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a b s t r a c t

Model selection is a challenging problem that is of importance in many branches of the

sciences and engineering, particularly in structural dynamics. By definition, it is intended

to select the most likely model among a set of competing models that best matches the

dynamic behaviour of a real structure and better predicts the measured data. The

Bayesian approach which is based essentially on the evaluation of a likelihood function

is one of the most popular approach to deal with model selection and parameter estimation

issues. However, in some circumstances, the likelihood function is either intractable or not

available even in a closed form. To overcome this issue, the likelihood-free or approximate

Bayesian computation (ABC) algorithm has been introduced in the literature, which relaxes

the need for an explicit likelihood function to measure the level of agreement between

model predictions and measurements. However, ABC algorithms suffer from a low accep-

tance rate of samples which is actually a common problem with the traditional Bayesian

methods. To overcome this shortcoming and alleviate the computational burden, a new

variant of the ABC algorithm based on an ellipsoidal Nested Sampling (NS) technique is

introduced in this paper; it has been called ABC-NS. Through this paper, it will be shown

how the new algorithm is a promising alternative to deal with parameter estimation and

model selection issues. It promises drastic speedups and provides a good approximation

of the posterior distributions. To demonstrate its robust computational efficiency, four

illustrative examples are given. Firstly, the efficiency of the algorithm is demonstrated to

deal with parameter estimation. Secondly, two examples based on simulated and real data

are given to demonstrate the efficiency of the algorithm to deal with model selection in

structural dynamics.

� 2018 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Model selection and parameter estimation still remain challenging issues for dynamicists, particularly for systems with
complex behaviours (such as the existence of bifurcations and/or chaos, nonlinearities, etc). In model selection, the common
route is not to identify the true underlying model but rather to find a model which is useful. Box and Draper [1] made the
famous statement ‘‘All models are wrong but some are useful”. Typically the usefulness of a model is measured by its ability
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to make predictions about unseen observations. In this sense, there is no true model (in the absence of simulated data); there
is only a model from a set of competing models which performs better. This is the model that explains the data in an accurate
and parsimonious way with minimal model complexity.

In structural dynamics, it is always the case that the number of possible models that could be used to explain a particular
data set could be very large. Therefore, it is often desirable to compare models to see whether all components are necessary
and then select the model with the highest evidence. This suggests the need of a sophisticated statistical tool which can be
used to evaluate the performance of the competing models and then provide a formal rank. To solve this challenging prob-
lem, the Bayesian approach has been successfully applied in different domains (dynamics, genetics, biology, ecology, etc).
Compared with other classical methods specifically the ones based on the evaluation of an information criterion, the Baye-
sian approach is more informative in the sense that one gets the full distributions of model parameters. For more details
about the implementation of the Bayesian method for parameter estimation and model selection, the reader is referred to
[2–9] and the references therein.

Before presenting the approximate Bayesian computation (ABC) or likelihood-free algorithms for model selection, the
main methods and techniques which have been proposed in the literature to deal with model selection are discussed.
The standard approach to compare between a set of competing models, is based on their ability to reproduce experimental
data. Basically, the model comparison involves the definition of a suitable metric of fit, e.g., the sum of squared residuals or
the euclidean distance for instance, and selecting a model that minimises this metric. The principal limitation of this
approach is that it only identifies a single best model and yields point estimates of the underlying parameter values, without
providing a meaningful description of the uncertainty among competing models and in their parameters. In addition, the
estimated parameter values are usually local optima of the fitting metric. Bayesian model inference overcomes the limitation
of a least-squares fitting approach by providing a rigorous method using available experimental data with prior knowledge,
to yield a fuller description of model and parameter uncertainties. Classical information criterions have been widely used to
deal with model selection, such as the Akaike information criterion (AIC) [10] and the Bayesian information criterion (BIC)
[11]. Another still popular IC is the deviance information criterion (DIC) proposed by [12]. Several other (ICs) have been pro-
posed in the literature and the question of which IC should be used in model selection is not a trivial task and is a still a
matter of debate. To enforce parsimony (simpler models should be preferred as they generalise better), most of the men-
tioned ICs introduce an ad hoc penalty term while in ABC, the parsimony principle is naturally embedded as will be shown
in the presented examples. The Reversible-Jump Markov-chain Monte Carlo (RJ-MCMC) algorithm is one of the methods
which has been widely used in the literature; however, its major drawback is how to deal with multiple competing models
with different dimensionalities. For a deep discussion and theory of RJ-MCMC, the reader is referred to the following paper
[13]. In [14], a recently proposed MCMC type posterior probability sampling algorithm called TMCMC [15] was implemented.
This algorithm estimates the model evidence by sampling the posterior probability distribution of the model by a sequence
of non-normalised intermediate probability functions. It should be noted that an improved versions of the TMCMC algorithm
have been proposed in the literature to correct the bias in the evidence observed in the original algorithm. For more details,
the reader may refer to [16,17]. Skilling [18,19] proposed the nested sampling algorithm, which is able to estimate efficiently
the evidence; it has been widely applied in several domains [20–24].

The application of the Bayesian approach requires the definition of a likelihood function to measure the level of agree-
ment between the observed and simulated data. However, in some circumstances the likelihood function might not be avail-
able in a closed form. To overcome this issue, and make possible the inference of complex systems, the ABC algorithm has
been introduced. ABC offers the possibility of using different features and metrics to measure the similarity between simu-
lated and observed data to infer a given system. For this reason, ABC has attracted attention in a wide variety of applied dis-
ciplines (e.g., biology, psychology, genetics, machine learning to mention just a few [25–27]) and recently in structural
dynamics for parameter estimation [28,29] and model selection [30,29,31,32]. The ABC algorithm has several advantages
compared to the existing methods: (i) it is easy to understand and to implement, (ii) no burn-in period for most of the vari-
ants and no parameter distribution filtering is necessary as the a posteriori distributions are directly given at the last running
step and (iii) offers the possibility to compare between a set of competing models simultaneously.

