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ABSTRACT 60 

During the transition from warm to cool seasons, plants experience decreasing 61 

temperatures, shortening days and decreasing red/far-red (R/FR) ratios of light. The 62 

mechanism via which plants integrate these environmental cues to maintain plant 63 

growth and adaptation remains unclear. Here, we report that low temperature induced 64 

the transcription of PHYTOCHROME A (SlPHYA) and accumulation of LONG 65 

HYPOCOTYL 5 (SlHY5, a bZIP transcription factor), especially under conditions of 66 

short days and low R/FR ratios of light, in tomato plants. Reverse genetic approaches 67 

and physiological analyses revealed that silencing of SlHY5 increased cold 68 

susceptibility in tomato plants, while overexpression of SlHY5 enhanced cold tolerance. 69 

By directly binding and activating the transcription of a gibberellin (GA)-inactivation 70 

enzyme gene, GIBBERELLIN 2-OXIDASE 4 (SlGA2ox4), and an abscisic acid (ABA) 71 

biosynthesis enzyme gene, 9-CIS-EPOXYCAROTENOID DIOXYGENASE 6 72 

(SlNCED6), phyA-dependent SlHY5 accumulation resulted in an increased ABA/GA 73 

ratio, which was accompanied by growth cessation and induction of cold response. 74 

Furthermore, silencing of SlNCED6 compromises SD- and L-R/FR- induced tomato 75 

resistance to cold stress. These findings provide insight into the molecular genetic 76 

mechanism via which plants integrate environmental stimuli with plant hormones to 77 

coordinate plant growth with impending cold temperatures and reveal a molecular 78 

mechanism that plants have evolved for growth and survival in response to seasonal 79 

changes. 80 

 81 

82 
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INTRODUCTION 83 

Unlike animals, plants are sessile and must integrate environmental stimuli to optimize 84 

growth and development and survive under adverse environmental conditions. Plants 85 

experience reduced ambient temperatures, shorter days and decreased red to far-red 86 

ratios (R/FR) of light due to vegetative shading and longer twilight durations in cool 87 

seasons and vice versa in warm seasons (Franklin et al., 2007). Meanwhile, plants 88 

usually exhibit decreased growth and improved cold tolerance with gradual cooling 89 

after the start of the fall season. This acclimation process is associated with transcript 90 

reprogramming and altered homeostasis of plant hormones such as gibberellins (GAs) 91 

and abscisic acid (ABA), leading finally to growth cessation or dormancy with 92 

subsequent tolerance of plants to freezing (Wisniewski et al., 2011). However, the 93 

molecular mechanism responsible for this long-evolved phenomenon during seasonal 94 

changes is largely unknown.  95 

Plant growth, development, and stress response are subject to regulation by light in 96 

a phytochrome-dependent manner (Kim et al., 2002). However, light-related effects, 97 

such as the effects of photoperiods, on plant growth, development and cold response are 98 

likely to be temperature and species dependent (Chen and Li, 1976; Cockram et al., 99 

2007; Malyshev et al., 2014; Song et al., 2015). The effects of short days (SDs) on the 100 

induction of the transcription of C-repeat binding factors (CBFs) and on the subsequent 101 

tolerance to freezing are less notable in plants originating from low latitudes than in 102 

those from high latitudes (Li et al., 2003; Lee and Thomashow, 2012). Likewise, low 103 

R/FR ratios could induce the expression of the CBF regulon only at a temperature lower 104 

than the optimum growth temperature (Franklin and Whitelam, 2007; Wang et al., 105 

2016). These results indicated that the induction or suppression of cold tolerance is 106 

associated with the interconversion between the R-light- absorbing form (Pr) and the 107 

FR-light- absorbing form (Pfr) of phytochrome A (phyA) and phyB in a 108 

temperature-dependent manner (Rockwell et al., 2006). Mutation of phyA has been 109 

shown to decrease the cold tolerance of Arabidopsis and tomato, while that of phyB1, 110 

phyB2 or phyD has increased the cold tolerance of these plants (Franklin and Whitelam, 111 

2007; Wang et al., 2016). Recently, phytochrome B has been suggested to function as 112 

thermal sensor that integrate temperature information over the course of the night (Jung 113 

et al., 2016; Legris et al., 2016). However, the mechanism via which plants sense 114 

environmental cues and integrate these signals with plant physiological processes to 115 

balance growth and cold response during seasonal changes remains unclear. 116 
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LONG HYPOCOTYL 5 (HY5), a basic leucine zipper (bZIP) transcription factor, 117 

acts downstream of multiple photoreceptors and regulates a subset of physiological 118 

processes, such as photomorphogenesis, pigment biosynthesis, nutrient signaling and 119 

defense response (Oyama et al., 1997; Jiao et al., 2007; Gangappa and Botto, 2016). In 120 

addition to the regulation by photoreceptors, HY5 transcript and protein stability is also 121 

subject to regulation by low temperature in a CONSTITUTIVE 122 

PHOTOMORPHOGENIC1 (COP1)-dependent manner (Catala et al., 2011), a 123 

RING-finger E3 ubiquitin ligase that targets HY5 for proteasome-mediated degradation 124 

(Osterlund et al., 2000). Interestingly, genome-wide ChIP-chip experiments 125 

demonstrated that HY5 regulates the expression of nearly one-third of genes 126 

in Arabidopsis (Lee et al., 2007). For example, HY5 can activate abscisic acid (ABA) 127 

signaling by directly binding to the promoter of ABA INSENSITIVE 5 (ABI5) during 128 

seed germination and cold stress in Arabidopsis and tomatoes (Chen et al., 2008; Xu et 129 

al., 2014; Wang et al., 2018). Moreover, LONG1, a divergent ortholog of 130 

the Arabidopsis HY5, has a central role in mediating the effects of light on the 131 

accumulation of gibberellin (GA) in pea (Weller et al., 2009). However, it remains 132 

unknown whether SlHY5 functions as a critical regulator of the trade-off between plant 133 

growth and cold response in response to light-quality, photoperiod and temperature 134 

signals during seasonal changes. Specifically, the molecular mechanism by which 135 

SlHY5 regulates ABA and GA biosynthesis to maintain plant growth and adaptation is 136 

unclear. 137 

 138 

RESULTS 139 

Roles of Phytochromes in Cold Acclimation, Short Days and Low R/FR-Induced 140 

Cold Tolerance 141 

We previously found that phyA and phyB are positive and negative regulators, 142 

respectively, of cold tolerance in tomato (Wang et al., 2016). To reveal the mechanism 143 

of plant response to both light (light-quality and photoperiod) and temperature signaling, 144 

we tested the transcriptions of light signaling-, cold response- and plant growth- related 145 

genes, such as SlPHYA, SlPHYBs, SlCBF1 and SlDELLA genes. We found that the 146 

transcription of SlPHYA was induced while that of SlPHYB1 and SlPHYB2 was reduced 147 

in plants under SD (8 h) and low R/FR (L-R/FR, 0.5) conditions compared to those 148 

under long day (LD, 16 h) and high R/FR (H-R/FR, 2.5) conditions at 25 °C (Fig. 1, A 149 

and B; Supplemental Fig. S1A). Importantly, exposure to a suboptimal growth 150 
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temperature of 10 °C (cold acclimation, CA) further increased the transcript levels of 151 

SlPHYA but suppressed the transcription of SlPHYB1 and SlPHYB2, especially under 152 

SD and L-R/FR conditions. A combination of CA with SD and L-R/FR resulted in an 153 

18-fold increase in the transcript levels of SlPHYA and in decreased transcription of 154 

SlPHYB1 and SlPHYB2 by 86% and 92%, respectively, compared to the values seen in 155 

plants grown at 25 °C under LD and H-R/FR light conditions. DELLA proteins, 156 

encoded by DELLA genes, play critical roles by inhibiting GA signaling in plant 157 

growth and cold response (Achard et al., 2008; Zhou et al., 2017). Gene silencing 158 

experiments demonstrated that a tomato SlDELLA gene called PROCERA (SlPRO) is 159 

the predominant gene among the tomato SlDELLA family genes (GA INSENSITIVE, 160 

SlGAIs) responsible for plant elongation (Supplemental Fig. S1, B and C; Jones, 1987). 161 

We found that the transcription of SlPRO was decreased in plants under SD with 162 

L-R/FR conditions compared to those under LD and H-R/FR conditions at 25 °C. 163 

Importantly, CA significantly induced the expression of SlPRO, especially in 164 

combination with SD and L-R/FR conditions (Fig. 1C). Meanwhile, transcription of 165 

