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Surface properties of biomaterials, such as chemistry and morphology, have a

major role in modulating cellular behavior and therefore impact on the development

of high-performance devices for biomedical applications, such as scaffolds for

tissue engineering and systems for drug delivery. Opportunely-designed micro- and

nanostructures provides a unique way of controlling cell-biomaterial interaction. This mini-

review discusses the current research on the use of electrospinning (extrusion of polymer

nanofibers upon the application of an electric field) as effective technique to fabricate

patterns of micro- and nano-scale resolution, and the corresponding biological studies.

The focus is on the effect of morphological cues, including fiber alignment, porosity

and surface roughness of electrospun mats, to direct cell migration and to influence

cell adhesion, differentiation and proliferation. Experimental studies are combined with

computational models that predict and correlate the surface composition of a biomaterial

with the response of cells in contact with it. The use of predictive models can facilitate

the rational design of new bio-interfaces.

Keywords: bio-interfaces, surface topography, electrospinning, micro-patterning, mathematical modeling

INTRODUCTION

The natural regeneration process of human tissues is strongly regulated by the interaction of
cells with the extracellular matrix (ECM) (Lutolf and Hubbell, 2005; Liu and Wang, 2014). ECM
is a dynamic and complex fibrous network of proteins and polysaccharides, such as collagen,
elastin, fibronectin, laminin, proteoglycans and glycosaminoglycans. Cells interact with ECM by
transmembrane receptors, known as integrins, that ligate with specific motifs of ECM proteins, for
example arginine, glycine and arginylglycylaspartic acid (RGD) peptides (Anderson et al., 2016;
Dalby et al., 2018). Cells continuously remodel the ECM environment, which, in turn, influences
cell behavior and fate (differentiation, proliferation and migration) by biochemical, physical and
mechanical signals (Geiger et al., 2001), and provides structural support to cells. Recent studies
have investigated the effects of ECM physical properties, particularly porosity, topography and
hierarchical 3D architecture, on cellular functions, and extrapolated rules to design structures for
effective tissue regeneration (Li et al., 2017; Marino et al., 2017; Lin et al., 2018).

One of the technologies that is widely used to produce ECM-mimicking structures and
particularly to replicate the fibrillar architecture of ECM is electrospinning (Khorshidi et al., 2016).
The electrospinning technique allows the production of networks of fibers with a diameter in
the range of few nm to few µm via the application of electrical forces to polymer solutions or
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melts (Bhardwaj and Kundu, 2010; Mele, 2016; Zhang et al.,
2016). Structural modifications of electrospun nanofibres, such as
altering topographical characteristics and inducing porosity, can
be achieved by controlling and varying the process parameters
(polymer concentration, applied voltage, evaporation rate of the
solvent used). Similarly, changes to the final makeup of the
fibrous network, such as alignment and patterning of fibers, can
be obtained by modifications of the electrospinning apparatus or
post-processing.

This mini review analyses a selection of recent works on
the use of solution electrospinning to create nanofibres with
engineered surface topography (random, aligned and patterned
fibers) for controlling adhesion, differentiation, and migration
of different cells lines. The mini review is divided in two main
sections: the first one will focus on experimental studies on
electrospun fibers that provide physical cues for cell growth and
differentiation; the second section will discuss computational
models to predict cell behavior on micropatterns. Although
mathematical models that simulate cell behavior on electrospun
fibers are not currently available, the computational approaches
here discussed can be adapted, in the future, to electrospun
scaffolds and used to elucidate the underlying mechanisms
responsible for cell-fiber interaction.

EFFECTS OF FIBER TOPOGRAPHY AND
MICRO-PATTERNING ON CELLULAR
RESPONSE

Multiple studies have demonstrated that the morphology and
roughness of fibers produced by electrospinning influence cell
adhesion, proliferation, and orientation (Sill and von Recum,
2008; Xie et al., 2008; Bergmeister et al., 2013; Cirillo et al., 2014;
Zhu et al., 2015; Sun et al., 2018). All factors that are imperative
for successful tissue regeneration (Agarwal et al., 2008). Cells
can sense topographical structures on a surface by filipodia that
are actin-rich protrusions (0.1–0.3µm in diameter) of the cell
membrane and are involved in cell contact guidance (Mattila
and Lappalainen, 2008; Dalby et al., 2014). If nanoscale aligned
features are present onto a surface, filopodia tend to orient
along the direction of the features and determine cytoskeleton
orientation. Focal adhesions at the cell membrane mediate the
initial cell-biomaterial interaction, with integrin ligands in direct
contact with the substrate and connected to the actin micro-
filaments of the cell cytoskeleton by a 40-nm stratum, which
includes focal adhesion kinase (FAK), paxillin, talin, and vinculin
(Kanchanawong et al., 2010).