Several variants of the ABC algorithm have been proposed in the literature, including ABC based on Markov chain Monte
Carlo sampling [33] and ABC based on sequential Monte Carlo (proposed by Sisson et al. [34]), which has proven to be more
efficient than [33]. It should be noted that ABC was introduced initially to infer model parameters and then was extended to
deal with model selection [35]. One common issue with the existing ABC algorithms which has been widely reported in the
literature is the acceptance rate which decreases dramatically along the iterations (see, [36,37] for instance). Therefore, the
computational requirements exponentially increase which is a major drawback.

In this paper, a new ABC algorithm based on the idea of an ellipsoidal nested sampling technique [21] will be proposed to
overcome this issue, and it has been named ABC-NS. In the proposed algorithm, instead of removing one particle, as in the
traditional nested sampling algorithm [18], a proportion of particles are removed in each iteration (called the population in
the ABC jargon) based on assigned weights. In this study, different examples dealing with parameter estimation and model
selection issues (using simulated and real data) have been proposed to demonstrate the computational efficiency. It has been
shown that the new algorithm maintains a high acceptance rates over the populations, reduce the overall CPU time and pro-
vide a good precision on the posterior estimates. The gain in terms of computational efficiency offers the possibility to infer
several competing models with a large number of parameters compared with other variants. To demonstrate the computa-
tional efficiency of the ABC-NS algorithm over the ABC-SMC, a numerical example is presented.
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The rest of this paper is structured as follows. Section 2 starts out with the basics of the ABC algorithm and presents in
detail the new variant of ABC algorithms. Section 3 presents two examples to demonstrate the efficiency of the novel algo-
rithm to deal with parameter estimation. In Sections 4 and 5, two examples have been selected to demonstrate the efficiency
of the algorithm in solving the model selection issue and form the core of the paper. The main conclusions are given in
Section 6.

2. Approximate Bayesian computation

2.1. Basic theory

In the Bayesian method, the posterior probability density, pðhjuÞ given observed data u and a model M, can be computed
using Bayes’ Theorem:

pðhjuÞ ¼
pðhÞLðujhÞ

R

h
pðhÞLðujhÞdh

/ pðhÞLðujhÞ ð1Þ

where pðhÞ is the prior probability of h (the vector of model parameters) and LðujhÞ is the likelihood function. The denom-
inator is a normalising constant.

However, as mentioned earlier, explicit forms for likelihood functions are rarely available. In addition, the evaluation of
the integral in Eq. (1) is sometimes numerically difficult. The ABC methods remove the likelihood by evaluating the discrep-
ancy between the observed data and the data generated by a simulation using a given model. It should be noted that the ABC
offers the advantage to compare summary statistics instead of using the raw data. In the framework of ABC, an approximate
form of the Bayes’ Theorem is given by:

pðhjuÞ / p Dðu;u�Þ < ejhð ÞpðhÞ ð2Þ

where u� � f ð�jhÞ is the simulated data, Dð�Þ is a discrepancy metric, p Dðu;u�Þ < ejhð Þ is a distribution that measures how sim-
ilar u and u� and e > 0 is a tolerance threshold (when e tends towards 0, the approximated posterior distribution is a good
approximation of the ‘‘true” posterior distribution).

The Bayesian method allows both levels of inference (i.e., parameters and models). For model comparison, the Bayesian
method relies on the computation of posterior model probabilities pðMjjuÞ. Applying Bayes’s rule to a set of models, the pos-

terior probability of model Mj is given by:

pðMjjuÞ / pðMjÞpðujMj; hjÞ / pðMjÞ

Z

pðujMjÞpðhjjMjÞdhj ð3Þ

where pðMjÞ is the prior model probability, pðujMjÞ is the evidence of modelMj; pðhjjMjÞ is the prior distributions of param-

eters and hj is the vector of parameters in model Mj.

The most simple implementation of the ABC algorithm is ABC rejection sampling denoted by ABC-RS and illustrated in
Algorithm 1. While ABC-RS is simple to implement, it can be computationally prohibitive in practice. To overcome this prob-
lem, other variants have been proposed in the literature mentioned previously. In the next section, the new ABC algorithm is
presented. It should be noted that in the ABC algorithms in general, the identification strategy starts at a coarse resolution
(higher initial e1 value), which then is adaptively refined until a target tolerance threshold value defined by the user is
reached, giving a gradually finer representation of the model parameters estimation or model probabilities.

Algorithm 1 ABC-RS

Require u: observed data, M: model, e1
1: while i 6 N do

2: repeat

3: generate h
� from the prior distribution pð�Þ

4: simulate u� using the model Mð�Þ

5: until Dðu�;uÞ < e1
6: set H ¼ h

�

7: end for

2.2. ABC-NS implementation

In this section, a detailed description of the novel ABC algorithm is given. The ABC-NS algorithm broadly works following
the same scheme as the ABC-SMC algorithm in [35]. The main novelties are in (i) the way of sampling, (ii) the weighting
technique adopted from [25] and (iii) instead of dropping one particle per iteration, a proportion of particles is dropped
based on the assigned weights, which speeds-up the algorithm without compromising the precision on the posterior esti-
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mates. The iterative process is detailed in Algorithm 2. The algorithm starts by generating N particles from the prior satis-
fying the constraint Dðu;u�Þ < e1 (here, u for observed data and u� for simulated data). The accepted particles are then
weighted (see, step 9) and the next tolerance threshold is defined based on the discrepancy values ranked in descending

order (highest on top, see, step 11) as the ða0NÞ
th value where a0 is the proportion of dropped particles defined by the user.

