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ABSTRACT In this paper, resin-based photocurable polymer materials for stereolithography, digital-
light-processing (DLP), and polymer-jetting additive manufacturing techniques were characterized from
0.2 to 1.4 terahertz (THz) for their comprehensive dielectric properties, e.g., refractive index, absorption
coefficient, dielectric constant, and loss tangent, by using laser-based THz time-domain spectroscopy. A total
of 14 photocurable 3D-printing polymers were chosen, owing to their suitability, in terms of printing
resolution, material characteristics, and so on, for millimeter-wave (mm-wave) and THz applications. The
measurement results from 0.2 to 1.4THz, the dielectric constants of all photopolymer samples under test are
between 2.00-3.10, while the loss tangents are from 0.008 to 0.102, which are quite useful for many applica-
tions, e.g., 3D printed antennas and THz transmission lines, which were demonstrated by an asymptotically
quasi-single-mode Bragg fiber microfabricated by DLP micromanufacturing technique using HTM140-V2
photopolymer, which is previously reported at the nominal frequencies from 0.246 to 0.276 THz.

INDEX TERMS Additive manufacturing, digital light processing, stereolithography, polymer jetting.

I. INTRODUCTION
Additive manufacturing technology has attracted much atten-
tion to modern three-dimensional (3D) fabrication pro-
cesses due to its rapid prototyping capability, especially
with a broad diversity of dielectric and metallic materials
that can be used to fabricate design prototypes of almost
any 3D structures. It has become even more interesting
recently since it has a capability to accurately manufacture
functional devices with microscale features with a good
repeatability [1]–[4], which is very suitable to microfabricate
functional mm-wave and THz components such as dielec-
tric lens antennas [6]–[8], waveguides [9]–[11], sensors [9],
and filters/splitters [12]–[16] for realizing low-cost com-
plex THz systems. 3D printing techniques, normally used
in mm-wave and THz technologies, are generally classified
into five categories: (1) fused deposition modeling (FDM),
(2) selective laser sintering (SLS), (3) stereolithographic
apparatus (SLA), (4) digital-light-processing (DLP) and
(5) polymer jetting (PJ).

The FDM technique achieves the lowest printing resolution
along with high surface roughness, as compared to the other
additive manufacturing processes. This limits their usability
to bands below 400 GHz [14] owing to the large print-
able structure size compared to the guided wavelength and
excessive propagation losses at higher frequencies caused by
surface roughness. Thermoplastic materials, which generally
come in filament forms, are used to manufacture 3D struc-
tures by selectively and constructively depositing the melted
filament materials along pre-determined paths. General layer
heights of a single FDM printed path range practically from
50 to 500 µm with the smallest achievable single layer width
of approximately 100 µm2, which is typically limited by the
nozzle size and viscosity of the melted filament materials
flowing through the nozzle aperture, and the best achievable
surface roughness of approximately 35 µm [17].

The SLS printing technique relies on using a high inten-
sity laser beam, which patterns a sinter polymeric pow-
der material layer-by-layer. This additive manufacturing
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technique can achieve superior printing resolutions ranging
from 20 to 80 µm, depending on the microparticle sizes of
the powder material used in the fabrication processes. The
SLS technique however suffers from material shrinkage of
approximately 3-5% but can achieve low surface roughness
of approximately 6 µm [17]. Nevertheless, there are very
limited material choices of microparticle powders commer-
cially available for the SLS technique [19], [20], restricting
the usability of this additive manufacturing technology for
mm-wave and THz applications.

The SLA and DLP techniques use either a laser beam or an
ultraviolet (UV) light source, respectively, to micropattern a
3D structure by selectively curing resin-based photopolymer
with printing resolutions dependent on the spot size used
to pattern the 3D structure. Generally, a superior surface
roughness of less than 10 µm can be achieved by these tech-
nologies.Moreover, the SLA technique can achieve a printing
resolution of approximately 40-250µmof the structure width
and 25µmof the structure height [21]. The best printing reso-
lution for the DLP technique (ASIGA: PICO2HD) are 27µm
for the structure width and 1 µm for the structure height,
making them one of the most accurate and suitable additive
manufacturing techniques for mm-wave and THz applica-
tions coveringmost signal frequencies in the THz bands rang-
ing from 100 GHz to 1.0 THz. However, even though there
is a broad choice of commercially available photopolymers,
technical information regarding electromagnetic and optical
material characteristics of these photocurable materials is
very limited and fragmented with only a few frequency points
or narrow frequency band information available for a small
range of photopolymers [8], [9], and [11].