This section of the review will discuss how electrospun mats
with controlled porosity and surface morphology have been used
to influence the behavior of mesenchymal stem cells (MSCs)
(Jiang et al., 2015; Yin et al., 2015; Baudequin et al., 2017; Lin et al.,
2017; Liu et al., 2017; Nedjari et al., 2017; Su et al., 2017; Zhang
et al., 2017; Ghosh et al., 2018; Jin et al., 2018; Rahman et al.,
2018; Sankar et al., 2018) and human umbilical vein endothelial
cells (HUVECs) (Fioretta et al., 2014; Xu et al., 2015; Shin et al.,
2017; Taskin et al., 2017; Yan et al., 2017; Ahmed et al., 2018).
The literature on other cell lines, such as on myoblasts (Mele

et al., 2015; Jun et al., 2016; Park et al., 2016; Tallawi et al., 2016;
Abarzúa-Illanes et al., 2017; Yang et al., 2017) and neuron-like
cells (Binan et al., 2014; Xie et al., 2014; Malkoc et al., 2015; Xue
et al., 2017; Hajiali et al., 2018; Xia and Xia, 2018), will not be
analyzed in detail here but a summary of it is reported in Table 1.

Mesenchymal Stem Cells
MSCs are multipotent stem cells that are primarily isolated from
bone marrow, but they can also be found in adipose tissue,
dental pulp, placenta, umbilical cord and other vascularized
tissues throughout the body (Lv et al., 2014; Tartarini and Mele,
2015). MSCs are of great interest in regenerative medicine,
because of their therapeutic effects, such as: ability to differentiate
into various cell types and therefore promote regeneration
of a wide range of tissues (bone, cartilage, muscle, marrow,
tendon, ligament, nervous tissue, and skin); secretion of bioactive
molecules for tissue repair; migration to inflamed tissues
and modulation of local inflammation; immunomodulatory
functions (Sharma et al., 2014).

In a recent research, Zhang et al. have studied how the
topography and fibrillar organization of electrospun poly (ε-
caprolactone) (PCL) fibers influences the recruitment of MSCs
in vivo and ex vivo (Zhang et al., 2017). PCL mats (randomly
distributed fibers) were implanted into the subcutaneous tissue
of rats and the results were compared with solid PCL films
(not electrospun). It was observed that, during the initial post-
implantation period (1 day), a great number of macrophages
with M1 phenotype (pro-inflammatory) were recruited to the
PCL fibers, differently from solid PCL. This was attributed to
the high surface area of the fibers and the porosity of the
electrospun mats that promoted protein adsorption from the
surrounding tissue, such as complement C3a (a chemo-attractant
responsible to activate and recruit immune cells), fibronectin and
vitronectin. After 4 and 7 days of implantation, the PCL fibers
attracted host MSCs and modulated macrophages polarization
with an increased number of cells exhibiting M2 (pro-healing)
phenotype.While the number of M2 cells continuously increased
over the entire period of implantation for PCL fibers, this
was not the case for solid PCL where a large population of
M1 cells was retained. Migration of MSCs was also observed
in ex vivo experiments conducted with the implanted PCL
samples. It was found that the macrophages at the implanted
PCL mats secreted high levels of SDF-1, a chemokine that
mediates MSCs recruitment by interacting with CXC chemokine
receptors on the MSCs membrane. The study concluded that
the physical organization of the PCL electrospun network
induced the phenotype M1-to-M2 transition of macrophages
that attracted MSCs at the implantation site by releasing SDF-1.
This cascade of events was beneficial to stimulate tissue repair.
PCL electrospun fibers have been used also to stimulate the
production of pro-angiogenic and anti-inflammatory paracrine
factors in rat adipose-derived MSCs (Ad-MSCs) (Su et al.,
2017) and in skin excisional wound-healing model in rats
(Table 2). Ad-MSCs were seeded on three types of electrospun
PCL fibers, random (REF), aligned (AEF) and with a mesh
pattern (MEF). It was observed that scaffolds with oriented
fibers (AEF and MEF) promoted the expression of PGE2
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TABLE 1 | Summary of the recent literature on the use of electrospun fibers to control morphology, alignment and differentiation of diverse cell lines.

Cells Material Fiber characteristics Main outcomes References

Human MSCs Poly (ε-caprolactone) Randomly distributed fibers; Diameter: ∼

630 nm; Surface roughness: ∼ 2µm.

Recruitment of MSCs in vivo and ex vivo;

Recruitment of macrophages in vivo;

Phenotype transition of adhered

macrophages from pro-inflammatory (M1) to

pro-healing (M2).

Zhang et al.,

2017

Human MSCs Poly (ε-caprolactone);

Poly (ε-caprolactone)-

gelatine

Randomly distributed and aligned fibers;

Diameter: 600–780 nm; Porosity: 78–86%.

Cardiomyogenesis; Cytoskeletal

arrangement; Changes in the cellular and

nuclear morphology.

Ghosh et al.,

2018

Human MSCs Poly (L-lactic acid) Randomly distributed and aligned fibers

coated with poly

(3,4-ethylenedioxythiophene; Diameter: ∼

950 nm.

Synergic effect of fiber alignment and

electrical stimulation; Promotion of cellular

activity and proliferation.