GA-INSENSITIVE DWARF1 (SlGID1), the receptor of GA, was induced by either 166 

L-R/FR or SD at 25 °C but suppressed by low temperatures, especially under SD 167 

conditions (Supplemental Fig. S1D). While light quality and photoperiod had little 168 

effect on the transcription of SlCBF1 in plants grown at 25 °C, CA significantly induced 169 

the transcription of SlCBF1, especially under SD and L-R/FR conditions (Fig. 1D). 170 

These results indicated that light had greater effects on phytochromes, GA signaling and 171 

the CBF-pathway at low temperatures than at high temperatures. The low temperatures, 172 

short days and low R/FR ratios in cool seasons could efficiently induce SlPHYA and 173 

SlCBF1 expression but suppress SlPHYB expression and GA signaling.  174 

We then examined whether the light conditions required for growth are associated 175 

with cold sensitivity. By using relative electrolyte leakage (REL) as an indicator of cold 176 

tolerance, we found that the growth photoperiod and R/FR ratio before cold treatment 177 

did not alter the cold tolerance, since pretreatment with photoperiod and R/FR ratio 178 

before cold treatment did not alter the changes in REL (Supplemental Fig. S2A). 179 

However, the light conditions during chilling had significant effects on cold tolerance; 180 

plants subjected to SD, L-R/FR or both exhibited greater tolerance to chilling than those 181 

subjected to either LD or H-R/FR (Supplemental Fig. S2B). These results suggested that 182 

the integration of light signaling and cold stimuli is essential for the induction of cold 183 

tolerance. To determine whether the different responses, in terms of accumulation of the 184 
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phytochrome transcript, to variations in temperature, photoperiod and light quality are 185 

associated with cold tolerance, we exposed the WT and a set of phytochromes mutants 186 

(phyA, phyB1B2 and phyAB1B2) of tomato plants to LD or SD with L- or H-R/FR 187 

conditions at 25 °C or 10 °C for 7 d (CA), which was followed by chilling at 4 °C with 188 

identical light conditions for 7 d (Fig. 1E). The results indicated that phyA mutant plants 189 

were shorter while the phyB1B2 mutant plants were taller than WT plants at 25 °C 190 

(Supplemental Fig. S3). After chilling stress, phyA mutant plants always exhibited 191 

decreased chilling tolerance, while phyB1B2 plants always exhibited increased chilling 192 

tolerance relative to the WT plants, as indicated by the increased and decreased REL 193 

relative to the REL in WT plants (Fig. 1E). WT and phyB1B2 plants showed greater 194 

tolerance under SD and L-R/FR conditions relative to those under LD and H-R/FR 195 

conditions, respectively, regardless of CA. In contrast, CA and SD induced the 196 

tolerance of all plants to chilling stress; L-R/FR increased the tolerance of only WT and 197 

phyB1B2 plants but not of plants mutated in phyA (phyA and phyAB1B2). Based on 198 

these results, we conclude that the tomato phyA and phyB function antagonistically to 199 

regulate the adaptation of plants to the changes in temperature, photoperiod and light 200 

quality. 201 

 202 

SlHY5 Inhibits Plant Growth and Induces Cold Tolerance by Integrating Both 203 

Light and Temperature Signaling 204 

Multiple photoreceptors promote the accumulation of LONG HYPOCOTYL 5 (HY5) 205 

under specific light conditions, possibly by reducing the nuclear abundance of 206 

CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), an E3 ubiquitin ligase targeting 207 

HY5 for proteasome-mediated degradation in the dark (Osterlund et al., 2000; Yi and 208 

Deng, 2005). Here, we found that the effects of photoperiod and light quality on the 209 

SlHY5 and SlCOP1 transcript levels are largely dependent on growth temperature. 210 

Transcription of either SlHY5 or SlCOP1 was slightly altered by the photoperiod and by 211 

the R/FR ratio in plants at 25 °C (Supplemental Fig. S4). Interestingly, CA significantly 212 

induced the transcription of SlHY5 in WT and phyB1B2 plants, with the effect being 213 

more significant in phyB1B2 plants, especially under SD and L-R/FR light conditions 214 

(Fig. 2A). However, transcription of SlHY5 showed few changes in response to CA, 215 

photoperiod and R/FR in phyA and phyAB1B2 plants. In contrast, the CA-induced 216 

transcription of SlCOP1 was suppressed by either SD or L-R/FR in WT and phyB1B2 217 

plants, especially in phyB1B2; and the transcription of COP1 was suppressed by SD but 218 
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not by L-R/FR in phyA and phyAB1B2 plants (Supplemental Fig. S5A). Finally, 219 

phyB1B2 plants had decreased transcript levels of SlCOP1 relative to those of WT 220 

plants throughout the treatment. Additional experiments with monochromic R and FR 221 

lights revealed that R light induced the transcription of SlCOP1 but suppressed the 222 

transcription of SlHY5, while FR induced the transcription of SlHY5 but suppressed the 223 

transcription of SlCOP1 at low temperatures; all of these effects were dependent on 224 

phyB or phyA (Supplemental Fig. S5, B and C). Therefore, efficient induction of the 225 

SlHY5 transcript is dependent on phyA in tomato plants in response to changes in 226 

growth temperature, photoperiod and light quality. By using an SlHY5-overexpressing 227 

line (SlHY5-OE) carrying a 3HA tag, we found that low temperatures increased the 228 

accumulation of the SlHY5 protein, which was increased under SD and L-R/FR 229 

conditions (Fig. 2B). These results suggested that SlHY5 levels are tightly controlled by 230 

temperature and light transcriptionally, via a phytochrome-dependent pathway, and 231 

posttranslationally, via protein stabilization. 232 

To determine whether SlHY5 is involved in the integration of light and 233 

temperature stimuli to regulate plant growth and cold tolerance, we compared plant 234 

elongation and cold tolerance in tomato plants of the WT, SlHY5-RNAi and 235 

SlHY5-overexpressing (SlHY5-OE) lines in response to changes in growth temperature, 236 

photoperiod and R/FR ratio. We found that the SlHY5-RNAi plants were taller while the 237 

SlHY5-OE plants were shorter than WT plants at 25 °C or after CA (Fig. 2C). 238 

Meanwhile, SlHY5-RNAi plants exhibited increased while SlHY5-OE plants exhibited 239 

decreased sensitivity to chilling stress, as indicated by the changes in REL and 240 

maximum photochemical efficiency of PSII (Fv/Fm) regardless of CA (Fig. 2D; 241 

Supplemental Fig. S6A). While CA decreased REL and increased the Fv/Fm ratio, 242 

especially under conditions of SD, L-R/FR or both in the WT and SlHY5-OE plants, this 243 

positive effect on chilling tolerance was almost abolished in the SlHY5-RNAi plants. 244 

Meanwhile, CA induced transcript accumulation of SlCBF1 and associated genes 245 

(SlCOR47-like, SlCOR413-like), and in WT plants, the effects were highly significant 246 

under L-R/FR and SD conditions (Supplemental Fig. S6, B-D). Importantly, this 247 

induction was highly significant in SlHY5-OE plants and was mostly abolished in 248 

SlHY5-RNAi plants. Therefore, SlHY5 plays a positive regulatory role in the cold 249 

tolerance of tomato plants by integrating temperature, photoperiod and light quality 250 

signals. 251 

 252 
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SlHY5 Dir ectly Activates SlGA2ox4 Expression and Suppresses the Accumulation 253 

of GAs 254 

GAs play a critical role in plant growth and are also negative regulators of cold 255 

tolerance and growth cessation (Achard et al., 2008; Sun, 2011; Zhou et al., 2017). To 256 

determine whether SlHY5 participates in the regulation of GA homeostasis and 257 

subsequent plant growth, we analyzed the changes in GA levels in plants. The levels of 258 

active GAs (GA1 and GA4), their precursors (GA20 and GA9) and their metabolites (GA8 259 

and GA34) were higher in SlHY5-RNAi plants, and lower in SlHY5-OE plants, than in 260 

WT plants under H-R/FR and LD conditions at 25 °C (Fig. 3). Meanwhile, 261 

accumulation of these GAs decreased after CA under L-R/FR and SD conditions; in 262 

particular, the levels of GA9 were too low to be detected. To determine whether SlHY5 263 

participates in the regulation of GA homeostasis by deactivating GAs, we analyzed the 264 

expression of the major GA deactivation genes GA2-oxidases (SlGA2oxs) (Schomburg 265 

et al., 2003; Yamaguchi, 2008). Among these SlGA2ox genes, transcription of 266 

SlGA2ox4 was induced by low temperatures under SD and L-R/FR conditions, with 267 