The PJ technique offers superior printing accuracy and
resolutions relying on a printing principle similar to the
inkjet printing process by using printhead nozzles to droplet
liquid photopolymer onto a build plate and, simultaneously,
the polymer materials are photocured and 3D patterned by
UV light. This 3D printing technique can achieve resolutions
of approximately 14µm structure height and 23µm structure
width, respectively. Moreover, a surface roughness of smaller
than 10 µm is achievable by PJ [22], [23]. Therefore, PJ is
one of the most preferable additive manufacturing techniques
for mm-wave and THz. However, lack of material properties
available for PJ suitable materials at THz frequencies limits
their usability in mm-wave and THz applications with limited
and non-comprehensive electromagnetic and optical material
properties currently publicly available.

This work presents uses THz time-domain spectroscopy
(THz-TDS) to obtain comprehensive electromagnetic and
optical material characterization of resin-based photopoly-
mers used in SLA, DLP and PJ additive manufacturing
processes between 0.2 to 1.4 THz. Fourteen photopoly-
mer specimens were characterized for their refractive index,
absorption coefficient, dielectric constant and loss tan-
gent. To demonstrate the usability of the photopolymers in
this work, an asymptotically single-mode all-photopolymer
Bragg fiber fabricated by using HTM140-V2 photocurable

polymer, which was previously reported [11], is also briefly
discussed in this paper in the context of this new data.

FIGURE 1. Working principle of the THz-TDS measurement system used in
this work which is similar to those use in [24]–[26].

II. METHODOLOGY
A. THz TIME-DOMAIN SPECTROSCOPY SYSTEM
A schematic diagram showing the working principle of the
free-space THz-TDS system, used in this work, is shown in
Fig. 1 [24]–[26]. The laser source is a commercial, mode-
locked Ti:Sapphire (Coherent Vitara-T-HP), operating at
800 nm, with a repetition rate of 80MHz, pulse width of 20 fs
and an average power between ∼1W [27]. Both the THz
emitter and detector in this system are photoconductive anten-
nas (PCA) made of low-temperature-grown GaAs (LT-GaAs)
transferred onto 5 mm z-cut quartz substrates. Each switch
consists of two bow-tie shaped Ti:Au electrodes with a
200 µm gap between them [24].
The initial laser beam is divided into two beams using

an 80:20 beam splitter, with the higher power beam used to
generate the THz pulse and the weaker beam used for gated
detection. The pump beam is focused, using a lens, onto a
PCA biased at 350 V electrically chopped at 10 KHz, which
is used to generate the THz radiation. The THz radiation is
then collected, collimated and focussed by a set of off-axis
parabolic mirrors. A silicon wafer is used to block any stray
laser light reflected from the emitter surface from reaching
the PCA detector while transmitting the majority of the THz
radiation. The THz radiation is focused onto the sample, after
which a second set of off-axis parabolic mirrors are used
to re-collimate and then focus the THz transmitted through
the sample onto the second PCA for detection. The probe
beam is also focused onto the PCA detector using a lens, and
when both the probe pulse and THz radiation are incident
on the detector, the THz field at that point in time can be
measured, as the fs probe pulse is much shorter in time than
the THz pulse. By delaying the pump beam with a linear
delay stage, the point in time where the THz and probe beams
are both incident changes, allowing for a time domain signal
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of the THz beam to be obtained. The output signal from
the PCA detector is first amplified using a transimpedance
amplifier and measured using a lock-in amplifier referenced
to the 10 KHz bias of the THz PCA emitter. The THz optical
section is placed within an acrylic box which is purged with
dry air. This reduces the atmospheric water vapor in the sys-
tem, which strongly absorbs THz radiation, thus increasing
transmitted THz field at the detector.

B. METHODOLOGY FOR MATERIAL CHARACTERIZATION
THz-TDS is a coherent material characterization technique,
which allows both the amplitude and phase of the THz sig-
nal propagating through the material-under-test (MUT) to
be simultaneously measured which in turn allows both the
complex dielectric constant and loss tangent to be extracted
numerically. The mathematical relationship between the
complex dielectric constant, ε̃ (ω), and the fundamental opti-
cal characteristic, ñ(ω), is described as ε̃(ω) = (ñ(ω))2, where
ω is the angular frequency [28], [29].