Jin et al., 2018

Human

adipose-derived MSCs

Poly (L-lactide

ε-caprolactone) and

fibrinogen

Random and aligned fibers; Diameter:

200–500 nm; Patterning of electrospun mats

using honeycomb shaped collector

produced by photolithography; Honeycomb:

160µm internal diameter, walls of 20µm

width and 60µm height.

Homotypic interaction of MSCs on

honeycomb scaffolds; Osteogenic

differentiation of MSCs on honeycomb

scaffolds.

Nedjari et al.,

2017

Human

adipose-derived MSCs

SU-8 photoresist Randomly oriented fibers; Diameter:

550 nm; Patterning of electrospun mats by

photolithography; Pattern dimensions:

20µm ridges, 20µm grooves, 5µm pattern

height.

Orientation and alignment of cells

resembling the in vivo anisotropic

multilamellar architecture of bone;

Osteodifferentiation of MSCs.

Sankar et al.,

2018

Human bone marrow

MSCs

Poly (ε-caprolactone) Random-aligned-random structure;

Diameter: 240–450 nm.

Regional induction of MSCs toward

tenogenesis and osteogenesis; Collagen

deposition.

Lin et al., 2017

Human dental pulp

MSCs

Polystyrene Randomly distributed fibers; Diameter:

300–500 nm; Surface roughness: 0.8µm.

Increased the expression of bone

morphogenetic proteins and Wnt ligands;

Odontoblast differentiation of MSCs; Dentin

regeneration.

Rahman et al.,

2018

Mouse MSCs

(C3H10T1/2)

Poly (L-lactic acid) Random and aligned fibers; Diameter:

740–1070 nm.

Up-regulation of tendon-specific markers for

MSCs on aligned fibers; Tendon-like tissue

regeneration in vivo for aligned fibers; Bone

formation in vivo for random fibers.

Yin et al., 2015

Mouse MSCs

(C3H10T1/2)

Polylactic acid and

polycaprolactone

Random and aligned coaxial fibers;

Diameter: ∼ 2µm; Porosity: 82–84%.

Expression of tendon-related markers;

Tenogenic differentiation of mouse MSCs.

Baudequin et al.,

2017

Rat bone marrow

MSCs

Poly (ε-caprolactone)

and poly (ethylene

glycol); Chitosan

Random and aligned fibers; Diameter:

200–600 nm; 3D multi-layered scaffolds:

layers of fibers within a porous chitosan

matrix.

Ligamentogenesis and partially decreased

osteogenesis for MSCs for aligned

nanofibers embedded scaffolds in vitro;

Regeneration of periodontal ligament in vivo

for aligned nanofibers embedded scaffolds;

High expression levels of periostin and

formation of tooth-supporting mineralised

tissue in the regenerated periodontium for

aligned scaffolds.

Jiang et al.,

2015

Rat bone marrow

MSCs

Poly (ε-caprolactone) Random and aligned fibers; Diameter:

820–1000 nm; Application of mechanical

tension-stress after cell seeding.

Osteogenic differentiation of MSCs onto

aligned fibers; Expression of osteogenic

genes on aligned fibers; enhanced

expression of osteogenic genes after

mechanical stimulation.

Liu et al., 2017

Rat adipose-derived

MSCs

Poly (ε-caprolactone) Random and aligned fibers; Diameter: 1µm;

Patterning of electrospun mats using copper

mesh with grid length of 830µm as

collector.

Upregulated levels of anti-inflammatory and

pro-angiogenic cytokines in vitro for MSCs

on patterned mats; Therapeutic effects of

the fibers in a skin excisional healing model

in vivo.

Su et al., 2017

HUVECs Poly (D,L-lactide) and

polycaprolactone

Random and aligned fibers; Diameter:

500–700 nm; Patterning of electrospun mats

using a wire spring with interval distances of

300, 800, and 1500µm as collector.

Modification of cytoskeleton morphology;

Cell alignment and polarization on aligned

fibers; Expression of angiogenesis-related

genes.

Xu et al., 2015

(Continued)
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TABLE 1 | Continued

Cells Material Fiber characteristics Main outcomes References.

HUVECs Polycaprolactone and

polyethyleneoxide

Nanostructured, random fibers. Diameter:

4–20µm.

Enhanced cells’ proliferation; Stimulation of

adhesion complex formation on

nanotextured fibers.

Taskin et al.,

2017

HUVECs Poly (L-lactide) Random and aligned fibers; Patterning of

electrospun mats by femtosecond laser

ablation; Pattern dimensions: grooves

distance of 20.9 and 81.3µm; grooves

width of 9.4 and 7.6µm; grooves depth of

12.5 and 13.9µm.

Changes in morphology and orientation of

cells on micropatterned scaffolds; Reduction

of monocytes adhesion on the

micropatterned mats; Anti-inflammatory

response.

Shin et al., 2017

HUVECs Poly (L-lactic acid) Random fibers; Diameter: 540 nm;

Patterning of electrospun mats by hot

embossing; Pattern dimensions: 50, 100,

and 200µm wide grooves.