Then, one assigns a weight of zero to the dropped particles. After that, the weights of the remaining particles are normalised
(see, step 13). From the remaining particles, one selects b0N particles based on the updated weight values, where b0 is the
proportion of particles, so-called ‘‘surviving” particles (see step 14). The surviving particles are then enclosed in an ellipsoid
in which the mass center l and the covariance matrix C are estimated based on the remaining particles; one denotes this

ellipsoid by E ¼ ðl; CÞ. The generated ellipsoid could be enlarged by a factor f 0 as mentioned in step 16 to ensure that the
particles on the borders are inside. It should be noted that ellipsoidal sampling was firstly proposed in [21] to improve
the efficiency of the nested sampling algorithm which has been widely used for Bayesian inference, mainly in cosmology
[38]. Finally, the population is replenished by resampling ð1� b0ÞN particles inside the enlarged ellipsoid (see step 20) fol-
lowing the scheme in [39] and a re-weighting step is carried out (see step 28). The procedure is repeated until a stopping
criterion defined by the user is met. For the ABC-NS algorithm, the mean value and the covariance matrix of the ‘‘alive” par-
ticles are given by:

l ¼
1

n

X

n

i¼1

xi ð4Þ

C ¼
1

n� 1

X

n

i¼1

ðxi � lÞðxi � lÞT ð5Þ

where n is the number of ‘‘alive” particles and xi denotes the vector of those particles.
In the framework of this work and in the considered examples, the hyperparameters are selected as follows: the number

of samples is set to 1000, a0; b0 and f 0 are set to 0.3, 0.6 and 1.1, respectively. It has been shown that the selected tuning
parameters work quite well for the considered examples to maintain relatively high acceptance rates over the iterations.
However, of course they can be optimised via common machine learning tools. In this work a brief discussion on the effects
of the tuning parameters on the computational and statistical efficiencies is given.

Algorithm 2 ABC-NS SAMPLER

Require u: observed data, Mð�Þ: model, e1;N, a0, b0, f 0
1: set t ¼ 1

2: for i ¼ 1; . . . ;N do

3: repeat

4: Sample h
� from the prior distributions pð�Þ

5: Simulate u� using the model Mð�Þ

6: until Dðu;u�Þ < e1
7: set Hi ¼ h

�, ei ¼ Dðu; u�Þ

8: end for

9: Associate a weight to each particle: xi /
1
e1

1� ðeie1Þ
2

� �

10: Sort ei in descending order and store them in et .

11: Define the next tolerance threshold e2 ¼ etða0NÞ

12: Drop particles with Dðu;u�Þ P e2, xj¼1:a0N ¼ 0

13: Normalise the weights such that
Pð1�a0ÞN

i¼1 xi ¼ 1

14: Select At ¼ b0N particles from the remaining based on the weights
15: Define the ellipsoid by its centre of the mass and covariance matrix flt; Ctg

16: Enlarge the ellispoid by f 0 .For simplicity the same notation for the updated ellipsoid is kept

17: for t ¼ 2; . . . ; T do

18: for j ¼ 1; . . . ; ð1� b0ÞN do

19: repeat

20: Sample one particle h
� inside Et�1

21: Simulate u� using the model Mð�Þ

22: until Dðu;u�Þ < et
23: set Hj ¼ h

�, ej ¼ Dðu;u�Þ

24: end for

25: Store the new particles in St

26: Obtain the new particle set, N new ¼ ½At�1;St� with their correspondent distance values et

(continued on next page)
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27: Sort et and define etþ1 ¼ etða0NÞ

28: Associate a weight to each particle as in step (9)

29: Define the new set of selected particles At as in step (14)

30: Update the ellipsoid hyperparameters using At , Et ¼ flt�1; Ct�1g .The enlargement factor is kept constant

31: end for

3. ABC-NS for parameter estimation

3.1. Example 1: linear oscillator

A numerical example is presented here to demonstrate the computational and statistical efficiencies of the ABC-NS algo-
rithm compared with the ABC-SMC. One considers the case of a SDOF oscillator in which the equation of motion is given by:

m€yþ c _yþ ky ¼ xðtÞ ð6Þ

where m is the mass (the mechanical system is assumed to have known mass, m ¼ 1), c is the damping and k is the stiffness.

y; _y and €y are displacement, velocity and acceleration responses, respectively. The excitation xðtÞ is a Gaussian sequence with
mean zero and standard deviation 10.

The training data shown in Fig. 1 was synthetically generated by integrating numerically Eq. (6) using the fourth-fifth

order Runge-Kutta method. The duration of measurements is T ¼ 5 s with sampling frequency f 0 ¼ 100 Hz, so that the num-
ber of data points is n ¼ 500. Table 1 gives the true values used to generate the training data and their respective ranges.

Once the data has been generated, the ABC-NS algorithm illustrated in Algorithm 2 was applied to infer the model param-
eters. It is important to note that an appropriate final tolerance e may be difficult to specify a priori. In this example, one
considers that the convergence is met when the difference between two successive tolerance threshold values is less than

10�3. Finally, the normalised mean square error (MSE) given by Eq. (7) is selected as a metric to measure the discrepancy
between the observed and simulated data:

Dðz�; zÞ ¼
100

nr2
z�

X

n

i¼1

z�i � zi
� �2

ð7Þ

where n is the size of the training data, r2
z� is the variance of the observed displacement; z� and z are the observed and sim-

ulated displacements given by the model, respectively.
To be equivalent to ABC-NS, one considers for the implementation of the ABC-SMC algorithm, a percentage of alive par-

ticles a0 ¼ 0:6. We set the sequence of tolerance levels obtained by ABC-NS for the ABC-SMC algorithm. A proposal PDF is
assumed to be Gaussian to run the ABC-SMC algorithm (see [40], for more details).