At the photodetector in Figure 1, the complex frequency
spectra of the reference THz signal without the MUT spec-
imen S̃r (ω) and with the MUT specimen S̃s (ω) can be
analytically calculated by transforming the measured receive
signals from the time domain to the frequency domain by
using a Fourier transform. The ratio of S̃s (ω) and S̃r (ω) are
represented by the magnitude, ρ (ω), and phase, φ(ω) [30],
as follows:

S̃s(ω)

S̃r (ω)
= ρ(ω) · e−jφ(ω) (1)

From the relationship from (1), the refractive index (ns(ω))
and extinction coefficient (ks(ω)) can be calculated by using
the following equations:

ns(ω) = φ(ω) ·
c0
d
+ 1 (2)

and

ks(ω) = ln
(

4 · ns(ω)
ρ(ω) · (ns(ω)+ 1)2

)
·
c0
ωd

(3)

where d is thickness of the specimen (cm), c0 is the velocity
of light in vacuum. The extinction coefficient (ks) can be
expressed in term of the absorption coefficient, α (cm−1), by:

ks(ω) =
α (ω) · c0

2ω
(4)

and

α(ω) =
2
d
· ln

(
4ns(ω)

ρ(ω) · (ns(ω)+ 1)2

)
(5)

The complex dielectric constant can be normally represented
by ε̃(ω) = ε′(ω)− j · ε′′(ω), where ε′ and ε′′ are the real and
imaginary parts, respectively, and thus the loss tangent (tan δ)
is calculated by ε′′/ε′. Therefore, the real part, ε′(ω), and
imaginary part, ε′′(ω), of the complex dielectric constant are
calculated by:

ε′(ω) = (ns(ω))2 − (ks(ω))2 = (ns(ω))2 −
(
c0 · α(ω)

2ω

)2

(6)

and

ε′′ (ω) = 2 · ns (ω) · ks (ω) =
c0 · ns (ω) · αs (ω)

ω
(7)

TABLE 1. List of selected photopolymers used in this work.

III. RESULTS
A. PHOTOPOLYMER SPECIMEN SELECTION
Table 1 shows the names and manufacturers of all fourteen
selected photopolymer specimens with specimen thicknesses
used during the THz-TDSmeasurement. The specimen thick-
nesses first determined accurately using a digital micron-
scale Vernier caliper prior to each measurement and then
confirmed using a total variance analysis method similar to
that described in [31]. Gray resin fabricated using SLA tech-
nique is provided by Formlabs [32] while RGD-series and
LS600 based on PJ printing are provided by Stratasys [33].
EnvisionTech [34] also offers a broad range of different
photocurable resin polymers e.g. ABS series, Photosilver,
HTM140-V2, RC-series, and R11. All photopolymer speci-
mens were provided as a large square (∼7.5cm2). To make
mounting in the THz-TDS straightforward a ∼1-inch disk
was cut out of each sample using a pillar drill with the spin
speed of 4,500 rev/min and then cleaned by dipping into
isopropyl alcohol and then immediately rinsing in deion-
ized water before being dried in a clean environment at
room temperature using laboratory-grade dry compressed air.
The THz-TDS measurement setup used to characterize these
photopolymer specimens is shown in Fig. 1.

B. REFRACTIVE INDICES
Figure. 2 shows the refractive indices of all fourteen pho-
tocurable polymer specimens from 0.2-1.4 THz. At 1.4 THz
the values of refractive indices of all photopolymer speci-
mens decrease slightly, as compared to their nominal values
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FIGURE 2. Measured refractive indices of fourteen selected photocurable polymer specimens from 0.2-1.4 THz.

at 0.2 THz, with an average change of approximately
below 2%. For example, at 0.2 THz, the refractive index of the
Gray resin photopolymer is 1.66, while the value decreases to
1.62 at 1.4 THz. Most of the photopolymer, including Gray
resin, RGD series, LS600, ABS Tough, ABS Flex Black,
HTM140-V2, RC-31, RC-70 and R11, have a refractive
indices between 1.6-1.72 over the whole frequency band. The
refractive indices of Photosilver and RC-90, however, range
between 1.7-1.8 for the whole frequency band.