SlHY5-RNAi plants exhibiting lower, but SlHY5-OE plants exhibiting higher, transcript 268 

levels of SlGA2ox4 than WT plants (Fig. 4A). However, such an SlHY5-dependent 269 

change in the transcript levels was not observed for other SlGA2ox genes (Supplemental 270 

Fig. S7A). Promoter analysis revealed that there are three ACGT-containing elements 271 

(ACE-boxes; nucleotides −115 to −112, nucleotides −338 to −335 and nucleotides 272 

−2347 to −2344), which are HY5-binding cis-elements (Lee et al., 2007), in the 2500-bp 273 

region of the SlGA2ox4 promoter (Supplemental Fig. S7B). Electrophoretic mobility 274 

shift assay (EMSA) showed that HY5 was able to bind to the biotin-labeled probes 275 

containing an ACE-box (nucleotides −124 to −104), leading to a mobility shift, but the 276 

binding ability to the SlGA2ox4 promoter was reduced, and even lost, when the 277 

promoter was mutated in the ACE elements (ACE-mut; Fig 4B; Supplemental Fig. S7C). 278 

ChIP-qPCR analyses showed that the GA2ox4 promoter sequence was significantly 279 

enriched in the 35S: SlHY5-HA (SlHY5-OE) samples pulled down by the anti-HA 280 

antibody compared to the WT control samples. No enrichment of the IgG control was 281 

observed (Fig. 4C). Therefore, HY5 directly associates with the promoter sequence of 282 

GA2ox4 and activates the expression of SlGA2ox4. These results suggested that SlHY5 283 

is a hub for temperature, photoperiod and light quality stimuli, regulating plant growth 284 

via GA inactivation.  285 

 286 



 

11 

 

SlHY5 Binds to SlNCED6 Promoter, Activates Its Transcription and Promotes 287 

ABA Accumulation during Cold Stress 288 

ABA plays a critical role in the response to cold stress and frequently functions as a 289 

regulator of bud formation in cool seasons (Knight et al., 2004; Ruttink et al., 2007; Lee 290 

and Luan, 2012; Tylewicz et al., 2018). We found little difference in ABA accumulation 291 

among WT, SlHY5-RNAi and SlHY5-OE plants at 25 °C (Fig. 5A). However, a decrease 292 

in growth temperature from 25 °C to 10 °C significantly induced the ABA accumulation 293 

and transcription of ABA pathway genes (SlAREB, SlABF4), especially under L-R/FR 294 

and SD conditions in WT plants (Fig 5A; Supplemental Fig. S8). However, such 295 

induction was greater in SlHY5-OE plants but attenuated in SlHY5-RNAi plants 296 

regardless of the photoperiod and light quality conditions applied. We then examined 297 

whether SlHY5 could bind to the promoters of ABA biosynthetic genes by analyzing 298 

the 2.5-kb promoter regions of a set of ABA biosynthetic genes. The G-box (CACGTG) 299 

was found in the upstream regions of four ABA biosynthesis genes, i.e., SlNCED1, 300 

SlNCED2/5, SlNCED6 and SlSit (Sitiens, an ABA aldehyde oxidase gene; Supplemental 301 

Fig. S9A). EMSA showed that SlHY5 was able to bind to two biotin-labeled probes of 302 

the SlNCED6 promoter (nucleotides −1780 to −1761 and nucleotides −168 to −149) and 303 

caused mobility shift but failed to bind to the probes of the SlNCED1, SlNCED2/5 and 304 

SlSit promoters (Fig 5B; Supplemental Figs. S9B and S10). When the core sequence of 305 

the G-box motif in the SlNCED6 probes was mutated in a single base 306 

(SlNCED6-G1/G2-mut2) or in multiple bases (SlNCED6-G1/G2-mut1), the binding 307 

ability of SlHY5 to the probes was reduced, and even lost (Fig 5B; Supplemental Fig. 308 

S10). Following ChIP-qPCR analysis with an anti-HA antibody, the SlNCED6 promoter 309 

was significantly enriched in 35S: SlHY5-HA samples compared to the WT control, 310 

whereas the IgG control was not enriched (Fig. 5C). Consistent with this result, 311 

SlNCED6 transcription was induced to a greater extent in SlHY5-OE plants than in WT 312 

plants by CA, especially under SD and L-R/FR conditions, but poorly induced in 313 

SlHY5-RNAi plants (Fig. 5D). These results indicated that SlHY5 positively regulated 314 

ABA biosynthesis by directly binding to the promoter of SlNCED6 and activating its 315 

transcription in response to cold stress. 316 

 317 

SlNCED6 is Essential for Cold Acclimation, Short Days and Low R/FR-Induced 318 

Cold Tolerance 319 
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Consistent with the regulation of SlHY5 by phytochromes, SD and L-R/FR, alone or in 320 

combination, significantly induced the transcription of SlNCED6 in WT and phyB1B2 321 

plants, with the effect being greater in phyB1B2 plants under cold conditions 322 

(Supplemental Fig. S11A). However, the transcript levels of SlNCED6 showed little 323 

change in response to changes in photoperiod and R/FR ratio in phyA and phyAB1B2 324 

plants. In addition, R light suppressed the transcription of SlNCED6 in WT and phyA 325 

plants but had little effect in phyB1B2 and phyAB1B2 plants (Supplemental Fig. S11B). 326 

In contrast, FR light induced the transcription of SlNCED6 in WT and phyB1B2 plants 327 

but had little effect in phyA and phyAB1B2 plants. Taken together, our results strongly 328 

suggest that phyA and phyB act antagonistically to regulate low temperature-, 329 

photoperiod- and light quality-dependent ABA biosynthesis in an SlHY5-dependent 330 

manner.  331 

To assess the role of SlNCED6 in cold response, we generated SlNCED6-silenced 332 

(pTRV-SlNCED6) tomato plants (Supplemental Fig. S12A). pTRV-SlNCED6 plants 333 

exhibited a 75% reduction in the transcript levels and a 57% reduction in ABA 334 

accumulation relative to pTRV plants, but no differences in Fv/Fm and REL were 335 

observed between pTRV-SlNCED6 plants and pTRV plants grown under optimal 336 

growth conditions (Supplemental Fig. S12, B and C). However, nonacclimated 337 

pTRV-SlNCED6 plants showed increased sensitivity to chilling at 4 °C under LD and 338 

H-R/FR conditions compared with pTRV plants, as evidenced by the decreased Fv/Fm 339 

and increased REL (Fig 6, A and B; Supplemental Fig. S13A). When the same cold 340 

stress was imposed in cold-acclimated plants, expression of the key genes of the CBF 341 

pathway, such as SlCBF1, SlCOR47-like and SlCOR413-like, and ABA pathway genes 342 

(SlAREB and SlABF4) were highly attenuated in pTRV-SlNCED6 plants relative to 343 

pTRV plants (Fig. 6, C-F; Supplemental Fig. S13B). Therefore, SlNCED6 is essential 344 

for the induction of the SlCBF regulon and ABA signaling in response to changes in 345 

growth temperature and light conditions. 346 

 347 

DISCUSSION 348 

Plants must sense seasonal changes and respond it by integrating temperature, 349 

photoperiod and light-quality stimuli for growth and the correct induction of cold 350 

tolerance. Plants grow vigorously in spring and summer and exhibit decreased or even 351 

stop growth in fall and autumn with the changes in growth temperature, day length and 352 

R/FR ratio. For a long time, the role of phytochromes in the adaptation to the seasonal 353 



 

13 

 

changes has been ignored. Recently, phyB photoreceptor has been found to functions as 354 

a thermal sensor in the regulation of elongation growth in Arabidopsis at temperatures 355 

of 20~28°C (Jung et al., 2016; Legris et al., 2016). Warmer temperatures spontaneously 356 

accelerate the phyB switching it from an active Pfr state to an inactive Pr state, which 357 

promotes the activity of PIFs and its ability to activate gene expression to control plant 358 

expansion growth (Jung et al., 2016). Consistent with this, the phyB mutants were taller 359 

than WT at 25 °C (Supplemental Fig. S3). Notably, transcript of SlPHYA was 360 

significantly increased whilst that of SlPHYB1 and SlPHYB2 was significantly 361 

decreased in response to the decrease in growth temperatures, day length and the R/FR 362 

ratio (Fig. 1, A and B; Supplemental Fig. S1A), which was followed by increase in the 363 

transcript of CBFs and cold tolerance (Fig. 1, D and E). Recent studies have established 364 

the role of different phytochromes in cold response by regulating the expression of 365 

several COR genes through the CBF-pathway in different plant species (Williams et al., 366 

