth plate). 

highlighting that the effect of the repositioning affected the load- 

ing condition the specimens were subjected to. 

4. Discussion 

The aim of this study was to investigate the full field strain dis- 

tribution within the mouse tibia induced by typical loading con- 

ditions applied during in vivo loading experiments of the mouse 

hind-limb, by using a combination of in situ mechanical testing, 

µCT scanning and a global DVC approach. In particular, the pre- 

cision of the DVC method in loaded conditions, and the effect of 

repositioning on the strain distributions were evaluated. 

One of the limitations of the previous studies that evaluated the 

precision of DVC is that unloaded images (zero-strain) were used 

[37,41] . However, it is interesting to understand its precision when 

the specimens are subjected to loading. The results of this study 

showed that the MAER and the SDER computed from in situ pairs 

of repeated preloaded (0.5 N compression) or loaded (13 N com- 

pression) images was very similar, therefore confirming that this 

DVC approach is robust according to the considered input images. 

In vivo experiments on female C57BL/6 mice with single ele- 

ment strain gauges (sensor area lower then 2 mm 2 ) attached to 

the medial surface of the tibial diaphysis, showed averaged strains 

of up to 20 0 0µɛ when axially loaded at 12 N with the in vivo tibia 

model. Moreover, when similar experiments were performed us- 

ing DIC (with 12 N axial load), peaks of 50 0 0µɛ were found in 

the same region (anterior-medial side) of the mouse tibia [26] . 

Considering that the diameter of the tibia is between 10 0 0 µm 

and 20 0 0 µm along its axis, the DVC method can be used to 

classify regions above and below such a limit, only for NS of 
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Fig. 5. Variability of the third principal strain ( εp 3 ) distribution within the tibia measured with DVC on whole leg loaded at the same compressive axial load level (13 N) 

without (Reg1: Preloaded2 vs. Loaded1; Reg2: Preloaded2 vs. Loaded2) and after repositioning (Reg3: Preloaded2 vs. Repositioned) for three different specimens. Results, 

obtained with a NS equal to 50 voxels, are shown for the 3D volume (left, for this visualization the DVC cells with at least one node within the bone mask were included), 

and for a longitudinal section (right, the strain distributions obtained from the registrations were overlapped with a mask of the longitudinal section of the same tibia. These 

analyses were conducted for a sub-sample of the tibiae (80% of the tibia calculated from just below the proximal growth plate). 

approximately 50 voxels, which provides reasonable uncertain- 

ties for both in situ preloaded (440 ± 105µɛ ), and in situ loaded 

(411 ± 58µɛ for NS equal to 50 voxels, equivalent to 520 µm) con- 

ditions (see Supplementary material for ex vivo and in vivo anal- 

yses). Indeed, this measurement spatial resolution is enough to 

evaluate heterogeneous strain localisation within the tibia along 

both longitudinal and transverse directions, but it cannot provide 

an heterogeneous map of strains within the single bone structural 

units (lamellae in the cortex or single trabeculae) for which higher 

image resolution is needed [46] . 

When pairs of microCT images acquired in the preloaded 

(Preloaded2) and loaded (Loaded1 or Loaded2) conditions with- 

out repositioning were registered, similar strain patterns were ob- 

served for all specimens ( Figs. 4 and 5 – Reg1, Reg2) with mean 

differences below 20 0 0µɛ . In case of Specimen2 these values were 

higher than the estimated uncertainties of the measurement esti- 

mated in zero-strain or constant strain (due to image noise, rigid 

registration and interpolation, which were below 510µɛ ), show- 

ing a potential effect of the heterogeneous strain distribution on 

the precision of the method. Both distribution and magnitude of 

strains were similar but not identical, probably due to the intrin- 

sic characteristics of the tested specimens such as size and shape, 

bone microstructure, and due to the variability in boundary con- 

ditions. Nevertheless, the strain distribution showed larger differ- 

ences in specific regions of the bone (for example the distal end 

for Specimen1 and Specimen3) after repositioning ( Figs. 4 and 5 –

Reg3; Table3 ). Moreover, in this case, higher tensile and compres- 

sive principal strains in similar regions of the tibia were reported 
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Fig. 6. Frequency plots without (Reg1: Preloaded2 vs. Loaded1; Reg2: Preloaded2 vs. Loaded2) and after repositioning (Reg3: Preloaded2 vs. Repositioned) of both first and 

third principal strain for the three different specimens. 