C. ABSORPTION COEFFICIENTS
The absorption coefficients from 0.2-1.4 THz of all fourteen
selected photopolymers are presented in Fig 3a-3c. From
Fig. 3a, themeasurement results of the absorption coefficients
of Gray resin, RGD series and flexible photopolymer ABS
Flexwere characterized. At 1.4 THz, RGD450 has the highest
absorption coefficient of 39.6 cm−1, followed by ABS Flex,
RDG430, RGD835 and Gray resin with absorption coeffi-
cients of 36.8 cm−1, 34.2 cm−1, 32.7 cm−1 and 33.0 cm−1,
respectively. Fig. 3b also plots the absorption coefficients
versus frequencies for LS600, ABS Tough, ABS Flex Black,

Photosilver and HTM140-V2. At 1.4 THz, LS600 has the
lowest absorption coefficient of 30.2 cm−1 while those for
HTM140-V2 and ABS Tough are 33.3 cm−1 and 34.9 cm−1,
respectively. ABS Flex Black and Photosilver appear to have
the absorption coefficient of 37.5 cm−1 and 36.1 cm−1

at 1.4 THz. In Fig. 3c, absorption coefficients of RC series
and R11 are plotted. At 1.4 THz, R11 clearly has the high-
est absorption coefficient of 48.8 cm−1 as compared to the
coefficients of 37.5 cm−1 for RC-90 and 34.8 cm−1 for both
RC-31 and RC-70. Noticeably, RC-31 and RC-90 appear to
have the same figure of the absorption coefficient over the
whole THz band from 0.2- 1.4 THz. In general, for the whole
measurement frequencies, LS600 has the lowest absorption
coefficient as compared to the rest of the photopolymer spec-
imens while R11 appears to have the largest THz absorption
coefficient.

D. DIELECTRIC CONSTANTS
From the measured refractive indices and absorption coef-
ficients, equation (6), described in the Method section,
is used to calculate the dielectric constants of the fourteen
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FIGURE 3. Measured absorption coefficients of 14 photopolymers.

selected photopolymers, which are shown in Fig. 4a–4c.
Fig. 4a shows the dielectric constants of Gray resin, RGD
series and ABS Flex. At 0.2 THz, RGD430 has the lowest
dielectric constant of 2.70 while highest value belongs to
ABS Flex at 2.94. At 1.4 THz, all the dielectric constants
for Gray resin, RGD430, RGD450, RGD835 and ABS Flex
slightly decrease to 2.61, 2.58, 2.71, 2.63 and 2.76 as compare
to their nominal figures at 0.2 THz, respectively. In Fig. 4b,
dielectric constants of LS600, ABS Tough, ABS Flex
Black, Photosilver and HTM140-V2 are shown. At 0.2 THz,
the dielectric constants of LS600, ABS Tough, ABS Flex
Black, Photosilver and HTM140-V2 are 2.86, 2.89, 2.80,
3.00, 2.71, respectively, while these figures slightly decrease

FIGURE 4. Measured dielectric constants of the photocurable polymers.

to 2.68, 2.73, 2.65, 2.82, 2.55, at 1.4 THz. Fig. 4c shows
the dielectric constant plots of RC series and R11 photopoly-
mers. R11 andRC-31 photopolymers have the same dielectric
constants of 2.87 at the frequency of 0.2 THz and slightly
decrease to 2.66 and 2.70, respectively, at 1.4 THz. More-
over, dielectric constants of 2.92 and 3.09 at 0.2 THz and
2.75 and 2.90 at 1.4 THz for RC-70 and RC-90, respec-
tively. From the calculated figures of the dielectric constants
plotted in Fig. 4a-4c, the photocurable polymers measured
here have a very strong potential to be used for developing a
number of THz and mm-wave passive components and func-
tional devices ranging from THz transmission lines to THz
antennas.
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FIGURE 5. Measured loss tangents of the selected photopolymers.

E. LOSS TANGENTS
Fig. 5a-5c shows the loss tangents, which are used to deter-
mine the material loss characteristics, of all selected pho-
topolymers. From Fig. 5a, Gray resin, RGD430, RGD450,
RGD835 and ABS Flex have loss tangents of 0.016, 0.033,
0.025, 0.028 and 0.019, at 0.2 THz, respectively, and these
values increase to 0.069, 0.071, 0.082, 0.069 and 0.076
at 1.4 THz. Loss tangents of LS600, ABS Tough, ABS Flex
Black, Photosilver and HTM140-V2 are plotted in Fig. 5b.
At 0.2 THz, the loss tangents of ABS Flex Black, Photosilver
and HTM140-V2 are very close to each other at approxi-
mately 0.023, while LS600 and ABS Tough have lower loss

tangent of 0.008 and 0.012. At 1.4 THz, ABS Flex Black has
the highest loss tangent of 0.078 and LS600 has the lowest
one of 0.063. ABS Tough, Photosilver and HTM140-V2
have very close loss tangent values of approximately 0.072
at 1.4 THz. Fig. 5c plots the loss tangent curves for RC
series and R11 photopolymers. For the whole frequency band
from 0.2-1.4 THz, the RC series polymers have almost the
same figure for their loss tangents of approximately 0.022
and 0.073, respectively. As shown in Fig. 5c, R11 photopoly-
mer has the highest average loss tangent as compared to the
other thirteen selected photopolymers ranging from 0.028 at
0.2 THz to 0.102 at 1.4 THz, making this photocurable
polymer least suitable for mm-wave and THz applications as
compared to the other selected photopolymer specimens.