1972; McKenzie et al., 1974; Franklin and Whitelam, 2007). In agreement with these 367 

studies, tomato phyA mutants had decreased chilling tolerance with decreased transcript 368 

of CBF1, while phyB1B2 mutants had increased chilling tolerance with increased 369 

transcript of CBF1 relative to the WT plants (Wang et al., 2016, Fig. 1E). Importantly, 370 

such a difference in cold tolerance or CBF1 transcript is day length- and R/FR 371 

ratio-dependent (Wang et al., 2016, Fig. 1E). These results suggested that plants have 372 

evolved phytochromes-dependent adaptation mechanism to cope with the changes in 373 

growth temperature, day length and R/FR ratio during the seasonal transmit. While 374 

phyB is important for plant elongation at modest growth temperatures, phyA is likely 375 

important for balancing plant growth and cold adaptation by integrating the seasonal 376 

cues like temperature, day length and R/FR ratio. 377 

HY5 acts downstream of multiple photoreceptors and mediates light signaling in 378 

many physiological processes in plants (Gangappa and Botto, 2016). The finding that 379 

phyA and phyB have different roles in photoperiodic and light quality regulation of the 380 

SlHY5 transcript and thereby affect cold tolerance adds to the rapidly growing list of 381 

biological function for SlHY5 proteins in tomato plants (Figs. 1E and 2A). Previous 382 

studies indicated that low temperature could stabilize AtHY5 protein at posttranslational 383 

level through the nuclear exclusion of AtCOP1 (Catala et al., 2011), whilst AtHY5 384 

induces its expression by directly binding to its own promoter (Abbas et al., 2014; 385 

Binkert et al., 2014). Moreover, once the AtHY5 protein levels have increased 386 

triggering the induction of anthocyanin biosynthesis genes, the transcription of 387 
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prefoldins (AtPFDs) genes would be activated (Perea-Resa et al., 2017). AtPFDs 388 

protein would accumulate in the nucleus via an AtDELLA-dependent mechanism, 389 

which then interacts with AtHY5 and promotes AtHY5 polyubiquitination and 390 

subsequent proteasome-mediated degradation via an AtCOP1-independent pathway 391 

(Perea-Resa et al., 2017). This regulation would ensure the appropriate levels of HY5 all 392 

along the cold acclimation response. In agreement with this finding, we found that 393 

gradual cooling accompanied by short days and decreased R/FR ratios initially induced 394 

a phyA-dependent SlHY5 accumulation (Fig. 2B). Meanwhile, changes to SD and 395 

L-R/FR ratio at low temperature induced a down-regulation of SlCOP1 (Supplemental 396 

Fig. S5A), allowing HY5 stabilization and the activation of light-responsive genes 397 

(Osterlund et al., 2000). To characterize the functions of SlHY5 in plant growth and 398 

cold response, SlHY5-suppressing tomato plants (SlHY5-RNAi) and 399 

SlHY5-overexpressing tomato plants (SlHY5-OE) were obtained (Liu et al., 2004; Wang 400 

et al., 2018). We found that silenced SlHY5 abolished CA, photoperiod and light quality 401 

signaling-induced cold tolerance, while overexpressing SlHY5 in tomato plants 402 

increased their cold tolerance (Fig. 2D; Supplemental Fig. S6). In addition, the 403 

SlHY5-RNAi plants were taller while the SlHY5-OE plants were shorter than WT plants 404 

at 25 °C or after CA (Fig. 2C). Based on the changes in SlHY5 levels with plant height 405 

and SlCBF1 transcript as well as plant growth and chilling tolerance in response to CA, 406 

photoperiod and R/FR ratio, we conclude that SlHY5 is involved in the integration of 407 

light and temperature stimuli to regulate plant growth and cold tolerance during the 408 

seasonal changes. 409 

Plants usually grow fast in late spring and summer, slow in fall and stop growth in 410 

winter, when they require the greatest tolerance to cold stress. The development of 411 

tolerance or resistance is therefore at the expense of plant growth. ABA and GA are 412 

classic phytohormones, which antagonistically control diverse aspects of plant 413 

development and abiotic stress response (Razem et al., 2006; Shu et al., 2013, 2018a). It 414 

has been proposed that several key transcription factors, including AtABI4 and 415 

OsAP2-39, directly or indirectly control the transcription pattern of ABA and GA 416 

biosynthesis genes to regulate the balance between ABA and GA (Yaish et al., 2010; 417 

Shu et al., 2013, 2018b). GAs play a positive role in plant growth and a negative role in 418 

plant cold tolerance (Achard et al., 2008; Sun, 2011; Zhou et al., 2017). 419 

Interestingly, we found that SlHY5 could suppress the accumulation of GAs in tomato 420 

plants leading to plant growth cessation (Figs. 2C and 3). In agreement with a previous 421 



 

15 

 

study showing that pea mutants of long1 (a divergent ortholog of the Arabidopsis HY5) 422 

exhibited decreased GA accumulation (Weller et al., 2009), we found that SlHY5-OE 423 

had lower whilst SlHY5-RNAi plants had higher GA accumulation relative to WT plants 424 

(Fig. 3). EMSA and ChIP-qPCR assays both showed that SlHY5 directly binds to the 425 

conserved motif of SlGAox4, a major GA deactivation gene, activates its expression and 426 

negatively regulates bioactive GA accumulation (Fig. 4; Supplemental Fig. S7, B and 427 

C). Therefore, SlHY5 participates in the regulation of GA accumulation by GA 428 

deactivation in plants. Meanwhile, we found that SlHY5 levels and ABA accumulation 429 

were coincidently induced by SD and L-R/FR at low temperature (Figs. 2, A and B, and 430 

5A). This increase is attributable to the SlHY5 directly binding to the promoter of 431 

NECD6, a key gene in ABA biosynthesis, and triggering its expression (Fig. 5, B-D; 432 

Supplemental Fig. S9 and S10). As in phyA plants, suppressed transcription of SlHY5 in 433 

SlHY5-RNAi plants abolished low temperature-induced, SD- and L-R/FR-promoted 434 

ABA accumulation, SlCBF1 transcription and cold tolerance (Fig. 6A; Supplemental 435 

Fig. S6, A and B). Our study also demonstrated the role of ABA biosynthesis in the 436 

development of cold tolerance as SlNECD6 is essential for low temperature-induced, 437 

SD- and L-R/FR-promoted ABA accumulation, SlCBF1 transcript and cold tolerance 438 

(Fig. 6; Supplemental Figs. S12 and S13). This finding is in agreement with earlier 439 

observation that ABA biosynthesis is important for the expression of COR genes in the 440 

cold response (Gilmour and Thomashow, 1991; Mantyla et al., 1995). All these results 441 

provided convincing evidence that SlHY5 is negative regulator of plant growth by 442 

activating the GA deactivation and a positive regulator of cold adaptation by activating 443 

ABA biosynthesis. 444 

Our data suggest a new conceptual framework for understanding how plants 445 

integrate the seasonal stimuli with growth and environmental adaptation. Under optimal 446 

growth temperature, plants accumulate less SlHY5 with vigorous growth and high 447 

sensitivity to cold due to the high GA/ABA ratio (Fig. 7). Gradual cooling accompanied 448 

by short days and decreased R/FR ratios can induce phyA-dependent SlHY5 449 

accumulation. Increased accumulation of SlHY5 resulted in a decrease in the GA/ABA 450 

ratio with growth cessation and an increase in cold tolerance. Phytochrome-dependent 451 

SlHY5 may function as a critical regulator of the trade-off between plant growth and 452 

stress response in plants. Our results not only explain the different growth potentials and 453 

cold sensitivities of plants growing in different seasons but also suggest that plants have 454 

evolved a phytochrome-dependent, SlHY5-mediated adaptation strategy by sensing and 455 
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integrating environmental cues with hormone signaling during seasonal changes. This 456 

mechanism is likely involved in the regulation of other physiological processes such as 457 

seed germination, diurnal growth rhythm and bud dormancy, which are controlled by 458 

temperature, light stimuli and hormones (Chen et al., 2008; Li et al., 2011; Tylewicz et 459 

al., 2018). 460 

 461 

462 
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MATERIALS AND METHODS 463 