Cells alignment along the direction of the

grooves; Expression of endothelial

biomarkers by cells cultured on

micropatterned scaffolds.

Yan et al., 2017

HUVECs Poly (lactic-co-glycolic

acid)

Aligned fibers; Diameter: 0.5–10µm. Cell alignment and polarization on fibers with

intermediate diameter; Stimulation of a

migratory phenotype.

Ahmed et al.,

2018

C2C12 myoblasts and

neonatal rat

cardiomyocytes

Poly (glycerol sebacate)

and poly (caprolactone)

Random fibers; Diameter: 1.2µm;

Patterning of electrospun mats using a

microstructured collector; Parallel grooves of

10µm diameter and interspatial distances of

200 and 7µm; Square-shaped structures of

100µm size and 50µm distance. Surface

roughness: 0.4–1.3µm.

Cells alignment along parallel grooves

topography.

Tallawi et al.,

2016

C2C12 myoblasts Poly (caprolactone) Random and aligned fibers; Diameter:

0.8-2.5µm. Distance between aligned

fibers: 2.2 and 13.8µm.

Uniaxial orientation and elongation of cells

on aligned fibers; Myogenic differentiation

and elongation of myotubes along the

aligned fibers.

Park et al., 2016

C2C12 myoblasts Poly (L-lactic acid) Random fibers; Diameter: 720 nm;

Patterning of electrospun mats using a

femtosecond laser ablation; Parallel grooves

of 5µm width and spacing of 10, 25, and

80µm.

Cells alignment along the micro-grooves;

Regulation of cellular adhesive morphology,

proliferation, and distribution of focal

adhesion proteins.

Jun et al., 2016

C2C12 myoblasts Poly (ε-caprolactone)

and poly

(lactic-co-glycolic acid)

Random and aligned fibers; Diameter:

0.4–3.2µm;

Increased alignment and aspect ratio of

myotubes on aligned fibers.

Abarzúa-Illanes

et al., 2017

Neuron-like PC12 cells Poly (caprolactone) and

gelatin; Collagen;

Polystyrene

Random fibers; Diameter: 440 nm;

Patterning of electrospun mats using

polystyrene 5µm wide grooves and 18µm

diameter wells by thermal fusion.

Increased extension of neurites within the

grooves; High neurite length per

differentiated cell for the micropatterned

substrates.

Malkoc et al.,

2015

Neural stem cells Polyphenylene sulfone Random and aligned fibers; Diameter:

735 nm.

Enhanced neuronal differentiation on the

fibrous scaffolds; Growth and activity of

primary neural cells on nanofibres; Parallel

axon growth on aligned nanofibers.

Hajiali et al.,

2018

(Prostaglandin E2, a potent inflammatory mediator), iNOS
(inducible Nitric Oxide Synthase), VEGF (vascular endothelial
growth factor) and HGF (hepatocyte growth factor), compared
to REF scaffolds. In order to elucidate the molecular signaling
mechanism responsible for the paracrine secretion of Ad-MSCs,
the cells were treated with an inhibitor of NF-kB (a transcription
factor that induces the expression of pro-inflammatory genes)
and this significantly reversed the paracrine response of MSCs to
the electrospun scaffolds. The authors therefore speculated that,
in the presence of the scaffolds, MSCs behaved as if they were
exposed to an external inflammatory stimulus. Similar results
have been recently reported for MSCs cultured on electrospun
fibers of PCL/polytetrahydrofuran (PTHF) urethane (P fibers)

and PCL-PTHF urethane/collagen I (PC fibers) (Jiang et al.,
2018). In this case, down-regulation of genes that contribute to
inflammation and suppression of the NF-kB pathway signaling
pathway were achieved by changing the mechanical properties
of the fibers. PC fibers with a Young’s modulus of 4.3 MPa were
able to suppress inflammation, differently from P fibers (Young’s
modulus of 6.8 MPa).

Another study has investigated how electrospun PCL scaffolds
with a novel random-aligned-random structure can be used
to mimic bone-ligament connections and native ligaments
(Lin et al., 2017). The authors designed a fiber collecting
device for the fabrication of electrospun scaffolds with a
controlled spatial distribution of random and aligned fibers.
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TABLE 2 | Summary of main results reported in selected recent papers on electrospun scaffolds used in vivo experiments.

Scaffolds In vivo outcomes References

Mono-component (MC) and bi-component (BC) conduits

made of random PCL and PCL/gelatin fibers,

respectively, implanted in rat sciatic nerve defects.

Formation of numerous myelinated axons and vasculature in the

MC conduit group; fibrous tissue and inflammatory cells with no

evidence of myelinated axons for BC conduits, due to gelatin

degradation or mechanical collapse.

Superior functional recovery recorded for MC conduits over BC

conduits after 18 weeks of implantation.

Recover of tibialis anterior and gastrocnemius muscle weights

after 18 weeks for MC conduit group; muscle atrophy for BC

conduit group.

Cirillo et al.,

2014

Random and aligned PCL-PEG fibers within a chitosan

matrix implanted in a surgically created defect in

maxillary first molar of rats.

