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ABSTRACT 

This paper develops computational models to study thermal airflow distribution when cooling a 

data center. The thermal airflow distribution study employs three computational approaches, 

namely finite element, finite volume and lattice Boltzmann methods, which are respectively 

implemented via commercial Multiphysics software, opensource CFD code and home grown GPU 

based code. The results focus on comparison of the three methods, all of which include models for 

turbulence, when applied to 2 rows of racks with cool air supplied by a plenum. Advantages and 

disadvantages of the three computational methods are addressed in terms of application to thermal 

management of data centers. 

Key Words: Data center cooling, Lattice Boltzmann, Finite Elements, Finite Volume. 

1. INTRODUCTION 

A data center hosts a large number of datacom systems, usually laid out in 2m tall racks. The 

expansive layout of datacom systems in a data center results in a distributed and dynamic 

generation of heat that needs to be transported by the air and rejected to the outside environment 

using heat exchangers and chillers. The global growth in the number and size of data centers means 

that they account for more than 1.5% of global electricity consumption and approximately 45% of 

this energy is used to remove the heat from the datacom systems [1]. Improvements in energy 

efficiency are now becoming important to reduce costs and environmental impact based on good 

practice [2]. 

Managing air distributions in data centers is one way to help reduce inefficiencies, and this can be 

aided by the application of Computational Fluid Dynamics (CFD) models, in which it is possible to 

predict the presence of hot spots for both new and upgraded data center layouts [3].  This in turn 

enables the air distribution to be optimised to minimise energy consumption whilst ensuring a 

suitable thermal environment is provided.  CFD has been used successfully to investigate the impact 

of floor grilles [4], optimise placement of IT equipment [5] and study the effect of aisle containment 

[6]. The major challenges in producing accurate models are the multiple length-scales [3], from the 

chip to the room level, and the various modes of thermal transport and flow regimes [7]. 

CFD is an increasingly being applied to analyse air distributions in data centers as it offers a much 

greater resolution of data compared to most experimental approaches. However, there exist a range 

of modelling methods and software packages available for this task, each with individual 

advantages and disadvantages. This paper analyses the air flow through an simplified datacentre for 
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several different modelling strategies to identify the trade-offs between methodologies. The 

methods applied in this work are; i) a developed lattice Boltzmann method (LBM) GPU based 

program, ii) an opensource CFD finite volume method (FVM) based package OpenFOAM
1
, and the 

commercial CFD finite element method (FEM) based software Comsol
2
. Previous studies have 

demonstrated through experimental validation that CFD models can accurately predict data centre 

air flows and thermal environments [4-7]; this work aims to demonstrate the range of numerical 

methods available which produce similar results to tried and tested methods.  

2. MAIN BODY 

The geometry of the data center is designed to allow for a simple implementation in each of the 

numerical methods considered while keeping most of the characteristics of a typical data center. 

The data center floor space has a surface area of 28.8m
2
, comprised of ten racks that are organised 

in two rows. The datacom units in the racks have the fronts facing each other making up the cold 

aisle in the center. Each rack is separated into two datacom units along the height, so that the digital 

workload between the top half and bottom half of the rack can differ. This is a simplification as a 

rack would normally be composed of many more datacom systems. A computer room air 

conditioner (CRAC) unit is placed in line with the cold aisle at one end of the data center, and feeds 

cool air into the plenum under the floor as depicted in Figure 1. 

 

FIGURE 1. Schematic of the data center racks and the air flows. 

The cold air is supplied to the room at a constant temperature of 289K and a constant flow rate of 

1.134 m
3
/s through the bottom of the CRAC unit, which coincides with the top of the plenum as 

indicated in the schematic of Figure 1. Cold air travels in the plenum and then enters the room 

through the floor vents, modelled here as open holes and located equidistant between the two rows 

of racks. This is a simplified model, as in reality the plenum is supported by an array of legs to 

support the floor of the data center, but also there will be cables and/or pipes that would noticeably 

affect the distribution of velocities arriving at the floor vent. Floor grilles are used and contain 

detailed features that straighten the flow and affect its momentum, and they can sometimes be 

oriented to change the angle of the flow to provide the cool air where it is required. 