Plant Materials and Constructs 464 

Seeds of WT tomato (Solanum lycopersicum), ‘cv. Ailsa Craig’ and ‘cv. Moneymaker’, 465 

and the tomato phytochromes mutants, such as phyA, phyB1B2, and phyAB1B2 mutants 466 

in the cv. Moneymaker background were obtained from the Tomato Genetics Resource 467 

Center (http: //tgrc.ucdavis.edu). The HY5-RNAi lines in the cv. Ailsa Craig 468 

background were generously provided by Professor Jim Giovannoni (Cornell University, 469 

USA) (Liu et al., 2004). The SlHY5 overexpressing plants were generated as described 470 

previously (Wang et al., 2018). Tobacco rattle virus (TRV)-based vectors (pTRV1/2) 471 

were used for virus-induced gene silencing (VIGS) of the SlNCED6 gene and SlDELLA 472 

family genes (GA INSENSITIVE, SlGAIs) (Liu et al., 2002). The complementary DNA 473 

fragments of the SlNCED6 and tomato SlDELLA genes were amplified by PCR using 474 

the gene-specific primers listed in Supplemental Table S1. VIGS was performed as 475 

described previously (Wang et al., 2016). Tomato seedlings were grown in a growth 476 

room with 12 h photoperiod, temperature of 22 °C /20 °C (day/night), and 477 

photosynthetic photon flux density (PPFD) of 600 µmol m-2 s-1. 478 

Cold and Light Treatments 479 

Plants at the 4-leaf stage were used for all experiments, which were carried out in 480 

controlled-environment growth chambers (Zhejiang QiuShi Artificial Environment Co., 481 

Ltd, China). To determine the effects of photoperiod and light quality on the subsequent 482 

cold tolerance, tomato plants were grown at 25 °C /22 °C under conditions of LD (16 h) 483 

or SD (8 h) with H-R/FR (2.5) light or L-R/FR (0.5) light for 7 d. After that all of them 484 

were transferred to a cold stress (4 °C) under white light (WL) with PPFD of 120 ȝmol 485 

m-2 s-1 for 7 d. For the light quality treatment, R light (Ȝmax = 660 nm, Philips, 486 

Netherlands) was maintained at a PPFD of 120 µmol m-2 s-1 and FR light (Ȝmax = 735 487 

nm, Philips, Netherlands) was supplemented. The R/FR ratio was calculated as the 488 

quantum flux densities from 655 to 665 nm divided by the quantum flux density from 489 

730 to 740 nm. To determine the effects of both photoperiod and light quality during 490 

cold stress, tomato plants were first grown at white light (WL) conditions under 25 oC 491 

for 7 d, then they were exposed to a low temperature of 4 °C under conditions of LD or 492 

SD with H-R/FR or L-R/FR light, respectively, for 7 d. To determine the combined 493 

effects of CA, photoperiod and light quality, plants were gown at 25 °C or 10 °C under 494 
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conditions of LD or SD with H-R/FR or L-R/FR light for 7 d before being subjected to a 495 

low temperature of 4 °C with the same light conditions as before.  496 

Cold Tolerance Assays and Plant Height Measurement 497 

Membrane permeability, in terms of relative electrolyte leakage (REL), was determined 498 

after plant exposure to cold stress for 7 d by a previously described method (Cao et al., 499 

2007). The maximum quantum yield of PSII (Fv/Fm) was measured with the 500 

Imaging-PAMsetup (IMAG-MAXI; Heinz Walz, Germany) as previously described (Jin 501 

et al., 2014). The plant height was measured for least 10 tomato seedlings from each 502 

treatment. 503 

Determination of ABA and GA Levels 504 

Endogenous ABA was extracted and quantified from tomato leaves by LC/MS-MS on 505 

an Agilent 1290 Infinity HPLC system coupled to an Agilent 6460 Triple Quad LC-MS 506 

device (Agilent Technologies, USA), as described previously (Wang et al., 2016). GA 507 

levels were determined from 1-g samples of tomato leaves by a derivation approach 508 

coupled with nano-LC-ESI-Q-TOF-MS analysis as described previously (Chen et al., 509 

2012; Li et al., 2016). For the determination of GA levels, the extraction solution was 510 

spiked with D2-GA1, D2-GA4, D2-GA8, D2-GA9, D2-GA20 and D2-GA34. 511 

Phylogenetic Analysis 512 

Sequence alignment and phylogenetic tree construction were performed with the 513 

MEGA program (version 5.05). A consensus neighbor-joining tree was obtained from 514 

1000 bootstrap replicates of aligned sequences. The percentage at branch points 515 

represents the posterior probabilities of amino acid sequences. Sequence alignments 516 

with different tomato (Solanum lycopersicum) reference sequences were from the Sol 517 

genomics network (available at: http://solgenomics.net/) or NCBI (available at: 518 

http://www.ncbi.nlm.nih.gov/). 519 

RNA Extraction and qRT-PCR Analysis 520 

Total RNA was extracted from tomato leaves using an RNAprep Pure Plant Kit 521 

(Tiangen Biotech Co., Ltd., Beijing, China) following the manufacturer’s 522 

recommendations. The extracted RNA was reverse transcribed using a ReverTra Ace 523 

qPCR RT Kit with an enzyme for genomic DNA removal (Toyobo, Osaka, Japan). 524 

qRT-PCR experiments were performed on a LightCycler 480 II detection system 525 
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(Roche, Germany) with a SYBR Green PCR Master Mix Kit (TaKaRa, Japan). The 526 

PCR was performed with 3 min at 95 °C, which was followed by 40 cycles of 30 s at 527 

95 °C, 30 s at 58 °C and 1 min at 72 °C. The tomato ACTIN2 gene was used as an 528 

internal control to calculate relative expression (Livak and Schmittgen, 2001). 529 

Gene-specific primer sequences can be found in Supplemental Table S2. 530 

Immunoblotting Assays 531 

35S:SlHY5-HA fusion proteins after CA or under normal conditions of LD or SD with 532 

H-R/FR or L-R/FR light for 5 d, were extracted from SlHY5-overexpressing tomato 533 

plants by homogenization in extraction buffer (50 mM Tris-HCl (pH 8.0), 1 mM EDTA, 534 

150 mM NaCl, 0.1% ȕ-mercaptoethanol, 0.2% Triton X-100, 1 mM PMSF, and plant 535 

protease inhibitor cocktail). Protein concentrations were measured using Coomassie 536 

stain as described previously (Bradford, 1976). Equal amounts of total protein from 537 

each sample were subjected to SDS-PAGE (15% polyacrylamide) and 538 

electrotransferred to nitrocellulose membranes (BioRad, Hercules, CA, USA). The 539 

proteins were immunoblotted with anti-HA primary antibody (Cat. no. 26183; Pierce, 540 

USA) and subsequently with horseradish-peroxidase-conjugated secondary antibody 541 

(antigoat, Invitrogen, Sweden). The signals were detected with enhanced chemical 542 

luminescence (ECL). 543 

Recombinant Proteins and Electrophoretic Mobility Shift Assay (EMSA) 544 

The pET-32a-His-SlHY5 construct was generated using the full-length coding region of 545 

HY5 with the primers listed in Supplemental Table S1 and by restriction digestion using 546 

the BamHI and SacI sites of the pET-32a vector. The recombinant vector was 547 

transformed into Escherichia coli strain BL21 (DE3). The His-SlHY5 recombinant 548 

proteins were expressed and purified from E. coli following the manufacturer’s 549 

instructions for the Novagen pET purification system. For the binding assay, probes 550 

were end-labeled with biotin following the manufacturer’s instructions for the Biotin 3’ 551 

End DNA Labeling Kit (Cat. no. 89818; Pierce, USA) and annealed to double-stranded 552 

probe DNA. EMSAs were performed using a LightShift Chemiluminescent EMSA Kit 553 

(Cat. no. 20148; Thermo Fisher Scientific, USA). The reaction mixture was loaded onto 554 

a 6% non-denaturing polyacrylamide gel in Tris-glycine buffer, electrophoresed at 100 555 

V, transferred to a positive nylon membrane, and subjected to UV crosslinking. Finally, 556 

the protein-DNA signals were detected by chemiluminescence using the LightShift 557 

Chemiluminescent EMSA Kit (Cat. no. 20148; Thermo Fisher Scientific, USA) and 558 
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autoradiographed. The DNA probes used in the EMSA are shown in Supplemental 559 