FIGURE 6. Relationship between absorption coefficients and loss
tangents of the selected photopolymers at 1 THz.

Fig. 6 shows a plot of absorption coefficient versus loss
tangent for all fourteen selected photopolymer specimens
at 1 THz. From the measurement setup, the THz-TDS system
was primarily used to measure both refractive index and
absorption coefficient. Bothmeasuredmaterial properties can
be used to calculate the dielectric constant and loss tangent
of the materials by using equations (6) and (7). Therefore,
Fig. 6 shows a strong linear relationship between the absorp-
tion coefficient and loss tangent by showing that the material
that has high absorption coefficient also has high loss tangent
and vice versa.

Furthermore, a comprehensive optical and electromag-
netic characteristic of these photopolymers are tabulated
in Table 2 at 0.2, 0.8 and 1.4 THz. From the loss tangent
and dielectric constant characteristics, all selected photocur-
able polymer specimens are suitable to be used in mm-wave
and THz applications, which was demonstrated in the next
section.

F. APPLICATIONS OF PHOTOPOLYMERS:
TERAHERTZ BRAGG FIBERS
To demonstrate the usability of the selected photopoly-
mers, HTM140-V2 was used to fabricate an asymptotically
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TABLE 2. Summarized electromagnetic and optical dielectric properties of selected photopolymers.

FIGURE 7. Asymptotically single-mode Bragg fiber additive-manufactured
by using HTM140-V2 photopolymer. (a) cross-sectional dimensions of the
all-dielectric Bragg fiber (left) and its fabricated prototype (right).
(b) propagation loss characteristic of the Bragg fiber.

single-mode all-dielectric Bragg fiber with an operational
frequency band from 0.246-0.276 THz, which was previously
reported [11]. Fig. 7a shows the cross-sectional geometries

and dimensions of the THz Bragg fiber and the fabricated
prototype with two different fiber lengths of 30 and 100 mm.
EnvisionTEC HTM140-V2 photopolymer was chosen due to
its high refractive index to provide cladding layers, the outer-
most protective layer, and the support bridges, while air gaps
provided the low refractive index cladding layers. Compared
to other well-known low-loss THz polymers [35], such as
TOPAS, Zeonex, HDPE, and PTFE, the material attenuation
ofHTM140-V2 ismuch higher, which is a common limitation
ofmost commercially available photopolymers in 3D printing
applications to date. However, since the EMfield in the Bragg
fibre is tightly confined andmainly propagates inside the low-
loss air core, only a small portion of the EMfield is distributed
in the periodic cladding material, and thereby the delete-
rious impact of the relatively high material attenuation of
HTM140-V2 is mitigated by the air-core Bragg fibre design.
The Bragg fiber prototype was fabricated by using Envi-
sionTEC Perfactory 3 mini multi-lens 3D printer based on
DLP additive manufacturing technique. Then, the THz fiber
prototype was characterized for its figure-of-merits by using
free-space measurement platform together with Keysight
PNA-X and OML frequency extenders operating from
0.22 to 0.325 THz. Fig. 7b shows the propagation loss char-
acteristics of the THz electromagnetic wave along the THz
Bragg fiber from 0.24- 0.28 THz. The measurement results
show that the average electromagnetic propagation loss of the
asymptotically single-mode Bragg fiber is lower than 5 dB/m
for the nominal frequencies from 0.246 to 0.276 THz, which
is the lowest propagation loss reported to date for asymptoti-
cally single-mode all-dielectric fiber at this frequency band.
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IV. CONCLUSIONS
Fourteen photocurable polymer specimens for SLA, DLP
and PJ additive manufacturing were characterized for their
optical and electromagnetic properties from 0.2 – 1.4 THz
by using laser-based THz-TDS technique. The measure-
ment results show that all selected photopolymer specimens
in this works are suitable for developing various passive
mm-wave and THz components with excellent figure-of-
merit as demonstrated in the previously published work on
low-loss 0.2-THz asymptotically single-mode Bragg fiber
fabricated by using HTM140-V2 photopolymer.
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