Rat bone marrow mesenchymal stem cells (rBMSCs) with spindle

shape and oriented actin filaments on scaffolds consisting of

aligned fibers; while rBMSCs with polygonal or dentritic shape of

scaffolds with random fibers.

Increased ligamentogenesis and partially decreased osteogenesis

for rBMSCs for scaffolds with aligned fibers.

Increased stability and maturation of the periodontal ligament

matrix, and increased regenerated bone volume and density for

scaffolds with aligned fibers.

Jiang et al.,

2015

Vascular grafts with oriented PCL microfibers coated

with electrospun random PCL nanofibres and implanted

in rat abdominal aorta.

Enhanced growth of vascular smooth muscle cells (VSMCs) after 2

and 4 weeks of implantation.

Regeneration of arteries with notable VSMCSs vaso-activity after

12 weeks of implantation, and synthesis of elastin and collagen

type I/II with phenotypic and structural similarities to the native

arteries.

Complete endothelialisation after 4 weeks with endothelial cells

(ECs) having a morphology similar to the native endothelium.

Regeneration of healthy and functional neaoarteries where VSMCs

and ECs response to the endothelial-specific activator

acetylcholine, hence showing vasodilation.

Zhu et al., 2015

Random PCL fibers implanted into the subcutaneous

tissues of rats.

Macrophage recruitment, elongation and increased the expression

of Arginase-1 or IL-4.

Macrophage phenotype transition from M1 (pro-inflammatory) to

M2 (pro-healing).

High adsorption of proteins, particularly the chemotactic factor

Complement C3a, vitronectin and fibronectin.

Macrophages’ secretion of high levels of SDF-1, a chemokine that

mediates MSCs recruitment by interacting with CXC chemokine

receptors on the MSCs membrane.

Zhang et al.,

2017

Conditioned-medium (CM) from Ad-MSCs cultured on

oriented (AEF and MEF) PCL fibers. CM applied to a skin

wound-healing model.

High wound closure rate for animals treated with the MSC-MEF

CM.

Collagen deposition in a fine reticular pattern for group of

MSC-MEF CM.

High density of macrophages and M2 macrophages for MSC-MEF

CM.

Su et al., 2017

PCL-PTHF urethane (P fibers) and PCL-PTHF

urethane/collagen I (PC fibers) implanted in defects on

the surface of the patellar groove of rat femurs.

After 4 weeks of implantation, newly formed tissues for both P and

PC groups with minor inflammatory cells after 4 weeks. Fibrous

tissue with a loose and detached for P group; fibrocartilage-like

tissue and integration with the surrounding tissue for PC group.

After 8 weeks of implantation, hyaline cartilage with round cells in

the lacuna for both P and PC groups. More uniform and compact

tissue for PC group.

Stronger positive immunohistochemical staining of collagen II for

PC group after 4 weeks.

Jiang et al.,

2018

Random and aligned PCL/Collagen I fibers used to treat

full-thickness wounds in diabetic rats.

Remarkable increase of the expression of Arginase I and NOS2 for

oriented fibers and consequent stimulation of macrophages

transition from M1 to M2.

Detection of new blood vessels at the wound site for scaffolds

with oriented fibers.

Infiltration of fibroblasts and macrophages and collagen deposition

in the wound sites for all nanofiber groups.

Sun et al., 2018

(Continued)
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TABLE 2 | Continued

Scaffolds In vivo outcomes References

Random and aligned PLLA fibers implanted in rats for

Achilles tendon repair.

After implantation, for scaffolds with aligned fibers, tendon-like

tissue formation, continuous collagen fibers, expression of

tendon-specific markers, such as scleraxis, tenomodulin, and

Msx-2 (role in preventing tendons from mineralizing).

After implantation, for scaffolds with random fibers, substantial

chondrogenesis and tissue ossification, high levels of

chondro-lineage specific genes, such as collagen type II, Sox9,

and aggrecan.

Yin et al., 2015

Polyurethane (PU) grafts with low (void fraction of 53%)

and high (void fraction of 80%) porosity, implanted into

the infrarenal aorta of rats.

Growth of vimentin-positive fibroblasts, actin-positive

myofibroblasts and desmin-positive myocytes at the adventitial

interface of the grafts in the early phase after implantation.

Growth of myofibroblasts and myocytes within the whole graft wall

of the coarse-mesh grafts, 6 months after implantation; while

limited cell growth for fine-mesh grafts.

Superior cell migration and long-term survival of cells for grafts

with high porosity than for grafts with low porosity.