Table S3. 560 

Chromatin Immunoprecipitation (ChIP) Assay 561 

ChIP assays were performed following the manufacturer’s instructions for the 562 

EpiQuikTM Plant ChIP Kit (Cat. no. P-2014; Epigentek, USA) as previously described 563 

(Li et al., 2011). Approximately 1 g of leaf tissue was harvested from SlHY5-OE#1 and 564 

WT plants, which were grown at 10 °C under conditions of SD with L-R/FR for 5 d and 565 

were treated with formaldehyde to crosslink the protein-DNA complexes. The 566 

chromatin samples were immunoprecipitated with an anti-HA antibody (Cat. no. 26183; 567 

Pierce, USA), and goat antimouse IgG (Cat. no. AP124P; Millipore, USA) was used as 568 

a negative control. Quantitative RT-PCR (RT-qPCR) was performed to identify 569 

enriched DNA fragments by comparing the immunoprecipitates with the inputs. Primers 570 

of the SlNCED6 and SlGA2ox4 promoters are listed in Supplemental Table S4. 571 

Statistical Analysis 572 

The experimental design was a completely randomized block design with three 573 

replicates. Each replicate contained ten plants. Analysis of variance (ANOVA) was used 574 

to test for significance. When interaction terms were significant (P<0.05), differences 575 

between means were analyzed using Tukey comparisons. Significant differences 576 

between treatment means are indicated by different letters. 577 

Accession Numbers 578 

Sequence data from this article can be found in the GenBank/EMBL data libraries under 579 

the accession numbers listed in Supplemental Tables S2, S3 and S4. 580 

 581 

582 
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Supplemental Data 583 

The following supplemental materials are available. 584 

Supplemental Figure S1. Effect of temperature, photoperiod and light quality on genes 585 

expression of SlPHYB2 and SlGID1, and plant height of tomato DELLA family genes 586 

-silenced plants. 587 

Supplemental Figure S2. Photoperiod and light quality regulation of cold tolerance 588 

needs to be concurrent with low temperatures. 589 

Supplemental Figure S3. The phytochromes mutants in tomato plants. 590 

Supplemental Figure S4. Transcript levels of SlHY5 (A) and SlCOP1 (B) genes in 591 

tomato plants grown at 25 °C for 5 d under long day (LD, 16 h) or short-day (SD, 8 h) 592 

with high R/FR ratio (H-R/FR, 2.5) light or low R/FR ratio (L-R/FR, 0.5) light. 593 

Supplemental Figure S5. Regulation of SlHY5 and SlCOP1 genes expression by cold 594 

acclimation, photoperiod and light quality is phytochrome-dependent. 595 

Supplemental Figure S6. The positive role of SlHY5 in tomato cold tolerance 596 

regulated by temperature, photoperiod and light quality during the seasonal variation. 597 

Supplemental Figure S7. Expression of SlGA2oxs family genes in WT, HY5-RNAi and 598 

HY5-OE tomato plants and promoter analysis of tomato SlGA2ox4 gene. 599 

Supplemental Figure S8. Regulation of SlAREB and SlABF4 genes expression by cold 600 

acclimation, photoperiod and light quality in WT, HY5-RNAi and HY5-OE tomato 601 

plants. 602 

Supplemental Figure S9. The binding abilities of SlHY5 to the promoters of ABA 603 

biosynthetic genes. 604 

Supplemental Figure S10. SlHY5 directly binds to the G-boxes in the promoter of 605 

SlNCED6. 606 

Supplemental Figure S11. Regulation of SlNCED6 expression by cold acclimation, 607 

photoperiod and light quality is phytochrome-dependent. 608 

Supplemental Figure S12. The SlNCED6-silenced tomato plants. 609 

Supplemental Figure S13. Tomato SlNCED6 positively regulates cold tolerance in 610 

response to changes of temperature, photoperiod and light quality during seasonal 611 

variation. 612 
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Supplemental Table S1. PCR primer sequences used for vector construction. 613 

Supplemental Table S2. List of primer sequences used for qRT-PCR analysis. 614 

Supplemental Table S3. Probes used in the electrophoretic mobility shift assays 615 

(EMSA). 616 

Supplemental Table S4. Primers used for ChIP-qPCR assays. 617 

 618 

619 
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FIGURE LEGENDS 620 

Figure 1. Cold tolerance of tomato phytochrome mutants in response to the variation of 621 

temperature, photoperiod and light quality. A-D, Transcripts of phytochromes (SlPHYA, 622 

A; SlPHYB1, B), PROCERA (SlPRO, C) and SlCBF1 (D) genes as influenced by 623 

temperature, photoperiod and light quality in tomato plants. Plants grown at 25 °C or 624 

10 °C under long-day (LD, 16 h) or short-day (SD, 8 h) conditions with high R/FR 625 

(H-R/FR, 2.5) light or low R/FR (L-R/FR, 0.5) light for 5 d. E, The relative electrolyte 626 

leakage was measured after wild-type (WT) and phytochrome mutants (phyA, phyB1B2 627 

and phyAB1B2) in tomato plants were exposed to 25 °C or 10 °C under LD or SD with 628 

H-R/FR or L-R/FR light conditions for 7 d followed by cold temperature at 4 °C with 629 

identical light conditions for 7 d. For light-quality treatments, plants were maintained at 630 

R conditions (120 µmol m-2 s-1) and supplemented with different intensities of FR. Data 631 

are presented as the means of three biological replicates (±SD). Different letters indicate 632 

significant differences (P < 0.05) according to Tukey’s test. 633 

 634 

Figure 2. Temperature- and light signal- regulated SlHY5 is associated with plant 635 

growth and cold tolerance. A, Transcript of the SlHY5 gene after the tomato 636 

phytochrome mutants were exposed to a low temperature under long-day (LD, 16 h) or 637 

short-day (SD, 8 h) conditions with high R/FR (H-R/FR, 2.5) light or low R/FR 638 

(L-R/FR, 0.5) light for 5 d. B, Accumulation of SlHY5 protein in tomato 639 

HY5-overexpressing (HY5-OE) plants at 25 °C or 10 °C under LD or SD conditions 640 

with H-R/FR or L-R/FR light for 5 d. C, Plant height in WT, HY5-RNAi and HY5-OE 641 

after tomato plants were grown at two temperatures with different light conditions for 5 642 

d (n=15). D, Fv/Fm of tomato wild-type (WT), HY5-RNAi and HY5-OE plants exposed 643 

to 25 °C or 10 °C under LD or SD conditions with H-R/FR or L-R/FR light for 7 d 644 

followed by cold treatment at 4 °C with identical light conditions for 7 d. The false- 645 

color code depicted at the bottom of the image ranges from 0 (black) to 1.0 (purple), 646 

representing the level of damage in the leaves. For light-quality treatments, plants were 647 

maintained at R conditions (120 µmol m-2 s-1) and supplemented with different 648 

intensities of FR. Data are presented as the means of three biological replicates (±SD). 649 

Different letters indicate significant differences (P < 0.05) according to Tukey’s test. 650 

 651 

Figure 3. SlHY5 regulation of GA homeostasis in response to the variation of 652 

temperature, photoperiod and light quality. Levels of active GAs (GA1 and GA4), their 653 

precursors (GA20 and GA9) and their metabolites (GA8 and GA34) in WT, HY5-RNAi 654 
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and HY5-OE tomato plants exposed to 10 °C under short-day (SD, 8 h) conditions with 655 

low R/FR (L-R/FR, 0.5) light or to 25 °C under long-day (LD, 16 h) conditions with 656 

high R/FR (H-R/FR, 2.5) light for 5 d. For light-quality treatments, plants were 657 

maintained at R conditions (120 µmol m-2 s-1) and supplemented with different 658 

intensities of FR. Data are presented as the means of three biological replicates (±SD). 659 

Different letters indicate significant differences (P < 0.05) according to Tukey’s test. 660 

 661 

Figure 4. SlHY5 directly binds to the SlGA2ox4 promoter and activates its transcription. 662 

A, Expression of SlGA2ox4 in WT, HY5-RNAi and HY5-OE tomato plants exposed to 663 

10 °C under short-day (SD, 8 h) conditions with low R/FR (L-R/FR, 0.5) light or to 664 

25 °C under long-day (LD, 16 h) conditions with high R/FR (H-R/FR, 2.5) light for 5 d. 665 