To make a comparison between the ABC-NS and ABC-SMC algorithms, one focuses on the acceptance rate over the pop-
ulations (measured by dividing the number of particles required to replenish a population by the total number of simula-
tions) together with the quality of the posterior. From Fig. 2, one can see that the ABC-NS algorithm outperforms the
ABC-SMC algorithm in terms of computational efficiency. The ABC-NS algorithm gives an acceptance rates for each simula-

Fig. 1. Training data set.
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tion (population) in the range of 60–70%, while with the ABC-SMC, the acceptance rate decreases over the populations, it
stabilises around 35% after few populations.

The ABC-NS and ABC-SMC results show that the mean estimates of the approximate posterior distribution is close to the
true parameters. Fig. 3 displays a comparison between the posterior estimates based on 50 repeated runs of ABC-NS and
ABC-SMC. One can see that the ABC-NS achieves the same or better results in terms of accuracy with less variation on
the posterior estimates.

Next, one investigates the effects of the hyperparameters (f 0;a0 and b0) on the computational and statistical efficiencies.

Fig. 4a shows the effect of f 0 on the acceptance rate, it should be noted that the pair ða0; b0Þ is set to (0.3, 0.6). One can see

from Fig. 4a and b that by varying f 0 from 1 to 1.2 impacts slightly the acceptance rate over the populations. For all the values

of f 0 and after few populations, the acceptance rates oscillates between 60 and 70 per cent. Overall and based on Fig. 5a and
b, one can say that the effect on the posterior estimates is as well negligible.

Now, one examines the effects of the pair ða0; b0Þ on the computational and statistical efficiencies of the ABC-NS algo-

rithm. Fig. 6 shows the acceptance rate over the populations for 5 pairs. To run simulations, the value of f 0 is set to 1.1. From
the same figure, one can see that when the value of a0 is low (i.e., the value of b0 is high), the acceptance rate is high, how-
ever, several populations are required to ensure convergence. On the other side, a high value of a0 is associated to a low
acceptance rate which is expected as we need more particles to replenish the population. We believe that the best solution

Table 1

Parameter ranges of the linear model.

Parameter True value Lower bound Upper bound

c 20 10 50

k 104 5000 15000

Fig. 2. Acceptance rates over populations: ABC-NS vs. ABC-SMC.

Fig. 3. Boxplots of estimated posterior mean values based on 50 repeated runs of ABC-NS and ABC-SMC.
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is a trade-off between the rejected and the remained particles at each population. In our case studies, the values of a0 and b0

are set to 0.3 and 0.6, respectively.
Fig. 7a and b show the evolution of the mean values (�r) of c and k for the 5 different pairs. One can see that for the dif-

ferent pairs, the posterior estimates are quite similar. The mean squared error (MSE) (computed using the following formula:

(1
n

Pn
i¼1ðhi � htrueÞ) for the inferred parameters are shown on the same figures. One can see that the evolution of the MSE val-

ues shows the same tendency for both parameters. The MSE is high when the value of a0 is low which means that from pop-
ulation to population a few new particles are injected. The MSE is at lowest value when a0 is high which means a more
‘‘good” particles have been added to the population. However, as one can see from the previous figure, the acceptance rate
is low when the value of a0 is high.

In this example, a brief discussion on the effects of each hyperparameter on the statistical and computational efficiencies
is given. One can say that a good choice of the hyperparameters is the one who guarantees the best trade-off between the

Fig. 4. (a) The effect of f 0 on the acceptance rate, (b) as for (a) only for the low and high values of f 0.

Fig. 5. The effect of f 0 on the posterior estimates (a) c and (b) k.
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Fig. 6. Acceptance rates over populations: the effect of the pair (a0;b0).

Fig. 7. The effect of the pair ða0; b0Þ on the posterior estimates, (a) c, (b) k.
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computational and the statistical efficiencies. Of course, a finer study is required to provide a general guideline to the user to
define those hyperparameters.

3.2. Example 2: parameter estimation of the g-and-k distribution

To demonstrate the efficiency of the ABC-NS for parameter estimation, the case study of the g-and-k distribution is pre-
sented. Such a distribution has also been used for testing several ABC approaches as in [41–43]. This distribution can model
many types of behaviour through just a small number of parameters, and offers an ideal alternative to complex convolutions
of ‘‘regular” distributions. The g-and-k distribution is defined by its cumulative distribution function and no explicit likeli-
hood function is available. The g-and-k distribution, has four parameters describing location, scale, skewness and kurtosis
and is thus able to model many asymmetric distributions. The quantile function of the g-and-k distribution (inverse distri-
bution function) is given by:

F�1ðX;A;B; c; g; kÞ ¼ Aþ B 1þ c
1� expð�g � rðXÞÞ

1þ expð�g � rðXÞÞ

� �

ð1þ r2ðXÞÞ
k
rðXÞ ð8Þ

where rðXÞ is the rðXÞth standard normal quantile, A and B are location and scale parameters and g and k are related to skew-
ness and kurtosis.

h ¼ ðA;B; g; kÞ is the vector of distribution parameters; given that c is kept fixed to c ¼ 0:8 following Rayner and MacGil-
livray [44] (the parameter c measures the overall asymmetry). It is noted that the normal distribution is a special case of the

g-and-k distribution, with g = 0 and k = 0. Parameter restrictions are B > 0 and k > �0:5. An evaluation of Eq. (8) returns a
draw (X-th quantile) from the g-and-k distribution.

We follow the simulation set up for data y1; . . . ; yn of size n ¼ 104 generated as in [41] with h ¼ ð3;1;2;0:5Þ. Fig. 8a and b
show the histogram and the empirical distribution function of the data, revealing a peaked distribution with a long right-
hand tail. Actually, it is extremely simple to obtain accurate inference for all parameters by reducing the dimensionality

of the problem as in [43] using a smaller set of summaries. It is assumed here that SðyÞ ¼ ðP20; P40; P60; P80; skewðyÞÞ as in
[43], that is the 20–40-60-80th percentiles of the data and the sample skewness. A uniform prior Uð0;10Þ on each parameter
is considered. The objective now is to estimate parameters with summaries SðyÞ ¼ ðyð1Þ; . . . ; yðnÞÞ (the sequence of ordered

data) using the metric given by Eq. (9) to measure the degree of similarity:

Jðy; zÞ ¼
X

n

i¼1

½SiðzÞ � SiðyÞ�
2

 !ð1=2Þ

ð9Þ

with Si the i-th element of S and z ¼ ðz1; . . . ; znÞ a vector of samples from the g-and-k distribution.