Bergmeister

et al., 2013

The regions of the scaffold with random fibers were then
mineralized with Ca-P. In vitro tests on human bone marrow
MSCs (hBMSCs) revealed that fiber anisotropy modified cells’
morphology: polygonal, round-shaped cells without alignment
were detected in the random, mineralized regions of the scaffold;
while elongated spindle-shaped cells aligned along the fiber
direction were visible in the aligned region. Moreover, the
aligned fibers significantly up-regulated tendon-specific and
tendon-related markers (Tnmd, Mkx) and therefore guided
tenogenic phenotypes of hBMSCs; while, the regions with
random, mineralized fibers determined the expression of
bone-specific markers (Runx-2, Ocn, Opn) and consequently
hBMSCs osteogenic phenotypes. Although the authors have
not elucidated the underlying cell signaling mechanisms, this
work demonstrates that electrospun scaffolds with engineered
fiber anisotropy are advantageous to achieve region-specific
distribution of tendon- and bone-related genes and find potential
application in ligament repair and regeneration of bone-ligament
connections.

The possibility to mediate the expression of signaling
biomolecules by electrospun fibers and hence guide MSCs
differentiation has been demonstrated also by Rahman and
co-workers (Rahman et al., 2018). They investigated the
odontoblastic differentiation of human dental pulp MSCs
(DP-MSCs) on polystyrene (PS) random fibers. The cells
cultured on PS mats strongly increased the expression of
bone morphogenetic proteins (BMPs) and Wnt ligands
that are essential in tooth development: Wnt3a transcript
expression was more than 50 folds higher after 4 days of
culturing on PS fibers than on standard petri dishes. The
levels of odontoblast/osteoblast markers, such as dentin
sialophosphoprotein (DSPP), osteocalcin, and bone sialoprotein,
were also higher for DP-MSCs cultured on electrospun fibers.
The results of this study indicate that nanofibres mimicking
the in vivo microenvironment are crucial to stimulate the
differentiation of DP-MSCs into odontoblasts (specialized
cells responsible for dentin formation) by mediating the
production of signaling molecules including Wnt3a, and to
promote dentinogenesis. Osteogenesis of MSCs has been

reported also on random Poly-L-lactic acid (PLLA) fibers, due
to cytoskeletal rearrangements and tensions, which in turn
influence intracellular mechanotransductive pathways (Yin et al.,
2015). In fact, when the cells were treated with Rho kinase
(ROCK) inhibitor Y-27632 (inhibitor of myosin-generated
cytoskeletal tension), loss of lineage commitment was detected,
and cells’ morphology was not affected by the fibers topography.

The works here summarized and the others conducted on
the interaction of MSCs with electrospun substrates (Tables 1, 2)
demonstrate that networks of polymer fibers (random, aligned
and hierarchical) are effective in providing topographical and
physical cues to guide differentiation of stem cells. These
observations have led to the development of bioinspired scaffolds
with potential future implications in diverse clinical areas,
including the regeneration and repair of bone, tendon, ligament,
dentin, and skin.

Human Umbilical Vein Endothelial Cells
Vascular endothelial cells are of fundamental importance for
the entire circulatory system, because they are involved in fluid
filtration, homeostasis and prevention of thrombosis (Rajendran
et al., 2013). Endothelial cells and particularly HUVECs, which
are isolated from human umbilical cord veins, are widely used
to study cardiovascular diseases and develop biomedical devices
for vascular tissue engineering (Lei et al., 2016). One important
aspect to consider when designing scaffolds for endothelial cells
is the role played by surface topography, at micro- and nano-
scale, on cell adhesion, proliferation and migration, to create
a physiological environment that stimulates the formation of a
functional endothelium.

A recent work of Ahmed and co-workers has reported on
the influence of the diameter of electrospun fibers on HUVECs
migration (Ahmed et al., 2018). Aligned poly(lactic-co-glycolic
acid) (PLGA) fibers with five different diameters (0.5, 1, 2,
4, and 10µm) were analyzed. The greater cell displacement
in a scratch wound assay was measured for HUVECs seeded
on fibers with intermediate diameter (1 and 2µm) with peak
migration velocity of 24 µm/h after 12 h of cell culture. HUVECs
were able also to move on scaffolds with 0.5µm size fibers
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but at lower migration rates. On these scaffolds cell alignment
and polarization, and higher levels of FAK expression were
detected. FAK is a non-receptor tyrosine kinase that regulates
cell shape, adhesion and motility. The fiber diameter influenced
the focal adhesion of HUVECs but not their metabolism or the
formation of cell-matrix anchorage points. At 12 h, a significant
increase in phosphorylated FAK (pFAK, associated with actin
regulation and adhesion dynamics) was detected, which is linked
to the peak migration velocity. On the contrary, limited cell
motility was observed for scaffolds with 4 and 10µm fibers.
Investigations of the spatial distribution of pFAK revealed that
pFAK was localized in the HUVECs cytosol for 0.5, 1.0, and
2.0µm fibers, and at the cell periphery for 4 and 10µm
fibers (non-uniform distribution). This promoted uniaxial cell
morphology and stimulated the migratory process to occur
preferentially along the fiber longitudinal direction for scaffolds
with intermediate fiber diameter. A similar conclusion has been
drawn by other researchers working on HUVECs cultured on
micropatterned scaffolds with spatially heterogeneous alignment