For light-quality treatments, plants were maintained at R conditions (120 µmol m-2 s-1) 666 

and supplemented with different intensities of FR. B, EMSA assay. The His-HY5 667 

recombinant protein was incubated with biotin-labeled wild-type (GA2ox4-ACE-wt) or 668 

mutant (GA2ox4-ACE-mut) GA2ox4 oligos. The protein purified from the empty 669 

vector was used as a negative control. C, ChIP-qPCR assay. WT and 35S:HY5-HA 670 

tomato plants were grown at 10 °C under SD conditions with L-R/FR light for 5 d, and 671 

samples were precipitated with an anti-HA antibody. A control reaction was processed 672 

simultaneously using mouse IgG. The ChIP results are presented as percentages of the 673 

input DNA. Three independent experiments were performed with similar results. 674 

Different letters indicate significant differences (P < 0.05) according to Tukey’s test. 675 

 676 

Figure 5. SlHY5 induces ABA biosynthesis by directly binding to SlNCED6 promoter 677 

and activating its transcription under cold stress. A, ABA content in WT, HY5-RNAi 678 

and HY5-OE plants exposed to 25 °C or 10 °C under long-day (LD, 16 h) or short-day 679 

(SD, 8 h) conditions with high R/FR (H-R/FR, 2.5) light or low R/FR (L-R/FR, 0.5) 680 

light for 5 d. B, EMSA assay. The His-HY5 recombinant protein was incubated with 681 

biotin-labeled wild-type (NCED6-G1-wt) or mutant (NCED6-G1-mut1/2) NCED6 682 

oligos. The protein purified from the empty vector was used as a negative control. C, 683 

ChIP-qPCR assay. WT and 35S:HY5-HA tomato plants were grown at 10 °C under SD 684 

conditions with L-R/FR light for 5 d, and samples were precipitated with an anti-HA 685 

antibody. A control reaction was processed simultaneously using mouse IgG. The ChIP 686 

results are presented as percentages of the input DNA. D, SlNCED6 gene expression in 687 

tomato plants exposed to 25 °C or 10 °C under LD or SD conditions with H-R/FR or 688 

L-R/FR light for 5 d. For light-quality treatments, plants were maintained at R 689 

conditions (120 µmol m-2 s-1) and supplemented with different intensities of FR. Data 690 
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are presented as the means of three biological replicates (±SD). Different letters indicate 691 

significant differences (P < 0.05) according to Tukey’s test. 692 

 693 

Figure 6. SlNCED6 is essential for cold acclimation, short days and low R/FR-induced 694 

cold tolerance of tomatoes. A and B, Fv/Fm (A) and relative electrolyte leakage (B) in 695 

tomato SlNCDE6-silenced plants after exposure to 25 °C or 10 °C under long-day (LD, 696 

16 h) or short-day (SD, 8 h) conditions with high R/FR (H-R/FR, 2.5) light or low R/FR 697 

(L-R/FR, 0.5) light for 7 d followed by cold treatment at 4 °C with identical light 698 

conditions for 7 d. The false-color code depicted at the bottom of the image ranges from 699 

0 (black) to 1.0 (purple), representing the level of damage in leaves. C and D, SlCBF1 700 

(C) and SlCOR413-like (D) gene expression in tomato SlNCDE6-silenced plants after 701 

exposure to 25 °C or 10 °C under LD or SD conditions with H-R/FR or L-R/FR light 702 

for 5 d. E and F, Transcripts of ABA-pathway genes (SlAREB, E; SlABF4, F) in tomato 703 

SlNCDE6-silenced plants after exposure to 25 °C or 10 °C under LD or SD conditions 704 

with H-R/FR or L-R/FR light for 5 d. For light-quality treatments, plants were 705 

maintained at R conditions (120 µmol m-2 s-1) and supplemented with different 706 

intensities of FR. Data are presented as the means of three biological replicates (±SD). 707 

Different letters indicate significant differences (P < 0.05) according to Tukey’s test.  708 

 709 

Figure 7. A model for tomato phytochrome-dependent SlHY5 regulation of plant 710 

growth and cold tolerance in response to temperature and light during seasonal 711 

variations. During late spring and summer, environmental factors (such as warmth) do 712 

not favor the accumulation of SlHY5, leading to a high GA/ABA ratio and to the 713 

subsequent promotion of plant growth and decrease in cold tolerance. However, gradual 714 

cooling accompanied by the shortening of the days (short day, SD) and the decrease in 715 

the R/FR ratio (L-R/FR) in the fall induces phyA accumulation, leading to increased 716 

accumulation of SlHY5 protein. The transcription factor SlHY5 promotes abscisic acid 717 

(ABA) biosynthesis but suppress gibberellin (GA) accumulation by directly binding to 718 

the promoters of an ABA biosynthesis gene (SlNCED6) and a GA catabolic enzyme 719 

gene (SlGA2ox4) and activating the transcription of these genes. Consequently, the 720 

increased ABA/GA ratio resulted in growth cessation of tomato plants and induced cold 721 