( Figs. 4 and 5 ). This is also underlined by the large mean differ- 

ences between the strain before and after repositioning ( −4427 to 

−686µɛ in first principal strain and −2080 to 3052µɛ in third prin- 

cipal strain, compared to mean differences in the range of −2004 

to 256µɛ without repositioning) and highlights the possible vari- 

ability induced by the repositioning in the in vivo loading experi- 

ments. Furthermore, big differences between differences in strain 

distributions were found after repositioning for the different sub- 

regions ( Table3 ). The variability of the strain is probably due to the 

different loading conditions applied to the tibia through the tis- 

sues of the joint when the hind-limb is repositioned. Small differ- 

ences in the repositioning can lead to large transverse loads at the 

knee and ankle that induce bending on the tibia, which could be 

only partially compensated for by the fibula. While this variability 

is not necessarily deleterious when studying the effect of a spec- 

trum of loading scenarios on bone remodelling [11,47] , it should 

be accounted for in case computational models are compared to 

experimental results [10,48–50] . 

Finite element models could be used to evaluate the effect of 

different boundary conditions on the internal strains within the 

mouse tibia, with a measurement spatial resolution even higher 

than DVC. However, since the current experimental approaches are 

not accurate enough to have a proper validation of the 3D inter- 

nal strain field, these models have not been quantitatively vali- 

dated for the prediction of strain. Moreover, the assignment of re- 

alistic boundary conditions in the FE models is not trivial due to 

the fact that in the in vivo tibia loading model, only the axial load 

between the knee and ankle joint is controlled, leaving undeter- 

mined the actual boundary conditions on the tibia. This limita- 

tion can be overcome with DVC measurements. Digital image cor- 

relation (DIC) is also intensively used to evaluate the strain dis- 

tribution during loading. However, this approach is restricted to 
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measurements in a portion of the external surface of the bone, 

missing the potential of exploring the strain distribution within 

the bone, driven by the density and morphology of the underneath 

structures. 

This study has a number of limitations. Results obtained on 

the analysis of the strain distribution from the repositioning were 

based on a limited number of specimens due to the large num- 

ber of scans performed and the time needed to post-process the 

data. Only two of the three tested specimens behaved very sim- 

ilarly when distributions of strains were compared before and af- 

ter repositioning, underlying some intrinsic variability among spec- 

imens. Therefore, in order generalize the findings and to provide a 

database consisting of a possible spectrum of loading conditions 

on the mouse tibia, induced by loading of the hind-limb, a larger 

number of specimens will be tested in the future. Secondly, the 

variability in strain due to repositioning found in this study is re- 

lated to the specific endcaps used in our in vivo loading protocol. 

Different loading procedures may lead to lower or larger variabil- 

ity of the strain distribution, but the approach presented in this 

study can be used to quantify them with minor adaptations of the 

loading jig. Thirdly, the quasi-static compression required to per- 

form stepwise loading during the µCT scans is driven by a load- 

ing rate which is much lower than the one used in vivo loading. 

Moreover, comparisons with strain gauges or DIC were not per- 

formed. The former would have created local artefacts in the µCT 

images that would have affected the DVC measurement, and the 

latter because with the current set-up was impossible to fit the 

DIC system inside the µCT device. Finally, one DVC approach was 

used for this study. Nevertheless, researchers are welcome to con- 

tact the corresponding author who will share the data used in this 

study for comparing different methods or download them from 

https://doi.org/10.15131/shef.data.7058078 . 

In conclusion, this study presents an approach to evaluate the 

full field strain distribution within the mouse tibia induced by 

a typical loading condition applied during in vivo loading exper- 

iments of the mouse hind-limb. These preliminary results have 

shown that the DVC approach applied to the mouse tibia can be 

precise enough to evaluate local deformations with a spatial res- 

olution of approximately 500 µm. Furthermore, the repositioning 

of the hind-limb within the testing machine can induce large dif- 

ferences in the strain distributions that should be accounted for 

when evaluating mechano-regulated bone remodelling ( e.g., bone 

changes in a region) and comparing the results with computational 

models ( e.g. , strain energy density or strain level in a certain re- 

gion of the bone). This variability, which is probably due to the dif- 

ferent (transverse) loading conditions applied to the tibia through 

the joints when the hind-limb is repositioned, suggests that an ap- 

proach including stochasticity in the assignement of the boundary 

conditions in the FE models may lead to more realistic results. In 

addition, this method can be used to optimise the design of the 

mechanical plugs used in the in vivo loading tests in order to re- 

duce the variability to a minumum. 
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