of poly(D,L-lactide) (PDLLA)/PCL electrospun fibers of 0.5–
1µm size (Xu et al., 2015). Fibrous scaffolds with patterns of
random andwell-aligned PDLLA/PCL fibers were prepared using
a wire spring as template collector. It was observed that the
micropatterned scaffolds induced the proliferation of HUVECs
and modifications to their cytoskeleton morphology (Figure 1).
The lowest values of mean cell body shape index (a parameter
indicating the degree of cell polarization) were measured for
cells cultured on patterned scaffolds having the longest distance
(1,500µm) between regions with random and aligned fibers,
indicating the highest degree of cell polarization and alignment.
Furthermore, those scaffolds stimulated the cells to express
high levels of angiogenesis-related genes and therefore they
have potential applications in vascular tissue engineering. The
combination of electrospinning and micro-pattering techniques
has proven to be effective for creating hierarchical bio-
interfaces that direct the arrangement of endothelial cells
and their biological functions (Shin et al., 2017; Yan et al.,
2017).

FIGURE 1 | Confocal images of HUVECs (actin filaments in red and nuclei in blue) cultured for 7 days on (O) standard petri dish (typical cobblestone-like structure)

and electrospun scaffolds with different patterns: (A) nonwoven (cells with flat, round shape morphology); (B) single directionally aligned pattern (cell alignment along

fibers direction, green arrows); (C1–E1) anisotropic aligned patterns with interval distances of 300, 800, and 1500µm, respectively; (C1′-E1′) anisotropic aligned

patterns with interval distances of 300, 800, and 1500µm (high magnification images), respectively (spindle shape along the long fiber axes for cells between the

embossments) (C2′- E2′) anisotropic aligned patterns with interval distances of 300, 800, and 1500µm, respectively (polygonal shape with random stretching for

cells on the embossments). (F) SEM image of anisotropic aligned pattern. Scale bar = 50µm. Reprinted with permission from Xu et al. (2015). Copyright 2018 of the

American Chemical Society.
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COMPUTATIONAL MODELS

The literature that has been discussed so far in this review
provides experimental evidences that the surface topography
of biomaterials influences cellular behavior, including cells’
alignment, elongation, migration, phenotype transitions and
differentiation. In vitro and in vivo studies are incredibly
beneficial to collect data and results on how artificially created
micro- and nano-features perform in realistic applications
(Tables 1, 2). The underlying mechanisms of cell-material
interactions are only partially understood and further
investigations are required to define the best scaffold design for
promoting the regeneration of a target tissue (Kennedy et al.,
2017; Paim et al., 2018). However, time and cost requirements
for in vitro and in vivo tests pose limitations on the use of and
reliance on experimental studies alone, together with ethical
issues when animal models are concerned. Computational
modeling has the significant advantage of facilitating research
by conducting thousands of simulated trials with a wide range
of variations and for a plethora of complex biological systems
(Geris et al., 2018).

Albert and Schwarz have developed mathematical models to
predict the dynamics of cell shape and forces on micropatterned
substrates (Albert and Schwarz, 2014, 2016a,b). Their models are
based on the cellular Potts model (CPM) that allows to simulate
the behavior of single or interacting cells by describing them
as internally structureless but spatially extended objects on a
regular lattice (Voss-Böhme, 2012; Tartarini and Mele, 2015).
The number of lattice sites belonging to a single cell defines
the area occupied by the cell. By changing the lattice resolution
and the indices of the lattice sites, cells with arbitrary shape
and shape evolutions can be represented. Initially, the authors
compared simulations with experimental data on single cell
attached on crossbow, Y and H patterns (Albert and Schwarz,
2014). The model well described how the cell contour adapted
to the pattern’s geometry and reconstructed the traction forces
in agreement with experiments. The forces were higher at the
extremities of the patterns (adhesive edges of the contour) and
increased with the curvature of the contour depending on the
availability of receptors for focal adhesion. The CPM-based
model was then used to predict the collective behavior of cells
on micropatterns, including cell division, cell-cell contacts and
migration (Albert and Schwarz, 2014). The model predicted, for
example, that for a cell dividing on a L shaped pattern, the two
daughter cells were most likely to be located on the two arms of
the L, as confirmed by experimental results. In order to identify
the optimal adhesive patterns to control cell functions, CPM was
combined with genetic algorithms (GAs) (Albert and Schwarz,
2016c) (Figure 2), which are computational techniques inspired
by natural evolution for the heuristic search of problem solutions
(McCall, 2005). The migration of cells on rachet micropatterns in
a linear arrangement was analyzed and the algorithm predicted
that a triangular shape was ideal to guide cell migration in
the direction of the tip of the triangle, as also demonstrated
experimentally. Differently from what expected though, the
most effective pattern to achieve unidirectional migration of
cells consisted of asymmetric triangles that were rotated and

FIGURE 2 | (A) Fluorescence images of a HeLa cell stained for actin on a

crossbow microstructure coated with fibronectin. Given a micro-pattern, cell

shape can be observed with optical microscopy (direct problem). Give a cell

shape, it is not always straightforward to experimentally identify the original

pattern (inverse problem). (B) CPM can be used to predict cell shape on a

microstructure, and genetic algorithms can help to define pattern geometry.