3.3. Results

To retrieve the unknown parameters, one uses the ABC-NS algorithm as illustrated in Algorithm 2. The hyperparameters

used to run the ABC-NS are defined as follows: a0 ¼ 0:3; b0 ¼ 0:6; f 0 ¼ 1:1;N ¼ 1000 and the convergence criterion is set

when the difference between two consecutive tolerance threshold values is less than 10�5. The tolerance level e has been
chosen in a recursive way: first a very large value (equal to 100) has been selected and then the next value is defined based
on the distances obtained in the previous population as illustrated in Algorithm 2. Fig. 9 shows the marginal posterior dis-
tributions at the last population when the tolerance value is equal to e ¼ 0:0074.

Fig. 8. (a) Histogram of simulated data set from g-and-k distribution, (b) empirical cumulative distribution function.
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From Table 5, one can see that ABC-NS provides a good inference of the distribution parameters. The 95% credible inter-
vals for the posterior distribution of all parameters contain the true values. This example shows that by selecting a suitable
set of summary statistics, one can provide a good estimates of the model parameters. From the obtained results, one can see
that g is identifiable with high uncertainty compared with the other parameters of the distribution, mainly for the first two
tolerance values. It should be noted that it is possible to further reduce the uncertainty in the distribution parameters by
decreasing the final tolerance threshold, of course by introducing computational cost.

The second example illustrates the statistical efficiency of the ABC-NS in dealing with parameter estimation from data.
One can see how, by selecting an appropriate summary statistics, one can efficiently make Bayesian inference circumventing
the issue of intractable likelihood functions. In the rest of this paper, the efficiency of the ABC-NS to deal withmodel selection

is investigated through two examples using simulated and real data. (Table 2).

Fig. 9. (left) g-and-k distribution: trace plots for the ABC-NS run at the last population, (right) marginal posterior distributions of the g-and-k distribution

parameters, (the blue triangles show the true values).

Table 2

Posterior estimates for the g-and-k distribution parameters at different target tolerance values.

Tolerance value Parameter Posterior estimates

Mean Std dev ½2:5%;97:5%� percentiles

e ¼ 0:1345 A 2.9615 0.0573 [2.9313, 3.0587]

B 0.9839 0.0458 [0.9499, 1.0712]

g 2.5434 1.5117 [1.9146, 9.3087]

k 0.4964 0.0402 [0.4689, 0.5740]

e ¼ 0:0444 A 2.9842 0.0201 [2.9702, 3.0230]

B 0.9873 0.0332 [0.9653, 1.0528]

g 2.0383 0.1317 [1.9406, 2.2894]

k 0.4970 0.0374 [0.4715, 0.5688]

e ¼ 0:0169 A 2.9869 0.0129 [2.9777, 3.0113]

B 0.9794 0.0283 [0.9614, 1.0335]

g 2.0064 0.0648 [1.9604, 2.1281]

k 0.5085 0.0330 [0.04858, 0.5754]

e ¼ 0:0074 A 2.9888 0.0115 [2.9815, 3.0114]

B 0.9738 0.0257 [0.9568, 1.0237]

g 1.9906 0.0515 [1.9569, 2.0980]

k 0.5163 0.0290 [0.04965, 0.5716]
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4. ABC-NS for model selection using Duffing-type oscillators

4.1. Example 1: cubic and cubic-quintic models

The performance of the ABC-NS algorithm is now investigated for model selection by considering two candidate models:
the cubic and cubic-quintic Duffing oscillators denoted by M1 and M2, respectively. The equation of motion associated to
each model is given by:

M1 : €zþ c _zþ kzþ k3z
3 ¼ f ðtÞ ð10Þ

M2 : €zþ c _zþ kzþ k3z
3 þ k5z

5 ¼ f ðtÞ ð11Þ

where c is the damping, k is the linear stiffness, k3 and k5 are the non-linear stiffness coefficients. z; _z and €z are displacement,

velocity and acceleration responses, respectively. The excitation f ðtÞ is a Gaussian sequence with mean zero and standard
deviation of 10.

To make Bayesian inference, a noisy training data set was generated from the cubic-quintic model and shown in Fig. 10
(the first 500 data points). It has been corrupted with Gaussian noise of standard deviation 1% RMS. The fourth and fifth-
order Runge-Kutta algorithm is chosen to integrate the equations of motion. To evaluate the model predictability, a set of
testing data has been generated shown in Fig. 10 (the second 500 points). Table 3 summarises the prior lower and upper
bounds associated to each unknown parameter of the competing models.

For the ABC-NS implementation, the same scheme shown in Algorithm 2 is followed by considering the candidate models

as additional parameters. One sets the prior probabilities of each model to be equal, i.e., pðM1Þ ¼ pðM2Þ ¼ 1
2. In the ABC-NS

for model selection, one treats the pair ðMk; h
ðkÞÞ with Mk as a candidate model and hðkÞ its vector of unknown parameters.