response. 722 

 723 
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Figure 1. Spatial variation in photoinhibition is partially attributable to the changes in light quality 
conditions. A and B, Maximum photochemical efficiency of PSII (Fv/Fm, A), maximum P700 
photooxidation level (ǻP700max, B) in leaves at the 9th (Up) and 5th (Down) ranks from the base in 
plants at 11-leaf stage under white light conditions after exposure to 4 °C for 7 d. C and D, Fv/Fm 
(C) and ǻP700max (D) at 4th leaves of the tomato plants at 6-leaf stage grown in temperature-
controlled chambers at 25 °C or 4 °C under L-FR or H-FR light conditions for 7 d. The false color 
code depicted at the bottom of the image ranges from 0 (black) to 1.0 (purple) represents the level 
of damage in leaves. E, Immunoblot detection of thylakoid proteins (PsaB and PsaC) separated by 
SDS-PAGE. Detached leaves were exposed to 25 oC or 4 oC for 3 d under L-FR or H-FR. F, Effect 
of methyl viologen (MV) on the ǻP700max under cold stress in different light quality. After treated 
with 25 µM MV for 3 h in darkness at 25 °C, leaves were transferred to 4 °C for 6 h under different 
light quality conditions. For the L-FR and H-FR, R/FR ratio at 1.5 and 0.5, respectively, plants were 
kept at R conditions (200 µmol m-2 s-1) supplemented with different intensities of FR (133 and 400 
µmol m-2 s-1). Data are presented as the mean of 4 biological replicates (±SD) except for Fv/Fm 
which was the mean for 15 leaves from independent plants. Different letters indicate significant 
differences (P< 0.05) according to the Tukey’s test. 
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Figure 2. Role of tomato phytochromes in light quality regulation of photoinhibition and transcript 
levels of light signaling genes (HY5 and COP1). A, Fv/Fm and ǻP700max of the tomato phytochrome 
mutant plants after exposure to a cold at 4 °C under L-FR or H-FR light conditions for 7 d. B, Post-
illumination chlorophyll fluorescence (CEF around PS I) in tomato plants after exposure to a cold 
at 4 °C for 3 d under L-FR and H-FR conditions. C and D, Changes of NPQ (C) and PsbS protein 
(D) in wild type (WT) and phytochrome mutant plants under L-FR and H-FR light conditions at 
4 °C for 3 d and 1 d, respectively. E, Transcript levels of HY5 and COP1 genes at 6 h after tomato 
phytochrome mutants were exposed to 4 °C under L-FR or H-FR light conditions. For the L-FR and 
H-FR, R/FR ratio at 1.5 and 0.5, respectively, plants were kept at R conditions (200 µmol m-2 s-1) 
supplemented with different intensities of FR (133 and 400 µmol m-2 s-1). Data are presented as the 
mean of 4 biological replicates (±SD) except for Fv/Fm which was the mean for 15 leaves from 
independent plants. Different letters indicate significant differences (P< 0.05) according to the 
Tukey’s test. 
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Figure 3. HY5 alleviated photoinhibition by induction of photoprotection. A and B, Fv/Fm (A) and 
ǻP700max (B) of the wild type (WT), HY5-RNAi and COP1-RNAi tomato plants after exposure to 
a cold at 4 °C under L-FR or H-FR light conditions for 7 d. The false color code depicted at the 
bottom of the image ranges from 0 (black) to 1.0 (purple) represents the level of damage in leaves. 
C and D, Post-illumination chlorophyll fluorescence (CEF around PSI, C) and NPQ (D) in WT, 
HY5-RNAi and COP1-RNAi tomato plants after exposure to 4 °C for 3 d under L-FR and H-FR 
conditions. E, Immunoblot analysis of PsbS in WT, HY5-RNAi and COP1-RNAi tomato plants after 
exposure to 4 °C for 1 d under L-FR and H-FR conditions. Samples were loaded at equal total 
proteins amounts based on Coomassie blue. F, Activity of antioxidant enzymes (SOD, APX, MDAR, 
DHAR and GR) involved in Foyer-Halliwell-Asada cycle after the WT, HY5-RNAi and COP1-
RNAi tomato plants exposure to 25 °C or 4 °C under L-FR or H-FR light conditions for 3 d. For the 
L-FR and H-FR, R/FR ratio at 1.5 and 0.5, respectively, plants were kept at R conditions (200 µmol 
m-2 s-1) supplemented with different intensities of FR (133 and 400 µmol m-2 s-1). Data are presented 
as the mean of 4 biological replicates (±SD) except for Fv/Fm which was the mean for 15 leaves 
from independent plants. Different letters indicate significant differences (P< 0.05) according to the 
Tukey’s test. 
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Figure 4. HY5 induced transcript level of ABI5 by binding to promoter of ABI5. A and B, G-box 
elements in the promoter of tomato ABI5 gene (A) and oligonucleotide used in the electrophoretic 
mobility shift assays (EMSA, B). Numbering is from predicted transcriptional start sites. The ABI5 
probe contains one G-box (ABI5-G-wt), whereas in the ABI5-G-mut1 and ABI5-G-mut2 probes the 
G-box core sequence was mutated. The WT and mutated G-box sequences are underlined. The 
mutated bases were indicated in red. C, HY5 directly binds to the G-box of ABI5 promoter in vitro. 
Recombinant HY5 was purified from E. coli cells and used for DNA binding assays with probes of 
ABI5-G-wt, ABI5-G-mut1 and ABI5-G-mut2. The protein purified from empty vector was used as 
the negative control. D, Direct binding of HY5 to the ABI5 promoter was analyzed using ChIP-
qPCR in 35S-HY5-3HA-overexpressing (HY5-OE#1) tomato plants. HY5-OE#1 plants at 6-leaf 
stage were exposed to 4 oC under H-FR condition and input chromatin was isolated from leaf 
samples at 6 h. The epitope-tagged HY5-chromatin complex was immunoprecipitated with an anti-
HA antibody. A control reaction was processed side-by-side using mouse IgG. Input- and ChIP-
DNA samples were quantified by qRT-PCR using primers specific for the promoter of the ABI5 
gene. The ChIP results are presented as percentage of the input DNA. OE, overexpressing; #1, line 
of HY5-OE plants. E and F, Transcript level of ABI5 gene at 6 h after HY5-RNAi and COP1-RNAi 
tomato plants exposed to 25 °C or 4 °C under different R/FR light regimes (E), and two independent 
HY5 overexpressing transgenic tomato lines (HY5-OE#1, OE#3) exposed to 4 °C under H-FR 
conditions (F). G, Transcript level of ABI5 gene at 6 h after WT and phytochromes mutants of tomato 
exposed to 4 °C under different R/FR light regimes. For the L-FR and H-FR, R/FR ratio at 1.5 and 
0.5, respectively, plants were kept at R conditions (200 µmol m-2 s-1) supplemented with different 
intensities of FR (133 and 400 µmol m-2 s-1). Four independent experiments were performed with 
similar results. Different letters indicate significant differences (P< 0.05) according to the Tukey’s 
test.  
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Figure 5. Role of ABI5 in light quality-regulated photoinhibition and photoprotection. A and B, 
Fv/Fm (A) and ǻP700max (B) of the non-silenced (pTRV) and silenced (pTRV-ABI5) tomato plants 
grown in temperature-controlled chambers at 25 °C or 4 °C under L-FR or H-FR light conditions 
for 7 d. The false color code depicted at the bottom of the image ranges from 0 (black) to 1.0 (purple) 
represents the level of damage in leaves. C and D, Post-illumination chlorophyll fluorescence (CEF 
around PSI, C) and NPQ (D) in the pTRV and pTRV-ABI5 tomato plants after exposure to 4 °C for 
3 d under L-FR and H-FR conditions. E, Immunoblot analysis of PsbS in pTRV and pTRV-ABI5 
tomato plants after exposure to 4 °C for 1 d under L-FR and H-FR conditions. Samples were loaded 
at equal total proteins amounts based on Coomassie blue. F, Activity of antioxidant enzymes (SOD, 
APX, MDAR, DHAR and GR) involved in Foyer-Halliwell-Asada cycle after the pTRV and pTRV-
ABI5 tomato plants exposure to 25 °C or 4 °C under L-FR or H-FR light conditions for 3 d. For the 
L-FR and H-FR, R/FR ratio at 1.5 and 0.5, respectively, plants were kept at R conditions (200 µmol 
m-2 s-1) supplemented with different intensities of FR (133 and 400 µmol m-2 s-1). Data are presented 
as the mean of 4 biological replicates (±SD) except for Fv/Fm which was the mean for 15 leaves 
from independent plants. Different letters indicate significant differences (P< 0.05) according to the 
Tukey’s test. 
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Figure 6. RBOH1-dependent ROS production prevents plants from photoinhibition by activating 
photoprotection. A and B, Transcript level of RBOH1 gene at 6 h (A) and cytochemical localization 
of H2O2 accumulation in leaf mesophyll cells at 1 d as visualized by CeCl3 staining and TEM (B) 
after pTRV and pTRV-ABI5 tomato plants exposed to 4 °C under different R/FR light regimes. The 
arrows indicate CeCl3 precipitates. Scale bars = 0.5 ȝm. C and D, Fv/Fm (C) and ǻP700max (D) of 
the wild type (WT) and RBOH1-RNAi tomato plants were exposed to 25 °C or 4 °C under L-FR or 
H-FR light conditions for 7 d. The false color code depicted at the bottom of the image ranges from 
0 (black) to 1.0 (purple) represents the level of damage in leaves. E and F, Post-illumination 
chlorophyll fluorescence (CEF around PSI, E) and NPQ (F) in the WT and RBOH1-RNAi tomato 
plants after exposure to 4 °C for 3 d under L-FR and H-FR conditions. G, Immunoblot analysis of 
PsbS in WT and RBOH1-RNAi tomato plants after exposure to 4 °C for 1 d under L-FR and H-FR 
conditions. Samples were loaded at equal total proteins amounts based on Coomassie blue. H, 
Activity of antioxidant enzymes (SOD, APX, MDAR, DHAR and GR) involved in Foyer-Halliwell-
Asada cycle after the WT and RBOH1-RNAi tomato plants exposure to 25 °C or 4 °C under L-FR 
or H-FR light conditions for 3 d. For the L-FR and H-FR, R/FR ratio at 1.5 and 0.5, respectively, 
plants were kept at R conditions (200 µmol m-2 s-1) supplemented with different intensities of FR 
(133 and 400 µmol m-2 s-1). Data are presented as the mean of 4 biological replicates (±SD) except 
for Fv/Fm which was the mean for 15 leaves from independent plants. Different letters indicate 
significant differences (P< 0.05) according to the Tukey’s test. 
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Figure 7. PROTON GRADIENT REGULATION5 (PGR5)-dependent CEF plays dual roles in 

preventing plants from photoinhibition. A and B, Fv/Fm (A) and ǻP700max (B) of the wild type 

(WT), pgr5 mutant (pgr5#5) and PGR5-overexpressing (OE-PGR5#3) transgenic plants grown at 

4 °C under L-FR or H-FR light conditions for 7 d. The false color code depicted at the bottom of 

the image ranges from 0 (black) to 1.0 (purple) represents the level of damage in leaves. C and D, 

qE (C) and NPQ (D) in the WT, pgr5#5 mutant and OE-PGR5#3 tomato plants after exposure to 

4 °C for 3 d under L-FR and H-FR conditions. E and F, PsbS protein (E) and de-epoxidation state 

of the xanthophyll cycle (F) in the WT, pgr5#5 mutant and OE-PGR5#3 tomato plants after 

exposure to 4 °C for 1 d and 3 d, respectively, under L-FR and H-FR conditions. For the L-FR and 

H-FR, R/FR ratio at 1.5 and 0.5, respectively, plants were kept at R conditions (200 µmol m-2 s-1) 

supplemented with different intensities of FR. Data are presented as the mean of 4 biological 

replicates (±SD) except for Fv/Fm which was the mean for 15 leaves from independent plants. 

Different letters indicate significant differences (P< 0.05) according to the Tukey’s test. 
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