Reproduced with permission from Albert and Schwarz (2016c). Copyright

2016 of the Royal Society of Chemistry.

connected to one another to form a pattern with an almost
straight horizontal edge. The computational model developed is
a useful tool to predict cell interactions with structured scaffolds
and it can be adapted to simulate diverse cellular processes.

With a distinct lack of literature on computational/numerical
modeling that predicts how cells interact with electrospun
nanofibrous structures (role of roughness and topography), there
is a clear gap in the field which has great potential if correctly
pursued. This will open even more possibilities to design and
create novel fibrous scaffolds with engineered surface structures
(Ziebert and Aranson, 2016). For example, computer aided
characterization of complex biointerfacial interactions of specific
polymer fibers could be created. Computational algorithms
and numerical solutions could be formulated to generate a
method of predicting the most suitable surface topography
of electrospun mats for specific cells and to prompt tissue
regeneration processes. In the development of computational
models that describe how cell behavior is affected by the surface
properties of electrospun scaffolds, geometrical parameters
to be considered include fibers diameter, fibers organization
and degree of alignment, porosity of the mat, presence of
nanostructures or nanopores on single fiber surface, overall
roughness of the electrospun mat. All these aspects have been
evaluated experimentally, as discussed in the previous section of
this mini review.

CONCLUSIONS

Electrospun nanofibers have become vital structures for a
plethora of different applications, with the field of biomedical
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TABLE 3 | Clinical trials of electrospun scaffolds.

Study Status Condition/disease Aim Number of

participants

Scaffold Results

Experimental study of

the vascular prosthesis

manufactured by

electrospinning

(NCT02255188)

Completed Arterial occlusive

disease

Determination of the safety

of electrospun vascular

grafts for the development

of thrombosis.

120 PCL grafts; PCL/gelatin

grafts;

PLGA/PCL/gelatin

grafts; Nylon 6 grafts.

Not currently

available

EktoTherixTM

regenerative tissue

scaffold for repair of

surgical excision

wounds

(NCT02409628)

Completed Non-melanoma

skin cancer; Basal

cell carcinoma;

Squamous cell

carcinoma

Assessment of the safety

and performance of

EktoTherixTM Tissue Repair

Scaffold for the treatment of

full-thickness, dermatologic

wounds due to the surgical

removal of non-melanoma

skin cancers.

12 EktoTherixTM Tissue

Repair Scaffold:

Not currently

available

Clinical trial for the

treatment of diabetic

foot ulcers using a nitric

oxide releasing patch:

PATHON

Completed Diabetic foot Evaluation of the

effectiveness and safety of

nitric oxide releasing wound

dressings for the treatment

of diabetic foot ulcers.

100 Multilayer polymeric

transdermal patch with

a continuous release of

nitric oxide

(polyurethane-based

fibers).

Not currently

available

Controlled nitric oxide

releasing patch vs.

meglumine antimoniate

in the treatment of

cutaneous

Leishmaniasis

Terminated Cutaneous

Leishmaniasis

Evaluation of the

effectiveness of a nitric

oxide topical donor for the

treatment of cutaneous

leishmaniasis.

178 Multilayer polymeric

transdermal patch with

a continuous release of

nitric oxide

(polyurethane-based

fibers).

Not currently

available

The data are obtained from ClinicalTrials.gov, a resource provided by the U.S. National Library of Medicine (Accessed on September 2018).

engineering being, arguably, one of the most important. Thanks
to the versatility of electrospinning, nanofibrous scaffolds can
be tailored and modified to improve their biocompatibility for
applications such as tissue engineering, drug delivery and wound
dressings. For example, electrospun mats have been used in
clinical studies for the treatment of arterial occlusive disease,
skin cancer and diabetic foot (Table 3). As discussed in this
review, fiber alignment, micropatterning, and controlled porosity
of nanofibrous mats have all been found to have significant
effect on cellular behavior, inducing cell attachment, migration
and differentiation. Extensive research has been conducted on
exploring morphological cues provided by 2D electrospun mats,
and only recently fibrous 3D scaffolds have been proposed to
closely mimic the ECM structure (Cai et al., 2013; Lee et al.,
2014; Cho et al., 2016; Hwang et al., 2018; Unnithan et al.,
2018). The studies conducted so far have demonstrated that
a fine tuning of the 3D porosity of the electrospun scaffolds
is crucial to promote cell infiltration. Future research in the
field should combine experimental studies with numerical and

computational modeling for the design and fabrication of
novel micro- and nanostructured 3D scaffolds. Computer aided
simulations could not only be used to predict cell interaction
with specific topography but be formulated in a manner which
then advises on the most suitable functional group (or biological
molecule) that ought to be immobilized on the surface or
embedded within the scaffold. This would require taking in
consideration a complex combination of parameters that include
the chemical composition of the scaffold (exposed chemical
groups, wetting properties, and biodegradation), micro- and
nano-porosity, organization of the fibrous network (random or
aligned fibers) and mechanical properties of the scaffold.
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