For a given ðMk; h
ðkÞÞ, the pair is accepted or rejected based on a discrepancy value. At the end of the algorithm, the model

probability for Mk is approximated using Eq. (12).

pðMkju
�Þ �

Accepted particles for Mk

Total number of particles N
ð12Þ

The convergence criterion used here is when the difference between two successive tolerance values is less than 10�7

(eðjÞ � eðjþ 1Þ < 10�7; jisthepopulationnumber). For the rest, the same hyperparameters defined earlier have been used.
It should be noted that the number of the dropped and remaining particles are rounded to the nearest integer in each step
of the algorithm such that the sum of the dropped and new particles is equal to N. Finally, the normalised mean square error
(MSE) given by Eq. (7) and used in the first example is selected as a metric to measure the discrepancy between the observed
and simulated data.

4.2. Results and discussion

Fig. 11 shows the model posterior probabilities over a selected number of populations. One can see how the ABC-NS algo-
rithm oscillates between the competing models and finishes by converging to the correct model when the tolerance values
become very small. From the same figure, one can see that the algorithm clearly tries first to favour the cubic model, this can
be seen from populations 1 to 37. Then, when the cubic model is no longer able to match the data very well, the ABC-NS
algorithm jumps to the complex model to accommodate the nonlinearity coming from the quintic term. The probability
of selecting this ‘‘true” model approaches when the tolerance value is very small and close to zero. This demonstrates that
the parsimony principle [45] is well embedded in the ABC-NS algorithm by favouring first simpler models. As mentioned
earlier, in the classical methods based on the evaluation of an information criterion, overly-complex models are penalised
through an ad hoc penalty term while the ABC algorithm naturally favours simpler models as shown here, which is a major
advantage circumventing the issue of which information criterion is more suitable to compare models.

Fig. 10. Training and testing data sets.
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Fig. 12 shows the acceptance rate over the populations, one can see how the ABC-NS algorithmmaintains a relatively high
acceptance rate over the populations. At early populations, the acceptance rate decreases because the input space to be
explored is large, then steadily rises as the volume of the search space shrinks down. From population 30 to population

Table 3

Parameter ranges of the competing models.

Parameter True value Lower bound Upper bound

c 0.05 0.005 0.5

k 50 5 500

k3 103 102 104

k5 105 104 106

Fig. 11. Model posterior probabilities considering the cubic and cubic-quintic models.

Fig. 12. Acceptance rate over the populations.
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81, it stabilises around an average value higher than 35 per cent and then decreases as a finer representation of the data is
required at that stage until the elimination of the cubic model (population 91). Then, from population 91, the acceptance rate
rises again as the search domain for the selected model is well defined.

Fig. 13 shows the histograms of the unknown parameters associated to the cubic-quintic model obtained at the last pop-
ulation. One can see how the histograms are well peaked around the true values. Table 4 summarises the statistics of the
posterior estimates associated with the selected model. The estimated model parameters are then used to make future pre-
dictions and evaluate the model predictability. From Fig. 14, it can be seen that the training and testing data sets are well
predicted. The 99% confidence interval is found pointwise by generating randomly a large number of samples, simulating
the model responses and then the 99% confidence interval is found pointwise. The normalised MSE estimated on the first
500 data points is equal to 0.2580 and is 0.4698 on the testing data. Based on [2], the discrepancy measure formulated in
Eq. (7) has shown that a value less than 5 generally indicates a good fit while a value less than 1 means an excellent fit.
It should be noted that the obtained posterior estimates could be easily refined and therefore reduce the uncertainty on
the parameters by further decreasing the final tolerance threshold value. The main advantage of the ABC-NS algorithm in
comparison with its predecessors is that this can be done at low computational cost as the region from where one can sam-
ple a ‘‘good” candidates is well delimited by the ellipsoids.

Finally, in order to check the repeatability of the model posterior probabilities, the ABC-NS algorithm is run 20 times.
From Fig. 15, one can see how the ABC-NS produces repeatable results with small variations. Clearly the algorithm tries first
to favour the simpler model (here the cubic model) (see the model posterior probabilities at populations 1, 11, 31, 51, 76 and
91) and when a higher predictive performance is required then the algorithm switches to the more complex model to justify
the increase in complexity. In short, a simpler (but equally accurate) explanation for data always has the greater evidence.

5. Characterisation of the dynamics of a wire rope isolators using ABC-NS

5.1. Experimental set-up

The last system consists of characterising the dynamics of a wire rope isolator (WRI) used for vibration isolation. WRIs
have found a vast number of application in medical equipment, mechanical machinery, and military hardware due to their
superior performance for the isolation of impact and vibration. However, the dynamical properties of mechanical isolators
are typically non-linear and these characteristics are seldom well defined, which may cause problems for design calculation
and computer simulations. The system considered in this paper has been proposed within the framework of the European
COST Action F3 working group in ‘‘Identification of non-linear systems” [46]. The aim of this benchmark was to identify the
dynamic properties of resilient mounts used for vibration isolation in industrial applications using different methods.

Fig. 16a shows the experimental set-up of the WRI mounted between a load mass m2 and a base mass m1b while Fig. 16b
is a schematic illustration. The excitation produced by an electro-dynamic shaker corresponds to a white noise sequence,

Fig. 13. Histograms for the cubic-quintic model parameters.
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low-pass filtered at 400 Hz. The motion and forces experienced by the isolators are measured; in particular, the acceleration

responses €x2 and €x1b of the load mass and bottom plate, the applied f and the relative displacement x12 between the top and
bottom plates. Five excitations ranging from 0.5 up to 8 V have been considered. For more details concerning the experimen-
tal set-up and the methods presented for the identification of the system, the reader is referred to the following references
[49,50,47,48]. Table 5 illustrates the characteristics of the testing system and the WRI properties.

Wire rope isolators have different response characteristics depending on the selected properties mentioned in Table 5. To
determine their dynamic characteristics, a series of dynamic tests were conducted by imposing a random excitation at dif-

Table 4

Posterior estimates for the cubic-quintic model parameters.