The air enters each datacom unit through their front-faces and exits from their back-faces after an 

increase in momentum and a rise in temperature. The volume flow rate through each datacom 

system, Qdatacom, as well as the temperature rise, ∆Tdatacom, are dependent on the datacom unit’s 

                                                           
1
 www.openfoam.org 

2
 www.comsol.com 
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power draw, Pdatacom, since Pdatacom = ρcpQdatacom∆Tdatacom. Therefore knowing the datacom unit’s 

power demand and air flowrate yields a value of temperature difference between the front and the 

back of the unit. The inlet to each datacom system is an outlet of the data center domain and the 

outlet from each datacom system is an inlet to the data center domain. The boundary conditions on 

each datacom unit for both air flowrate and temperature are linked as described by Summers et al 

[8]. All other boundary conditions are set as no-slip for the flow and insulating for the temperature 

field. The air flowrates are such that a turbulence model is required in the simulations. For the FEM 

and FVM the flows are solved under steady state conditions and the Reynolds Averaged Navier-

Stokes (RANS) is employed. Whereas the LBM is inherently transient and the turbulence is 

accounted for by the adoption of a Large Eddy Simulation (LES) approach. 

3. RESULTS 

To enable the comparison of the results between the three computational methods, the LBM results 

are required to be averaged over time, since these results are transient. This is achieved by 

averaging for 3 minutes (of physical time), starting after 2 minutes from an initial state of zero air 

velocity and a constant temperature everywhere in the room of 293K. Figure 2 demonstrates the 

temperature and velocity fields for all three methods: the temperature at the back of the datacom 

systems shows similar distributions, the cold air coming up through the floor vents rises to 

approximately 1.6m in height. The full paper will show that the hot air is projected out of the back 

of the datacom systems with similar angles and strengths, all of which indicate similar treatment of 

the buoyancy effects in each of the three computational approaches. 

 

(a) FEM results (Comsol).                                     (b) FVM results (OpenFOAM) 

  

(b) LBM results                       (d) Geometrical position of cross section. 

FIGURE 2.Velocity and temperature fields at the cross section depicted in (d) for the three methods. 

A trend is confirmed by comparing the average temperature at each of the datacom inlets across the 

three computational approaches. For some datacom inlets all three methods give the same 

temperature within 1K, but for inlets of some datacom systems towards the center of the aisle, there 

is up to a 4K difference between the hottest and coldest prediction. Overall, the predicted 



 

THERMACOMP2016, July 6-8, 2016, Georgia Tech, Atlanta, USA 

N. Massarotti, P. Nithiarasu and Y. Joshi (Eds.) 

 

 

temperature at the datacom inlets agree well, but the LBM appears to give consistently a slightly 

higher temperature (by about 1 degree) than the other methods, this may be a side effect of using an 

LES turbulence model as opposed to the RANS model used for the FEM and FVM but is likely a 

result of the choice of the initial temperature. Each computational approach has its own 

performance constraints, levels of accuracy, stability and convergence conditions. The FEM 

solution required 403825 elements to meet a convergence criterion of 10
-5

 and took 52814 seconds 

to compute, the FVM solution required 1303093 cells to meet a convergence criterion of 10
-5

 and 

took 19996 seconds to compute. The LBM solution was computed on a regular grid composed of 

753984 lattice points with a time-step of 5x10
-3

s and took 300 seconds to compute (i.e. real-time). 

While being the fastest method for the given resolution and time-step, the LBM displays spurious 

thermal fluctuations that appear as a chequerboard pattern and are due to numerical instabilities. 

This work is also able to highlight the computational performance of both the FVM and FEM as 

well as identifying further aspects of the modelling approach and assumptions that position these 

computational techniques as valuable tools for analysing thermal air management of data centers. 

The full paper discusses the trade-offs of each of the computational methods, time required to 

develop the model (or technical knowledge required to apply the software) and additional 

challenges of modelling data center airflows. 

4. CONCLUSIONS 

The simulation results of thermal air flows in data centers obtained with three computational 

methods demonstrate good agreement in terms of the overall flow structures and the average 

temperatures at each datacom inlet. The level of accuracy achieved by the FVM, the FEM and the 

LBM are similar. There are clear advantages of using the LBM in respect to computational 

performance and applicability for transient flows, which also offers the potential to inform on the 

dynamic nature of real thermal air management of data centers. 
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