Parameter True value Posterior estimates

Mean, l Std. Dev, r [5th, 95th] percentiles

c 0.05 0.05086 1:2167	 10�3 [1:87	 10�2;5:2827	 10�2]

k 50 49.9211 2:8995	 10�1 [49:4382;50:3844]

k3 103 1016.5110 63:8396 [914:045;1123:6337]

k5 105 9:9670	 104 2:5015	 103 [9:5183	 104;1:036	 105]

Fig. 14. Model prediction using the cubic-quintic model on training and testing data sets.

Fig. 15. Boxplots of the model posterior probabilities over some selected populations.
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ferent excitation levels. Random excitation consists of a white noise, low-pass filtered (LPF) (18 db/oct) at 400 Hz. Different
levels of excitation were produced and the time signals were recorded with a sampling frequency of4096 Hz. As an example,
the displacement and inertial force versus relative displacement for three levels of excitation are shown in Fig. 17a–f.
Recorded inertial force-relative displacement loops showed hysteretic behaviour for all five amplitudes (only three of them
are shown for brevity). A hysteretic behaviour can be seen which means that a hysteretic model could potentially describe
the data reasonably well.

5.2. Selection of the candidate models

For the competing models, one selects the linear model given by the following expression as a competing model:

m€yþ c _yþ Ay ¼ xðtÞ ð13Þ

where ðm; c;AÞ are the parameters to be identified and xðtÞ is the applied excitation.
It should be noted that the linear model is selected on purpose to analyse the behaviour of the algorithm and to inves-

tigate if this model could be used to describe the dynamics of the WRI, mainly at low excitation levels. To describe the hys-
teretic behaviour of the WRI, a well developed mathematical model of hysteresis would be useful to make predictions and
avoids the time-consuming experimental work. In this study, the Bouc-Wen model is used to model the hysteretic beha-
viour. Many researchers have used the Bouc-Wen model to performmathematical modelling of the hysteresis system in sev-
eral areas including hysteretic isolators [51,52]. The Bouc-Wen model of hysteresis is given by:

m€yþ gðy; _yÞ þ zðy; _yÞ ¼ xðtÞ ð14Þ

where m is the mass of the system, gðy; _yÞ ¼ c _yþ ky is the polynomial part of the restoring force, zðy; _yÞ is the hysteretic part
and xðtÞ is the excitation force.

The hysteretic component is defined by Wen [53] via an additional equation of motion:

Fig. 16. (a) Experimental set-up: schematic configuration of the experiment, (b) illustration of the dynamical system under consideration [50].

Table 5

System characteristics and geometrical properties of helical wire rope isolators.

System characteristics

Load mass, m2 2.2 kg

Bottom plate, m1b 1.1 kg

Shaker base 3.7 kg

Wire diameter 2 mm

Length 110 mm

Number of loops 10

Loop diameter 30 mm
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_z ¼
�aj _yjzn � b _yjznj þ A _y; for n odd

�aj _yjzn�1jzj � b _yjznj þ A _y; for n even

�

ð15Þ

where (c;a; b;A) are the parameters to be identified, n is a discrete parameter.
The parameters (A;a; b) govern the shape and smoothness of the hysteresis loop. The equations offer a simplification from

the point of view of parameter estimation in that the stiffness term in Eq. (14) can be combined with the term A in the state
equation for z. The coupled Eqs. (14) and (15) were integrated forward in time using fourth-order Runge-Kutta integration.

In total, five competing models will be considered to performmodel selection using ABC-NS: the linear model given by Eq.
(13) and hysteretic models (Eqs. (14) and (15)) by varying n from 1 to 4. The priors assigned to the model parameters are
given in Table 6. All other settings for the ABC-NS algorithm were specified as before.

In the first part of this example, one aims to select the most likely model among the competing ones for each excitation
amplitude. The data set contains 1000 samples representing a short recording period of the acceleration of the top plate. The

Fig. 17. Displacement and inertial force versus relative displacement under excitation levels of (a, b) 8 V, (c, d) 4 V and (e, f) 2 V.

Table 6

Priors on model parameters.

Parameter Lower bound Upper bound

c �103 103

k �105 106

a �104 105

b �104 105

A 0 106
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data set is split into training data (from 501 to 1000) and testing data (from 1001 to 1500) as shown in Fig. 18. It should be
noted that the transient part (from 0 to 500) has been ignored in computing the MSE, to reduce the effect of initial conditions.

5.3. Results and analyses

Following the same scheme as before, the ABC-NS for model selection is implemented by assuming the same prior prob-
ability to the competing models. Fig. 19 shows the model posterior probabilities over some selected populations. One can see
that the most likely model is M2. As before, one can see that the parsimony principle is deeply embedded in the ABC-NS
algorithm. It tries firstly to select the simpler models and then when those models are not able to describe the dynamics
due the complexity of the data and the presence of nonlinearity, then the algorithm jumps to a more sophisticated model.
Table 7 summarises the statistics of model parameters for the selected excitation levels from where one can see that the

Fig. 18. Training and testing data sets using an excitation of amplitude 8 V.

Fig. 19. Model posterior probabilities under excitation amplitude 8 V.
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parameters have been estimated with a reasonable amount of uncertainties. Fig. 20 shows the model prediction on the train-
ing and testing data sets from where one can see a good agreement.

Fig. 21 shows how the ABC-NS maintains a high acceptance rate over the populations required for convergence. This
reduces considerably the computational time to converge to the most likely model.

The same procedure is now applied for the rest of the data sets for all the excitation levels to determine the most likely
models. The Bayesian inference using ABC-NS with the same hyperparameters as earlier is performed. Table 8 shows the
most likely model for each data set and the MSE estimated on the training and testing data sets. Table 9 shows the statistics
of the model parameters from which, one can see as before, a reduced amount of uncertainty on the parameters. Model pre-
diction for excitation 4 V is shown in Fig. 22, where one can see a good correlation between real and simulated data on train-
ing and testing data sets. A good agreement is shown as well for the other excitation levels not shown here for brevity.

The obtained results show that the Bouc-Wen model describes reasonably well the dynamics of the WRI. One point
should be noted that the selection of the appropriate model varies with the excitation level which is not desirable mainly

Table 7

Posterior estimates using an excitation amplitude of 8 V.

Excitation Moments Model parameters

level c a b A

8 V l 78.7315 3:9135	 103 1:5644	 104 3:3328	 105

r 0.2414 29.2111 97.9579 4:6459	 102

Fig. 20. Model prediction under excitation amplitude 8 V.

Fig. 21. Acceptance rate through the populations.
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when the practitioner needs one model to describe the dynamics of the WRI independently of the excitation level. This point
is addressed in the next subsection where the objective is to select one model which performs better considering all the test-
ing data sets and all the excitation levels simultaneously. To answer this question, one uses a confusion matrix introduced and
widely used in machine learning.

Before closing this section, one important point should be highlighted at low excitation levels (0.5 V, 1 V and 2 V). It has
been noticed that the linear model is favoured at the beginning of the algorithm and has been eliminated at an advanced
stage, as can be seen from Fig. 23 (at population 26 with e ¼ 0:812). This leads one to think that the system behaviour might
be predominantly linear, though the algorithm converges to one of the hysteretic models when the performance require-
ment in terms of prediction is high. To confirm this result, one uses the linear model to check its ability to make predictions.
Figs. 24 and 25 show that using the linear model at two different tolerance threshold values, an acceptable agreement is
shown between the predicted and simulated data (in Fig. 25, the 99% CI is not shown as it is indistinguishable from the
model prediction).

5.4. Confusion matrix

Although model selection can be straightforwadly performed for each excitation amplitude alone. The practitioner may
prefer one single model which can be used to describe the dynamics of the isolator regardless of the excitation level. In such

Table 8

Normalised MSE evaluated on training and testing data using mean posterior estimates.

Excitation amplitude (V) Selected model Training data Testing data

8 M2 1.4010 2.4538

4 M2 0.7787 0.6338

2 M3 0.1783 0.2782

1 M5 0.1848 0.3368

0.5 M4 0.5550 0.9999

Table 9

Posterior estimates using the other excitation amplitudes.

Excitation level (V) Moments Model parameters

c a b A

4 l 70.9807 1:7234	 103 3:3253	 104 4:5797	 105

r 0.1400 12.9543 58.2083 2:4260	 102

2 l 41.2794 1:1003	 103 2:9893	 104 4:7203	 105

r 0.2280 90.9088 1:7992	 102 3:1932	 102

1 l 29.6899 4:1047	 103 2:6767	 104 4:7829	 105

r 0.1537 88.9378 1:8534	 102 2:0254	 102

0:5 l �3.0524 3:4739	 104 �1:7453	 104 4:5444	 105

r 0.1422 1:8659	 102 3:0277	 102 1:5292	 102

Fig. 22. Model prediction under an excitation amplitude of 4 V.
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cases, a problemmay arise of deciding which of the competing models can provide acceptable predictions considering all the
testing data sets. To answer this challenging question, one introduces the confusion matrix, a concept widely adopted in
machine learning as mentioned earlier. The objective behind its use is to train the model considering one amplitude and then
quantify the performance of the model prediction based on the same metric (normalised MSE) using the rest of the testing
data sets as illustrated in Fig. 26. The confusion matrix is given below for a better understanding of its use in this context.
This allows one to give a clear idea of how each model performs considering all the testing data sets. Then, the selection of
the best model is done straightforwadly based on a comparison of the MSE values considering all the testing data sets.

Fig. 23. Evolution of the model posterior probabilities over the populations using an excitation amplitude of 0.5 V.

Fig. 24. Model prediction using the linear model under an excitation amplitude of 0.5 V (e ¼ 5:44).

Fig. 25. Model prediction using linear model under excitation amplitude of 0.5 V (e ¼ 0:812).
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Fig. 27 gives the confusion matrices associated to the competing models. One can clearly see that Mn¼2
3 is the best model

considering all the testing data sets based on the MSE values. This means that this model generalises better under different
excitation levels and should be selected if the practitioner prefers one model rather than a model for each excitation ampli-
tude. The confusion matrix associated to M5 is not shown here as it shows some numerical instability and therefore it has
been eliminated from the competition.

Based on these results, one may conclude that the Bouc-Wen model is a good way for describing the hysteretic behaviour
of the WRI. It has been shown that this model is efficient and has a good performance in terms of prediction under different
excitation amplitudes. Overall, the simulated data were in good agreement with experimental results.

Fig. 26. The confusion matrix concept.

Fig. 27. Confusion matrices considering all the testing data sets (colorbars display the normalised MSE values). (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)
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6. Conclusions

A new approximate Bayesian computation algorithm based on an ellipsoidal nested sampling method named ABC-NS has
been proposed in this paper for parameter estimation and model selection. It has been shown through four examples using
simulated and real data how the ABC-NS outperforms the popular ABC-SMC and overcomes the low efficiency observed after
few iterations by employing a more sophisticated technique to generate new samples. ABC-NS maintains a high acceptance
rate over the populations, which speeds up considerably the algorithm without compromising the precision of the posterior
estimates. As a result, significant savings in computational effort can be achieved, which is desirable particularly to enable
larger models to be analysed, the use of more computationally intensive forward simulation models and the inclusion of
additional uncertain parameters. Moreover, as it has been shown, the parsimony principle is naturally embedded in the
ABC algorithm. The ABC tells one which models are supported by the data in a straightforward way without any additional
cost. In conclusion, likelihood-free or approximate Bayesian computation algorithms represent a simple and efficient way to
handle highly complicated problems. It is extremely useful mainly when the likelihood function is intractable or cannot be
approached in a closed form offering the possibility to make Bayesian inference by using different kinds of features and met-
rics representative of the data.
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